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Learning Long-Range Perception Using
Self-Supervision From Short-Range

Sensors and Odometry
Mirko Nava , Jérôme Guzzi , R. Omar Chavez-Garcia , Luca M. Gambardella, and Alessandro Giusti

Abstract—We introduce a general self-supervised approach to
predict the future outputs of a short-range sensor (such as a prox-
imity sensor) given the current outputs of a long-range sensor
(such as a camera). We assume that the former is directly related
to some piece of information to be perceived (such as the presence
of an obstacle in a given position), whereas the latter is informa-
tion rich but hard to interpret directly. We instantiate and imple-
ment the approach on a small mobile robot to detect obstacles at
various distances using the video stream of the robot’s forward-
pointing camera, by training a convolutional neural network on
automatically-acquired datasets. We quantitatively evaluate the
quality of the predictions on unseen scenarios, qualitatively evalu-
ate robustness to different operating conditions, and demonstrate
usage as the sole input of an obstacle-avoidance controller. We addi-
tionally instantiate the approach on a different simulated scenario
with complementary characteristics, to exemplify the generality of
our contribution.

Index Terms—Range sensing, computer vision for other robotic
applications, deep learning in robotics and automation.

VIDEOS, DATASETS, AND CODE

Videos, datasets, and code to reproduce our re-
sults are available at: https://github.com/idsia-
robotics/learning-long-range-perception/

I. INTRODUCTION

W E CONSIDER a mobile robot capable of odometry and
equipped with at least two sensors: a long-range one,

such as a camera or laser scanner; and a short-range sensor such
as a proximity sensor or a contact sensor (bumper). We then con-
sider a specific perception task, such as detecting obstacles while
roaming the environment. Regardless on the specific choice of
the task and sensors, it is often the case that the long-range
sensors produce a large amount of data, whose interpretation
for the task at hand is complex; conversely, the short-range sen-
sor readings directly solve the task, but with limited range. For
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Fig. 1. The Mighty Thymio robot in two environments; five proximity sensors
can easily detect obstacles at very close range (blue areas), whereas the camera
has a much longer range (red area) but its outputs are hard to interpret.

example, detecting obstacles in the video stream of a forward-
pointing camera is difficult but potentially allows us to detect
them while they are still far; solving the same task with a prox-
imity sensor or bumper is straightforward as the sensor directly
reports the presence of an obstacle, but only works at very close
range.

In this letter we propose a novel technique for solving a
perception task by learning to interpret the long-range sensor
data; in particular, we adopt a self-supervised learning approach
in which future outputs from the short-range sensor are used as
a supervisory signal. We develop the complete pipeline for an
obstacle-detection task using camera frames as the long-range
sensor and proximity sensor readings as the short-range sensor
(see Figure 1). In this context, the camera frame acquired at time
t (input) is associated to proximity sensor readings obtained
at a different time t′ �= t (labels); for example, if the robot’s
odometry detects it has advanced straight for 10 cm between
t and t′, the proximity sensor outputs at t′ correspond to the
presence of obstacles 10 cm in front of the pose of the robot
at t. These outputs at time t′ can be associated to the camera
frame acquired at time t as a label expressing the presence of an
obstacle 10cm ahead. The same reasoning can be applied to other
distances, so that we define a multi-label classification problem
with a single camera frame as input, and multiple binary labels
expressing the presence of obstacles at different distances.

The approach is self-supervised because it does not require
any explicit effort for dataset acquisition or labeling: the robot
acquires labeled datasets unattended and can gather additional
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labeled data during its normal operation. Long-range sensors do
not need to be calibrated: in fact, they could even be mounted at
random, unknown poses on the robot. Exploiting a combination
of long-range sensors is handled naturally by just using all of
them as inputs to the learning model.

Potential instances of the approach include: a vacuuming
robot that learns to detect dirty areas, by using a camera as the
long-range sensor and an optical detector of dust in the vacuum
intake as the short-range sensor; an outdoor rover learning to
see challenging terrain by relating camera and/or LIDAR read-
ings to attitude and wheel slippage sensors; a quadrotor learning
to detect windows at a distance, using camera/LIDAR as long
range sensors and a vision-based door/window detector which
works only at close range as the short-range sensor. Note that
in this case, the short-range sensor is not a physical one but is
the output of an algorithm that operates on camera data but is
unable to produce long-range results.

The main contribution of this letter is a novel, general ap-
proach for self-supervised learning of long-range perception
(Section III). In Section IV we implement this model on the
Mighty Thymio robot [1], [2] for obstacle detection using
a forward-looking camera as the long-range sensor and five
forward-looking proximity sensors as the short-range sensor. In
Section V we report extensive experimental results on this task,
and quantitatively evaluate the quality of predictions as a func-
tion of distance. To test the generality of the approach, we finally
instantiate it on a different task and report results obtained in
simulation.

II. RELATED WORK

In robotics, self-supervised learning consists in the automated
acquisition of training data [3]–[8], usually by exploiting mul-
tiple sensors during the robot’s operation; the technique has
been used for ground robot navigation, most often for inter-
preting data from forward-looking cameras to detect obstacles
or traversable regions. The term self-supervised, in this con-
text, refers to the absence of an external supervisory signal (i.e.,
no human labeling of data), as the robots autonomous interac-
tions with the environment generate supervisory information.
The same term has been also used in the last few years to de-
note a related but much broader line of research [9] applied to
various tasks within the field of deep learning, which aims to
use the data itself as a supervisory signal (sometimes but not
always [10] using data from different sensors).

In this letter we consider the meaning of the term specific
to robotics, where self-supervision indicates that a robot au-
tonomously acquires ground truth labels. Then, one can catego-
rize the different approaches by the strategy adopted to compute
such labels. Hadsell et al. [3] derive the supervisory signal from
a point cloud obtained from a stereo vision sensor; this point
cloud is processed with heuristics in order to generate a segmen-
tation of the observed area to 5 classes (super-ground, ground,
footline, obstacle, super-obstacle), which is then used as ground
truth for learning the image appearance of each class. Zhou
et al. [11] propose a similar approach using a LIDAR point
cloud registered to image pixels; from the former, “terrain” and

“obstacle” classes are extracted and used as labels for learning
to classify image patches. Dahlkamp et al. [12] uses data from a
line laser scanning the area just in front of the car: information
about local height differences are used to segment such area
– which maps to a trapezium in the camera view – into terrain
and obstacle classes; the segmentation related to image pixels to
learn a visual model of the road. Maier et al. [13] use a 2d laser
sensor mounted on a humanoid robot as the source of labels,
which are used to learn to detect obstacles in the corresponding
images.

A common theme in these works is that labels are acquired
simultaneously to the data they are associated to. Our approach
crucially differs in that we derive supervisory labels from short-
range sensor data acquired at a different time than the long-range
data to be classified, when the robot is at a different pose.

In this regard, similar approaches have been used in liter-
ature for terrain classification [14], [15]: in these approaches,
accelerometer data is collected along with the front-facing cam-
era’s feed. Training examples are generated by matching the
two streams in such a way that the image collected at a given
time, which contains the visual representation of a terrain patch
in front of the robot, is associated to the accelerometer readings
collected when the robot was traversing that specific terrain
patch, from which the label is derived. Note that this implies
that the mapping between the image and the future robot poses
is known, i.e., that the long-range sensor is calibrated. Our ap-
proach does not rely on the knowledge of such mapping; in-
stead, we expect the Machine Learning model, which is fed
the raw long-range sensor data without any specific geomet-
ric interpretation, to automatically devise it; this also allows us
to simultaneously train for multiple labels at different relative
poses.

Gandhi et al. [16] trained a model to determine whether the
image acquired by the front camera of a drone depicts a nearby
obstacle or not. The former class is assigned to all images ac-
quired near the time in which of a drone crash is detected; re-
maining images are associated to the latter class. This approach
can be seen as a specific instance of the one we propose, with the
camera as a long-range sensor, a crash detector as a short-range
sensor, and a single label corresponding to a generic “nearby”
pose. Van Hecke et al. [17] adopt a similar approach to estimate
average depth using a monocular image, by using the stereo
vision depths from the past as trusted ground truth.

One of the main advantages of self-supervised learning ap-
proaches is that they can feature on-line learning, i.e. auto-
matically adapting models with training data acquired on the
spot, or even learning models from scratch. For example, Lieb
et al. [18] rely on the assumption that the robot is initially
placed on a road: then, the trapezoidal region just in front of
the robot can be safely assumed to be a good representation
of the road’s visual appearance; a learned model then classifies
similar patches in the rest of the image as traversable. Most men-
tioned works motivate self-supervision as an effective way to
automatically adapt to new environments, counteract changes in
illumination and environment conditions; this solves an impor-
tant drawback with machine learning applications to robotics.
Our approach shares these potential advantages, which are
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Fig. 2. (a) A mobile robot at pose p(t) has a long-range sensor L (red) and
(b) a short-range sensor S . Our objective is to predict the value of S at n target
poses p1 , p2 , . . . pn from the value of L(p(t)). (c, d) For a given instance,
we generate ground truth for a subset of labels by searching the robot’s future
trajectory for poses close to the target poses.

intrinsic to all self-supervised approaches; however, note that
our experimental validation does not investigate the advantages
of online learning, and instead carefully avoids to use training
data acquired in the same environment as evaluation data, in
order to produce conservative performance metrics.

Self-supervised techniques are also frequently adopted for
grasping tasks [19], [20]. For example, Pinto and Gupta [21]
predict the probability of successfully grasping an object for
different orientations of the end-effector using a camera image
of the object to be grasped as input. A force sensor attached to
the end-effector is used to determine if the grasp was successful
and thus generate binary labels for each attempt. An automated
approach can generate a large dataset of 50K attempts from 700
robot hours with limited human effort; note that the dataset we
collect in this letter has a similar cardinality but was acquired
with a much reduced expense of robot time, since in our setting
samples can be generated at a much higher rate.

III. MODEL

A. Problem Definition and Notation

We consider a mobile robot with pose p(t) at time t; the
robot is equipped with one long range sensor L and one or more
short-range sensors Si, i = 1, . . . , m. For simplicity, we limit
the analysis to wheeled mobile robots for which p(t) ∈ SE(2).
We model all sensors as functions L, Si that map the robot’s
pose to sensor readings.

We assume that short-range sensors return binary values
Si(p) ∈ {0, 1} that provide very local but unambiguous infor-
mation for the robot (e.g., bumpers). Instead, long-range sensors
provide a wider but maybe not directly interpretable information
(e.g., a camera).

We define a set {p1 , . . . , pn} of predefined target poses rel-
ative to the current pose p(t) (see Figure 2): our objective is
to predict the readings Si(pj ) of short-range sensors at the tar-
get poses, given the current reading L(p(t)) of the long-range
sensor.

B. Learning-Based Solution

We cast the problem as a supervised learning task. We gather
a large dataset of training instances and use it to model the
relation between L and S. Every sample consists of a tuple
(L(p), S1(p1), S2(p1), . . . , Sm (p1), S1(p2), . . . , Sm (pn )).

a) Data Collection: The dataset is collected in a self-
supervised manner as the robot roams in the environment

while sensing with all its sensors and recording odom-
etry information; for each time t, we record (p(t),
L(p(t)), S1(p(t)), . . . Sm (p(t))).

b) Self-Supervised Label Generation: After the data is col-
lected, we consider each pose in the dataset as a training sam-
ple. Let p(t) be such pose. In order to generate ground truth
labels, we consider each of the target poses {p1 , . . . , pn} in
turn. For each given target pose pj , we look for a time t′ such
that p(t′) is closest to pj . In this step, we may limit the search
to t′ ∈ [t − Δt, t + Δt], e.g., to limit the impact of odometry
drift. If the distance between p(t′) and pj is within a tolerance
δ, the recorded values of Si(p(t′)), i = 1 . . . n are used as the
labels for target pose pj . Otherwise, the labels associated to tar-
get pose pj are set to unknown. Therefore, it is possible that for
a given instance some or even all labels are unknown. While in
the former case the instance can still be used for learning, in the
latter case it must be discarded.

The amount of training instances for which a given label
is known depends on the corresponding target pose and on
the trajectory that the robot followed during data acquisition.
Section IV-B illustrates a robot’s behavior designed to efficiently
generate a large dataset for a specific set of target poses.

c) Learning: The machine learning problem is an instance of
multi-label binary classification with incomplete training labels
that predicts the value of m sensors at n poses (i.e., n × m
labels) given one reading from L. The specific model to solve
this problem depends on the type of the data generated by L; in
Section IV-E, we consider a setting in which L outputs images,
therefore we adopt a Convolutional Neural Network.

IV. EXPERIMENTAL SETUP

A. Test Platform

The robot platform adopted for the experiments is a Mighty
Thymio [1], a differential drive robot equipped with 9 infra-red
proximity sensors with a range of approximately 5 cm to 10 cm,
depending on the color and size of the object. 5 of these sensors
point towards the front of the robot at angles of −40◦, −20◦,
0◦, +20◦, +40◦ with respect to the robot’s longitudinal axis; we
use these five sensors as the short-range sensors S1 , . . . , S5 , and
treat their output as a binary value (1: obstacle in range, 0: no
obstacle in range). The robot is also equipped with a forward-
looking 720p webcam with a horizontal field of view of 68◦,
used as the long-range sensor.

We define a set of 31 target poses {p0 , . . . , p30} which lie
in front of the robot, aligned with its longitudinal axis, evenly
spaced at a distance of 0 cm to 30 cm. Note that since target
pose p0 coincides with the current robot pose p(t), labels for p0
are present in every training instance.

B. Data Acquisition Controller

We implemented an ad-hoc controller for efficient unattended
collection of datasets, consisting of the readings from the five
short-range sensors, the robot odometry and the camera feed.
The controller behavior is illustrated in Fig. 4: the robot moves
forward (a) until an obstacle is detected (b) by any of the
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Fig. 3. Simplified illustration describing how a training instance is built. The
camera image from the current pose p(t) (bottom) is associated to the sensor
readings (blue squares) from future poses that are close to the target poses
aligned with the robot’s axis.

Fig. 4. Example trajectory generated by the data acquisition controller.

proximity sensors; at this point, it stops and defines 5 directions
which are offset from the current direction by −30◦, −15◦, 0◦,
15◦ and 30◦ respectively (c, the figure shows three for clarity).
For each of these directions in turn, the robot: rotates in place
to align with this direction, moves back by a fixed distance
of 30 cm (d, f, h), then moves forward by the same distance,
returning to the starting position (e, g, i). After the process is
completed, the robot rotates away from the obstacle towards
a random direction, then starts moving forward again (j) and
continues the exploration of the environment.

Note that the controller is built in such a way to efficiently
populate labels for the target poses (i.e., it proceeds straight
when possible); moreover, the controller strives to observe each
obstacle from many points of view and distances, in order to
mitigate the label unbalance in the data.

However, it is important to note that the general approach
we propose is not dependent on any special controller. For any
given choice of the target poses, a random-walk trajectory would
eventually (albeit inefficiently) collect instances for all labels.

C. Datasets

We acquired datasets from 10 different scenarios (see Fig. 5),
some indoor and some outdoor, each featuring a different floor
type (tiled, wooden, cardboard, linoleum) and a different set
of obstacles. For each scenario, we left the robot unattended,

acquiring data for about 10 minutes using the controller de-
scribed above.

The collected data amounts to 90 minutes of recording, which
is then processed in order to generate labeled instances as de-
scribed in section III, resulting in a total of 50K training exam-
ples extracted at about 10 Hz. Figure 6 reports the total number
of known labels as a function of the distance of the correspond-
ing target pose. Note that the total of known labels for a distance
of 0 cm amounts to 250K, i.e., 50K for each of the 5 sensors.
We observe that the classification problem is unbalanced in fa-
vor of negative labels; a potential countermeasure, which is not
necessary in our case, is to implement a cost-sensitive loss [22].

All quantitative experiments reported below split training and
testing data by grouping on scenarios, i.e., ensure that the model
is always evaluated on scenarios different from those used for
training. This allows us to test the model’s generalization ability.

D. Data Preprocessing and Augmentation

Camera frames are resized using bilinear interpolation to
80 × 64 pixel RGB images, then normalized by subtracting the
mean and dividing by the standard deviation. The robot’s pose
is expressed with three degrees of freedom 〈x, y, θ〉 since the
robot operates in 2D.

Data augmentation has been adopted to synthetically increase
the size of the datasets: with probability 0.5, the image is flipped
horizontally, and the corresponding target labels are modified by
swapping the outputs of the left and right sensors, and the outputs
of the center-left and center-right sensors; with probability 1/3, a
Gaussian noise with μ = 0 and σ = 0.02 is added to the image;
also, with probability 1/3 the image is converted to grayscale;
lastly, a smooth grayscale gradient with a random direction is
overlayed on the image so to simulate a soft shadow.

E. Network Architecture and Training With Masked Loss

We use a convolutional neural network, with input shape 64
× 80 × 3 and output shape 1 × 155. Namely, the outputs consist
of one binary label for each of the five sensors, for each distance
in the set {0 cm, 1 cm, . . . , 30 cm}. The architecture is a simple
LeNet-like architecture [23], [24] with interleaved convolutional
and max-pooling layers, followed by two fully connected layers.
The architecture is detailed in Fig. 7. The model is trained for
a total of 15 epochs with 1000 steps per epoch, using gradient
descent on mini-batches composed by 64 instances; we use
the ADAM [25] optimizer with a learning rate η = 0.0002; the
loss function is the mean squared error computed only on the
available labels.

Because our dataset has incomplete labels (meaning that for
a given instance only a subset of the labels might be known),
we adopt a masking approach to prevent the loss function to be
influenced by the outputs corresponding to the labels that are
missing; in turn, this ensures that the corresponding errors will
not be backpropagated, which would compromise the learning
process.

To achieve this, for each instance we build a binary mask con-
taining one value per label, as implemented by Eigen et al. [26];
each value in the mask is equal to 1 if the corresponding label
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Fig. 5. 10 instances from the acquired dataset, each coming from a different scenario (top row: scenarios 1 to 5; bottom row: 6 to 10). For each instance, we show
the camera image (bottom) and the 31 × 5 ground truth labels as a blue matrix (top right): one row per distance, one column per sensor; dark = obstacle detected;
light = no obstacle detected; distances masked by gray rectangles correspond to unknown labels (due to the robot never reaching the corresponding pose). The red
heatmap at the top left shows the predictions of a model trained on the other 9 scenarios.

Fig. 6. Left: number of known positive (obstacle) and known negative (no
obstacle) labels as a function of the distance of the corresponding target pose.
Right: percentage of positive labels as a function of distance.

Fig. 7. Convnet architecture.

is known, and equal to 0 if the label is unknown. During the
forward propagation step, this mask is multiplied element-wise
with the difference between the prediction and the ground truth

for each output, i.e., the error signal. This nullifies the error
where the mask is 0 (i.e., for the subset of labels which are
unknown for the given instance), and lets it propagate where the
mask is 1.

F. Performance Metrics

We evaluate the performance of the model by computing the
area under the receiver operating characteristic curve (AUC)
for every output label (corresponding to a distance-sensor pair).
This metric is evaluated over 100 rounds of bootstrapping [27]
to robustly estimate a mean value and a confidence interval. Be-
cause of the heavy class unbalance in the dataset (see Figure 6),
accuracy is not a meaningful metric in this context; instead,
AUC is not affected by class unbalance and does not depend on
a choice of threshold. In particular, an AUC value of 0.5 pro-
vides a clear baseline: in fact, it corresponds to the performance
of a baseline classifier that always returns the most frequent
class; conversely, an AUC value of 1.0 corresponds to an ideal
classifier. We use these fixed bounds in all our figures.

V. EXPERIMENTAL RESULTS

We report two sets of experiments. In the first set
(Section V-A) we quantify the prediction quality using the
datasets described above, acquired on the Mighty Thymio. In
the second set (Section V-C) we aim to test the robustness
of the approach: to this end, we consider a model trained on
these datasets and report qualitative results for testing on video
streams acquired in different settings; we finally refer the in-
terested reader to videos showing the system in use as the sole
input of an obstacle avoidance controller.
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Fig. 8. AUC value obtained for each sensor (column) and distance (row).

A. Quantitative Results on Mighty Thymio Datasets

We consider a model trained on scenarios 1 to 8, and we
report the results on testing data from scenarios 9 and 10.

Figure 8 reports the AUC values obtained for each sensor
and distance. Figure 9 reports the same data as a function of
distance, separately for the central and lateral sensors. Note that
“distance” here does not refer to the distance between the ob-
stacle and the front of the robot; instead, it refers to the distance
of the corresponding target pose as defined in Section III, which
corresponds to the distance that the robot would have to travel
straight ahead before the proximity sensor is able to perceive
the obstacle.

We observe that overall prediction quality decreases with
distance. This is expected for two reasons: 1) the training dataset
contains fewer examples at longer distances, and those examples
exhibit more extreme class unbalance (Figure 6); 2) obstacles at
a long range might be harder to see, especially considering the
limited input resolution of the network. We also observe that:

� AUC values at very short distances (0 cm, 1 cm, 2 cm)
are slightly but consistently lower than the AUC observed
between 4 cm and 8 cm. This is caused by the fact that when
obstacles are very close to the robot, they cover almost the
whole camera field of view, and there might be no floor
visible at the bottom of the image; then, it is harder for the
model to interpret the resulting image.

� AUC values dramatically drop to 0.5 (i.e., no predictive
power) for distance values larger than 28 cm. This is ex-
pected, since this value corresponds to the distance of ob-
stacles when they appear at the top edge of the image; an
obstacle that is placed farther than that will not be visible
in the camera frame.

� For distances lower than 10 cm the central sensor is sig-
nificantly easier to predict than lateral sensors. This is ex-
plained by the fact that objects that are detected by lateral
sensors are at the edge of the camera field of view when
they are close, but not when they are far away.

Figure 9:Right reports the AUC values obtained for each
sensor, separately for each testing environment. These values
have been obtained by a leave-one-scenario-out cross validation
scheme. We observe that the predictive power of the model is
heavily dependent on the specific scenario. In particular, scenar-
ios 9 and 10, which were used as a testing set for the experiments
above, are in fact harder than the average.

B. Robustness Tests and Control

Figure 10 reports qualitative results concerning the perfor-
mance of the model, trained on the whole dataset described
above, when used for inference in two setups which do not match
the training data. We run the model on the video stream from a
TurtleBot 2 [28] robot, acquired by a laptop webcam mounted
about 60 cm over the ground (compare with the Mighty Thymio
camera, which is 12 cm from the ground), and oriented with a
similar pitch as the Mighty Thymio camera. Because the robot
has no proximity sensors, we don’t have ground truth informa-
tion; still, we qualitatively observe that obstacles are detected
reliably. The same figure reports the results we obtain when
feeding the model with data coming from a webcam mounted
on the belt of an user during walking (height 95 cm, variable
pitch). Videos are available as supplementary material, and also
include a brief experiment showing the effects of extreme cam-
era pitch angles. Supplementary videos show the system used
as the sole input of an obstacle avoidance controller, both on the
Mighty Thymio robot (with disabled proximity sensors) and on
the TurtleBot 2 robot; the robots react to obstacles appropriately.

C. Simulation Experiments on Generic Target poses

In order to highlight the generality of the approach, we run
an additional experiment using a Pioneer 3-AT platform sim-
ulated in Gazebo (see Figure 11), equipped with 3 RGB cam-
eras looking at random angles (long-range sensor) and a single
short-range sensor observing the floor color just below the robot
(which returns binary data: bright or dark). Data is collected
while the robot moves at a constant linear speed of 0.5 ms−1

and every 3 seconds changes its angular speed to a randomly
chosen value between −15 ◦s−1 and +15 ◦s−1 . We use 10 large
maps with size 50 m × 50 m each, featuring a planar floor tex-
tured in a random procedurally-generated black and white image
obtained by thresholding low-frequency Perlin noise. On these
maps, we run the controller for a total of 70 simulated minutes,
respawning the robot to the center of the area should it get too
close to the edge. This results in 84000 training examples col-
lected at 20 Hz; examples for 5 maps are used for self-supervised
training, the remaining for evaluation.

We consider a set of 17 × 17 = 289 target poses
{p1 , p2 , . . . , p289} in a square grid with a step of 0.5 m; because
the short-range sensor is not affected by the robot’s orientation,
we disregard the orientation of the poses and depict them as
small circles; the grid covers an area of 8 m × 8 m and is hor-
izontally centered on p(t); it extends to 5 m in front and 3m
behind p(t). The task is to predict the color of the floor (dark or
bright) that the robot would measure at p1 , p2 , . . . , p289 given
the three camera images acquired at p(t).
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Fig. 9. Average AUC over 100 bootstrap rounds. Left: AUC for the center (black) and left (cyan) sensors as a function of distance. Shaded areas report 95%
confidence intervals on the mean value (dashed line) over all environments. Right: AUC for each sensor for each environment, averaged over all distances between
0 and 30 cm.

Fig. 10. Robustness tests: input (bottom images) and outputs (top heatmap) of the model trained on datasets acquired by the Mighty Thymio robot. Leftmost
two images are acquired by a TurtleBot 2; the remaining three images are acquired by a belt-mounted camera.

Fig. 11. From left to right: the simulated Pioneer 3-AT platform on one of the 10 random maps; images acquired by the three cameras; top-down view with
the grid of target poses and the exact area of floor seen by each camera depicted in red (note that CAM1 is tilted laterally, so its imaged area is not a trapezoid);
log-scale heatmap of the number of known labels per target pose in the training set; heatmap of the AUC on the testing set for each target pose.

The results on the right of Figure 11 shows that the approach
learns to predict the output of short-range sensors for generic
target poses, including those not on the robot’s longitudinal
axis, as long as the pose is visited often (i.e., its label is known
in a sufficient number of training instances). Interestingly, the
approach learns to predict even some target poses that are not
directly observed by any of the three cameras; for example,
the poses directly under the robot and up to two meters behind
it. Note that this can not be due to the short-range sensor or
its history, because the predictions are a function of a single
input: the long-range sensor readings at the current timestep.
Instead, the model has learned to exploit the fact that bright and
dark areas in the floor are smooth and vary with low spatial
frequency: this makes it possible to extrapolate the floor color

on poses behind the robot, as long as the true labels for these
poses are observed frequently in the training set.

VI. CONCLUSIONS

We presented a self-supervised approach that learns how to
predict the future or past outputs of an informative short-range
sensor by interpreting the current outputs of a long range sen-
sor, which might be high-dimensional and hard to interpret. We
implemented the approach on the Mighty Thymio robot, for
the specific task of predicting the future outputs of the robot’s
proximity sensors (i.e., the presence of obstacles at different
distances from the robot) from the video stream of the robot’s
forward-pointing camera. We quantitatively verified that the



1286 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 4, NO. 2, APRIL 2019

approach is effective and generalizes well to unseen scenar-
ios; we qualitatively evaluated robustness to different operating
conditions and usage as input to an obstacle-avoidance con-
troller. Finally, we successfully instantiated the approach on a
different, complementary task in simulation.
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