
IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 3, JULY 2018 1771

EMD Net: An Encode–Manipulate–Decode
Network for Cloth Manipulation

Daisuke Tanaka , Solvi Arnold , and Kimitoshi Yamazaki

Abstract—In this letter, we present a motion planning method
for automatic operation of cloth products. The problem setting
we adopt here is that the current shape state of a cloth product
and the shape state of the goal are given. It is necessary to decide
where and what kind of manipulation is to be applied, and it is not
always possible to arrive at the goal state by a single operation;
that is, multiple operations might be necessary. To this problem,
we propose a novel motion planning method. Our method directly
connects cloth manipulations with shape changes of the cloth, by
means of a deep neural network. The effectiveness of the proposed
method was confirmed by simulation and real robot experiments.

Index Terms—Cloth manipulation, manipulation planning, con-
volutional auto encoder, neural network.

I. INTRODUCTION

IN ORDER for people to live their everyday lives, cloth
products are extremely familiar. For instance, clothing and

bedclothes are cloth products used everyday. Therefore, main-
tenance such as washing and storage is frequently necessary,
and people repeat such non-productive work every day. In re-
sponse to this fact, studies and developments of recognition and
manipulation of cloth products have been advanced in robotics.
Tasks that have been targeted include classification, unfolding,
folding, etc. It can be said that automation of cloth manipulation
is definitely proceeding with these results.

Nonetheless, cloth is extremely flexible and it is difficult to
know the condition of the fabric itself properly. Therefore, com-
pared with the manipulation of rigid objects, narrow task setting
is necessary: for instance, the position to grasp, and the ob-
ject shape transitions, are prescribed in advance. In almost all
cases, the goal state of clothing shape is previously given manu-
ally. With these settings, the feasibility of manipulating flexible
objects can be improved. On the other hand, as long as the pre-
defined state can not be actually obtained, the work for obtaining
that state is repeated, which is a restriction on efficiency of cloth
manipulation.

The purpose of this study is to establish a manipulation plan-
ning method for folding cloth products. The problem setting
we adopt here is that the current shape state of a cloth product

Manuscript received September 10, 2017; accepted December 26, 2017. Date
of publication January 31, 2018; date of current version March 12, 2018. This let-
ter was recommended for publication by Associate Editor L. Birglen and Editor
H. Ding upon evaluation of the reviewers’ comments. This work was supported
by NEDO and JSPS KAKENHI under Grant 26700024. (Corresponding author:
Kimitoshi Yamazaki.)

The authors are with the Mechanical Systems Engineering, Shinshu
University, Wakasato 380-8553, Japan (e-mail: 17w4037e@shinshu-u.ac.jp;
s_arnold@shinshu-u.ac.jp; kyamazaki@shinshu-u.ac.jp).

Digital Object Identifier 10.1109/LRA.2018.2800122

Fig. 1. A concept of folding planner.

and the shape state of the goal are given. Fig. 1 shows a con-
ceptual diagram. In order to shift a cloth from a certain shape
to a desired shape state, it is necessary to decide where and
what kind of operation is to be applied. It is not always possible
to arrive at the goal state by a single operation; that is, multi-
ple operations might be necessary. When considering solving
this task by automatic machines, there are two important chal-
lenges to consider. One is to enable shape prediction of fabric
products. Because cloth products are deformable objects, they
can take various shapes unlike a rigid body. The other is to be
able to generate “manipulation” to reshape a cloth product. In
order to transfer the cloth product to the desired shape state,
information related to manipulations, e.g. gripping points and
operation trajectories, have to be determined. Of course, these
challenges are closely related.

In this letter, we focus on the folding of a rectangular cloth by
an autonomous robot, and propose methods for achieving op-
eration under the above problem setting. In our methods, even
if the initial shape and the goal shape of a cloth product are
set freely, appropriate operations can be planned and executed.
Conventionally, in the studies of automation of cloth manipula-
tion, there were only a few previous methods that can produce
freely set goal shape states. Especially, as far as we know, there is
no appropriate method for doing so online. Therefore, we pro-
pose a novel planning mechanism with real-time property by
tightly coupling changes in cloth shape with the manipulations
producing these, in a neural architecture.

The contributions of this letter are as follows.
� We proposed a novel method, which directly connects cloth

operations with shape changes of the cloth, using a deep
neural network architecture.

� We sought ways to obtain appropriate performance with
a realistic amount of burden for training the above-
mentioned network. A successful example is shown in this
letter.

2377-3766 © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-3489-5792
https://orcid.org/0000-0003-4342-9344
https://orcid.org/0000-0002-4096-3288

1772 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 3, JULY 2018

� We collected a part of training data through experiments
using an actual robot. At that time, a data collection system
was constructed so as to facilitate this work.

� We executed the task of folding a rectangular cloth into a
desired shape under the restrictions of the range of motion
of the actual robot.

The structure of this letter is as follows. Section II presents
related work. Section III explains our manipulation planner for
cloth products. In Section IV, we discuss the issues and ap-
proaches to integration of the proposed planner with real robots.
Section V introduces our experimental results, Section VI dis-
cusses about the results, and Section VII lays out our conclusion
and future work.

II. RELATED WORK

A. Task Oriented Cloth Manipulation

In manipulating cloth products by automatic machines, how
to provide knowledge of cloth was an important issue. Since
it is difficult to define a general model, previous studies have
used knowledge representations tailored to the intended work.
In the traditional approach, each of knowledge representations
relating to global information and local information were given
manually, and researchers properly used them for recognition
and manipulation. Ono et al. [1] targeted square cloth and pro-
posed a description of the bending state based on its contour and
corners. Yamazaki [2] proposed a method of grasping points se-
lection. Using “hem elements” and their succession, the local
shape and the overall shape were described. Yuba et al. [3]
proposed a method for unfolding a rectangular cloth placed on
a table in an arbitrary unarranged shape. Cloth shape was de-
scribed by the position of corners and the state of cloth wrinkles.

Osawa et al. [4] achieved classification of clothing type us-
ing manipulation. They observed the contour and its bottom
part against hanging cloth product. The approach of hanging a
cloth product by grasping one end of it is effective as a way
to obtain routine information from deformable objects and is
therefore frequently used in recent studies [5] [6]. In some stud-
ies, these approaches were developed into methods of selecting
an appropriate grasping position from a cloth product in a sus-
pended state. Willimon et al. [7] proposed a method for cloth-
ing classification. A graph-based segmentation algorithm was
used in their isolation phase for categorizing the target clothing.
Doumanoglou et al. [8] succeeded in recognizing the type and
shape of clothing items during the unfolding process, using a 3D
range camera. Their framework also provided the next grasping
point for subsequent manipulation.

As a more general knowledge representation, methods using
a three-dimensional shape model has been used. Cuén-Rochı́n
et al. [9] proposed an action selection method for handling a
planar cloth. The recognition method is based on matching be-
tween a 3D point cloud and a physical model, and the result is
used to spread a square cloth. Kita et al. [10] used a 3D de-
formable model, and obtained a correspondence between the
model and an input pointcloud that was captured by a trinocu-
lar stereo camera. Stria et al. [11] unfolded a clothing item by
means of shape estimation using a polygonal model. Li et al. [12]

verified a trajectory of folding by physics simulation and demon-
strated their folding technique using an actual robot.

B. Coupled Knowledge Representation of Manipulation and
Cloth Shape State

Above-mentioned studies, researchers considered what kind
of shape state of cloth can be, and they used a model repre-
sentation that is less related to manipulation. On the other hand,
learning-based approaches relating to deformable object manip-
ulation have considered a deep relationship between clothing
shape and manipulation. The position of this study is close to
this policy.

Tanaka et al. [13] proposed a method of learning motor skills.
Based on topological relationship between the configuration
of a dual-armed robot and deformable objects, a dressing task
(putting a t-shirt on a test subject) was achieved. Lee et al.
[14] presented force-based demonstrations of deformable object
manipulation. The proposed method makes it possible to learn
appropriate feedback gains to trade off position and force goals
in a manner consistent with their data. Yang et al. [15] achieved
task folding a towel. Images predicting situations slightly ahead
in time were generated by a deep convolutional autoencoder, and
another fully connected neural network learned the dynamics of
a robot task process. These learning-based approaches have the
advantage of being able to reduce the effort of the developers
in designing the method. In addition, since the learning process
implicitly includes generating a cloth model associated with the
manipulation, it is highly suitable for online application. On
the other hand, it is difficult to learn multiple work procedures
at once.

III. CLOTH MANIPULATION PLANNING

A. Planner Structure and Mechanism

The problem of manipulation planning can be formulated as
follows: Given a state domain consisting of possible state set S,
a manipulation (action) domain consisting of possible manipu-
lation set M , and a state sa and a state sb ∈ S, find a manipula-
tion sequence (action sequence) pab =<m0 , · · · ,mn−1> with
mi ∈M such that applying manipulation sequence pab starting
in state sa will produce state sb .

We approach this problem using a modular neural network
architecture consisting of a state-encoder module, a manipula-
tion module, and a state-decoder module. We call this an EMD
net (Encode-Manipulate-Decode) for short. A concept image of
the EMD network is given in Fig. 2. The architecture is essen-
tially a 3D convolutional auto-encoder (providing the encoder
and decoder modules), with a fully connected network (the ma-
nipulation module) inserted at the bottleneck layer.

Network settings for the encoder and decoder module are as
follows: 6 Layers, map counts: 1 (input), 32, 32, 64, 128, 256,
512 (output). Order reversed in decoder. Kernel size: 3 × 3 ×
3 (all layers). Strides: 2 × 2 × 1 on the first layer (last layer
in decoder), 2 × 2 × 2 on all other layers. The settings of the
manipulation module are as follows: 10 Layers. Input layer size:

TANAKA et al.: EMD NET: AN ENCODE–MANIPULATE–DECODE NETWORK FOR CLOTH MANIPULATION 1773

Fig. 2. Network composition during training, corresponding to D(M (E
(s0), m0)) in our notation. (Concept image; actual network has more maps
and neurons, see text.)

512 + 6 neurons. Hidden layer size: 512 + 512 + 6 neurons.
Output layer size: 512 neurons.

Cloth state input is given in the form of a 32 × 32 × 16 binary
voxel representation. Each voxel takes a value of 1 if one or
more vertices of the cloth mesh fall in that voxel. Voxels that are
occluded from a top-down view (e.g. voxels below a 1-voxel)
are also set to 1 (this is done to mimic the occlusion conditions
that arise in real world data). Voxels that are neither occluded
nor contain a cloth vertex take a value of 0. To ensure that
the cloth is always fully in view, we apply periodic boundary
conditions on the x and y axes. Before rasterisation, we multiply
the vertices’ z coordinates by a factor 4 to emphasize height
variations. This helps to preserve creases (which do not have
much height but do provide important shape information) in the
voxel representation.

Manipulation input consists of 6 values: a set of 2D coordi-
nates (x, y) for each pick-up point, and the displacement vector.
All values lie in the [−1,1] range. Coordinates (−1, −1) and
(1, 1) correspond to the upper-left and bottom-right corner of
the field of view, respectively. The z-axis is not included in
the manipulation representation; the height at which to pick the
cloth up follows from the (x, y) coordinates, and the height to
which to lift the cloth is a fixed system parameter. The dataset
also includes single-handed grasps. In these examples, one of
the pick-up points is undefined. When training on such manip-
ulations, we set the coordinates for the undefined point to an
arbitrary point outside the cloth.

As can be inferred from the strides and map counts given
above, the encoder maps a 32 × 32 × 16 × 1 input to a 1 × 1 ×
1 × 512 output, i.e. the compressed representation has no in-
herent spatial structure. We let it compress 32 × 32 × 16 voxel
representations into 512-dimensional vectors. The manipulation
net takes this representation and a manipulation as input, and
computes a 512-dimensional vector representing the state that
results from applying the manipulation to the cloth state. The
decoder then decodes this representation into a 32 × 32 × 16
voxel representation of that cloth state. Below we denote appli-
cation of the network modules as follows:

� E(si) → ci: Apply the encoder on state si to obtain its
encoding ci .

� M(ci,mi) → ci+1: Apply the manipulation network on
encoded state ci and manipulation mi to obtain encoded
state ci+1 .

� D(ci) → si: Apply the decoder on encoded state ci to
obtain (decoded) state si .

Both the autoencoder (encoder and decoder) and the manipu-
lation network have some uncommon features. The convolution
operations use periodic padding on the x and y dimension to ac-
count for the periodic boundary conditions on the voxel space.
Instead of the usual zero values, we pad with the content of
the opposite edges and corners of the map. Periodic padding
is throughout the encoder and decoder. All connections in the
encoder and decoder are initialized with random values form
the [−0.05, 0.05] range.

The manipulation module is comprised of three vertical sec-
tions, distinguished by neuron color and shape in Fig. 2. The blue
section (round neurons) of the input layer receives the encoded
state representation. In each subsequent layer, the blue section
receives a copy of the activation vector on the blue section of
the preceding layer (i.e. the accentuated vertical connections
in Fig. 2 have fixed weights of 1.0). Activations computed in
the layer are added to the copied values. The blue section essen-
tially serves to hold the state representation as it is incrementally
modified through the layers. The yellow section (triangular neu-
rons) receives the manipulation input. Manipulation inputs are
provided (identically) at every layer. This ensures that the ma-
nipulation input is available in unmodified form at every layer.
The green section (diamond-shaped neurons) consists of regular
neurons, without pre-specified function. It constitutes the com-
putational resource for computing and applying the appropriate
state modifications. All connection weights are initialized to
random values from the [−0.001, 0.001] range, except for con-
nections from manipulation inputs, which are set to random
values from the [−0.05, 0.05] range instead, in order to coun-
teract the large size difference between state and manipulation
inputs (512 versus 6 values).

B. Training

We first train this net on our simulation-generated training
dataset of 6000 examples, for 1,500,000 batches of 16 ma-
nipulations each. On an Nvidia GTX1080 GPU, training took
approximately 3 days. Then we augment the training dataset
with 400 examples of robot-generated data and train for another

1774 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 3, JULY 2018

400,000 batches (approx. 1 day). Note that training is on batches
of individual manipulations, not on manipulation sequences.
The network proved difficult to train with most commonly used
update rules, but quite well trainable with the Manhattan update
rule. We use two loss functions, which we denote as losss and
lossc . Losss is the mean squared error between network out-
put, i.e. D(M(E(s0),m0)) and the voxel representation of the
actual outcome, i.e. s1 .

losss =
Σ

[
(D(M(E(s0),m0)) − s1)2

]

ns
. (1)

Where ns is the size (number of voxels) of the state represen-
tation (16384). The network output is a real-valued voxel rep-
resentation, which we compare against the actual outcome (a
binary voxel representation). Lossc is introduced to force con-
sistency of state encoding format between the input and output
layers of the manipulation network.

lossc =
Σ

[
(D(M(E(s0),m0)) − E(s1))2

]

nc
. (2)

Where nc is the size of a compressed state representation (512
with our settings). The need for consistency of state encoding
format will become apparent in the next section.

We compute the gradients for both losses separately, and then
combine the gradients on a perweight basis by simply summing
their signs. With combining gradients, the Manhattan update
rule takes the following form:

δwi = η ∗ [sign(gsi) + sign(gci)] (3)

Where δwi is the change in weight for connection i, η is the
learning rate, set to 1 · 10−5 here, and gsi and gci are the gradients
for connection i w.r.t. losss and lossc , respectively. If the two
gradients agree in sign, we update by η in the direction of that
sign, otherwise the weight remains the same.

Data augmentation is performed on the fly by applying ran-
dom rotation, mirroring, and grasp point swapping. The order
of the grasp points is immaterial, so the outcome state remains
the same. The data is further augmented with failure-to-grasp
examples generated by replacing the grasp points with random
points falling outside the cloth, and replacing the result state
with a copy of the initial state in a randomly selected example.
This teaches the net the non-effect of grasping outside the cloth.
Filling the undefined pick-up points in single-handed manipu-
lation examples with random points outside the cloth can also
be considered a type of data augmentation.

C. Planning Algorithm

Next, we repurpose the trained EMD net to generate multi-
step manipulation sequences (plans). To compute a prediction
of the outcome of applying a given n-step manipulation se-
quence to a given state, we can rewire the net to apply the
manipulation network recurrently, n times, consuming one ma-
nipulation input at every application. For example, applying
the manipulation module 3 times functionally gives us s3 =
D(M(M(M(E(s0),m0),m1),m2)). Fig. 3 illustrates this
concept. This is repeated application of the manipulation module

Fig. 3. Recurrent application of the manipulation network applying multistep
manipulation sequences.

that requires the consistency of state encoding that we enforced
during training by means of lossc . Search for ann-step planmab

for transforming state sa into state sb is performed as follows:
1) Set the number of manipulation module applications to n.
2) Generate a random initialization for mab .
3) Feed sa and mab into the net and perform forward propa-

gation to obtain the predicted outcome sp .
4) Compute losss for sp w.r.t. sb .
5) Perform back propagation to obtain the gradients for the

manipulation input values w.r.t. losss , and adjust mab so
as to reduce losss .

6) Repeat steps 3 through 5 until the loss value stabilizes
(no improvement for 25 iterations) or a set number of
iterations (100 here) has been performed.

Manipulation input values are adjusted by means of the
iRprop- variant [18] of the Rprop update scheme [19]. We found
values of 2.0 for η+ and 0.33 for η− to perform well in our sys-
tem. Ten instances of this search process are run in parallel on
GPU (Ge-Force GTX 1080), each instance starting from a dif-
ferent random initialization. The search process generally takes
between 2 and 9 seconds. We adopt the plan with the lowest
remaining losss value as the final result.

IV. TRAINING DATA COLLECTION

To generate the manipulation planner, it is necessary to col-
lect training data that records the cloth shape before and after
manipulation, as well as the grasping position and the displace-
ment thereof. Since it is difficult to collect a large amount of
training data only by actual experiments, we added the dataset
generated by physical simulation with actual data.

A. Data Generation by Simulation

We generate training examples using the cloth simulation
functionality of the Blender 3D editor [20]. Each example con-
sists of three elements: the pre-manipulation cloth state, the ma-
nipulation, and the post-manipulation cloth state. Manipulations

TANAKA et al.: EMD NET: AN ENCODE–MANIPULATE–DECODE NETWORK FOR CLOTH MANIPULATION 1775

Fig. 4. A dual-armed robot with a RGB-D sensor and GUI for instructing
manipulation.

consist of one or two sets of 2D coordinates indicating the lo-
cation of the grasp point(s) on the XY plane and a 2D vector
indicating the displacement on the XY plane.

The cloth is represented by an 80 × 80 mesh with the cloth
modifier enabled. The neural network’s field of view spans from
[−1, −1, 0] to [1, 1, 0.25], with the cloth in its initial configu-
ration spanning from [−0.7, −0.7, 0.03] to [0.7, 0.7, 0.03]. The
mesh itself has no explicit thickness, but we set up collision
detection to keep some minimal distance between vertices, as
well as between vertices and the desk surface (a plane at z = 0),
so that the cloth behaves as if it has some thickness.

For practical reasons the robot itself is not simulated. Instead
we pin cloth vertices lying in the vicinity of the grasp points to an
invisible actuator object (an “empty” in Blender terminology),
and assign the relevant movement trajectory to this actuator. We
generate examples of single-handed and bimanual manipula-
tion. No distinction is made between left and right hand grasps.
Random grasp points are found by randomly selecting cloth
vertices, and values for the displacement vector are randomly
picked from the [−1, 1] range.

We generate 2500 random manipulation sequences of length
three as for a total of 7500 manipulation examples. Each se-
quence starts with the cloth laid out fully extended with the
edges of the cloth parallel to the x and y axes of the coordinate
system. 2000 sequences (6000 examples) are used as training
data, and the remaining 500 sequences (1500 examples) as test
data.

B. Data Collection Using an Actual Robot

We also collected training data by a dual-armed robot with
6-freedom manipulators, shown in Fig. 4. A horizontal table was
set on front of the robot, and a cloth product was arranged in var-
ious shapes on the table. Cloth shape information was obtained
as 3D pointcloud by a RGB-D camera (Microsoft KINECT)
mounted on the head of the robot. A process for making the
point cloud is as follows. First, the area of the cloth is extracted
by means of Graphcut [21] using a color image. Then, 3D co-
ordinates of pixels belonging to the area are calculated from
2D image coordinates and a depth value in a depth image. Fi-
nally the result is converted to voxel representation as input data
introduced in Section III-A.

Fig. 5. An example of complemented manipulation trajectory.

Manipulations of the cloth were done with either the right
arm only, the left arm only, or both arms. To determine the
posture of the end-effector, it is necessary to specify position
variables (x, y, z) and orientation variables (φ, θ, ψ). However,
it is a heavy burden to manually designate all these variables. To
alleviate it, we reduced the degree of freedom of motion of robot
so that instructions from humans can be briefly performed. The
constraints were as follows:

1) The position to be gripped is limited to the silhouette edge
part of the cloth.

2) The heights of the end-effector are fixed when gripping
and when moving while grasping.

3) The motion of the two end-effectors is determined by the
movement trajectory of one oriented point.

4) Posture relationship between the oriented point and the
end-effectors is maintained while manipulation.

Based on the item 1), gripping is performed after inserting a
finger under the cloth. The inserting direction is from outside
of the cloth silhouette. When the cloths overlap at the gripping
location, all overlapping pieces are gripped. In order to stably
perform this inserting and gripping, we attached nail-like parts
to robot fingers.

To determine the gripping motion, three variables, (xm , ym)
and ψm , are required. The first two variables indicate the hori-
zontal coordinates of the gripping position and the last variable
means from which horizontal direction the grip is to be made
with respect to the gripping position. Meanwhile, to determine
the manipulation according to the conditions 3) and 4), the tra-
jectory of (xm , ym) and angular variation of ψm from gripping
to release are required. We created a GUI to concisely specify
these values. A color image obtained from KINECT sensor is
presented on the GUI, and an instructor specifies the position
to be gripped and the position to stop gripping on this image.
Then, the depth information at the specified position is referred
to, and a motion planning of the manipulators is performed. At
present, it does not correspond to movement with different roles
for each arm, such as folding with the other arm while holding
down a part of the cloth with one hand.

After instructing the gripping point and the release point using
the GUI, several via-postures are set as shown in Fig. 5. These
are calculated as linear interpolation of translation and rotation
between grasping pose and release pose. The height of the end-
effector is raised to a predetermined height from the gripping

1776 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 3, JULY 2018

TABLE I
RESULTS (SIMULATION DATA)

n = 1 n = 2

mean (st.dev.) median mean (st.dev.) median

Test .026 (.014) .023 .028 (.008) .027
Train .024 (.012) .022 .031 (.012) .028

posture to the first via-posture, and then moves horizontally in
the subsequent via-postures. Then, when moving to the position
to stop gripping, it is lowered the height and released the cloth
after that.

In the system we implemented for motion planning, it was
the default to use RRT (Rapidly-exploring Random Trees) [23].
However, RRT was unsuitable for this purpose because the re-
producibility of the robot motion is not guaranteed. For this
reason, we took an approach to finely arranging via-postures.
By doing this, it becomes almost the same trajectory as linear
interpolation.

V. EXPERIMENTS

We perform two evaluation experiments. The first experiment
evaluates our system on simulation-generated test cases, with
the manipulations provided by the planner being executed in
Blender. The second experiment evaluates our system on robot-
generated test cases, performing the manipulations provided by
the planner using the HIRO robot [24], on actual cloth.

A. Simulation Experiment

We ran the planning system for 200 manipulation sequences,
100 from the training set and 100 from the test set. For each
sequence <m1 ,m2 ,m3>, we run all of its sub-sequences of
length one (three subsequences: <m1>, <m2> and <m3>)
and length two (two subsequences:<m1 ,m2> and<m2 ,m3>).
The procedure is as follows:

1) Set n to the length of the sequence, set the input state to
the first state of the sequence, and set the output state to
the final state of the sequence.

2) Set the manipulation network’s number of loop iterations
to n and run the planning process to obtain a n-step ma-
nipulation sequence.

3) Perform (in simulation) the first manipulation in the ob-
tained manipulation sequence on the input cloth state.

4) Update the input state to the manipulation result, and re-
duce n by one.

5) If n > 0, return to step 2.
Re-running the planning process between manipulations en-

sures that small errors do not build up over multiple manipula-
tions, and affords some degree of recovery when outcomes are
not as expected. Table 1 shows for each set the means, standard
deviations and medians of the MSE scores (i.e. mean squared
difference between corresponding voxel values in the voxel rep-
resentations of the outcome and goal state) we obtained for
each sequence length. Medians are included because incidental
catastrophic failures affect the mean. We can observe that the

Fig. 6. Example results on 2-step sequences from the test set (simulation
data).

system generalizes well to the test data (the difference appears
to be below the noise level of this measurement). Fig. 6 shows
example results for 2-step manipulation sequences. Numbers
above planned states and final outcome indicate loss w.r.t. the
goal state. The generated manipulation sequences can be seen
to produce convincing approximations of the goal states.

B. Robotic Experiment

We generated 517 manipulation examples using the robotic
setup, grouped in manipulation sequences of various lengths.
We held out the last 100 manipulations as test data. We train
the network for an additional 400,000 iterations on a mixed
dataset, consisting of the 6000 items of simulation-generated
training data and the 417 items of robot-generated data. We
then tested the system on 10 one-step sequences and 12 two-step
sequences from the robot-generated test data. The procedure is
similar to that followed in the simulation experiment, but instead
of performing the manipulation in simulation we performed it
using the HIRO robot, on actual cloth.

For these experiments, we add an additional loss term to
the back-propagation search to constrain the grasp and release

TANAKA et al.: EMD NET: AN ENCODE–MANIPULATE–DECODE NETWORK FOR CLOTH MANIPULATION 1777

Fig. 7. Example results for manipulation on real cloth. From left to right:
Initial state, result state, goal state. The two examples show reasonable approx-
imation of the goal state.

points to an area that roughly matches the robot’s range of
motion. This loss term takes value 0 for grasp and release points
within the range of motion, and otherwise quantifies the distance
to the range of motion. This smoothly pushes points back into
the range of motion when they venture outside of it during the
manipulation search process.

The cloth is manually placed in a configuration closely match-
ing the initial state of the test sequence. After each step, we
obtain a point-cloud of the resulting cloth state in the same way
as during data generation, and convert it to a voxel representa-
tion. The planning system generates grasp point coordinates and
displacement vectors only. Deciding how to grasp the cloth at
the provided coordinates is, at present, done manually. We plot
the manipulation plan (grasp points and release points) over the
point-cloud obtained from the robot’s sensor. We then find the
hem nearest to each grasp point, and set the grasp angle to be
orthogonal to this hem. If grasp requires an impossible posture,
we grasp from the second nearest hem instead.

Fig. 7 shows example results. The average MSE score for
the robotic experiment was 0.025 (standard deviation 0.007)
for one-step sequences and 0.028 (standard deviation 0.007)
for two-step sequences. Whereas this score quantitatively re-
sembles the scores for simulation data, the cloth states in the
robot-generated data have a low profile compared to simulation
data, causing scores to skew low in comparison. The first ma-
nipulation step of the failure case shown here reveals a common
problem: The planning system’s prediction of the outcome state
had the cloth folded over, but actually performing the manipu-
lation resulted in the cloth failing to bend, merely sliding some
distance over the desk surface. This sliding behavior does not
occur in our simulation data, which likely explains the system’s
failure to predict it. Failures like these stresses the need to nar-
row the gap between simulation-generated and robot-generated
data further. As for the first two example cases, we observe
that the resulting silhouettes resemble the goal states, but there
are differences in internal shape. In our top-down obtained voxel
representations, the height differences distinguishing these cloth
configurations often proved too subtle. Obtaining more detailed
height information and further boosting the height dimension in
the voxel representation may improve shape agreement.

VI. DISCUSSION

The results on simulation data suggest that the plan generation
has potential. Significant strengths of our approach are that goals
can be set freely, plan generation is fast (compared to explicit
simulation-based planning), and we can train the network on
a static database. (This in contrast to Reinforcement Learning,
which requires action execution as part of the training proce-
dure. This is time-consuming both in simulation and on robot
hardware). Also, the possibility of adding novel loss terms post-
training to restrict manipulation plan search in various ways
is a notable strength in the context of real-world application.
Whereas we limited our discussion here to sequences of length
two, we find that on simulation data, sequences of length three
are within reach as well: We obtained a median MSE of 0.029
on 100 test sequences of length three.

Performance on actual cloth did not match the performance
on simulated cloth. We suspect that the main cause of this gap
in performance lies in the substantial difference in behavior be-
tween the simulated and real cloth. Like most cloth simulations,
Blender’s is designed for animation purposes, e.g. waving flags
and naturally moving clothes on characters, not for realistic sim-
ulation of cloth manipulation. The deformation characteristics
of the real cloth proved hard to approximate in Blender. In par-
ticularly, natural cloth stiffness (i.e. resistance to stretch in the
direction of the weave), and cloth-on-cloth friction proved hard
to approach (e.g. folded states rarely stabilize entirely). Increas-
ing stiffness quickly makes the simulation slow and unstable
(explicitly integrated stiff cloth has a well-known tendency to
explode). Stiffer cloth could be simulated stably using implicit
integration techniques [22], but the reality gap will likely remain
an obstacle when using mixed data. However, the system is not
inherently dependent on the availability of accurate simulation
data. If sufficient real-world data can be generated, simulation
data becomes unnecessary. Hence we think that further automa-
tion of the robotic data generation process is the more promising
avenue for improvement. The size of our simulation dataset was
intentionally kept small enough that a similar set could realisti-
cally be generated on robotic hardware.

Another issue may potentially affecting performance is self-
occlusion. Occlusion does not necessarily lead to ambiguity
(a cloth folded in two is half occluded, but not ambiguous),
but when it does, predicting the outcome of a manipulation
can become somewhat of a guessing game. Simulation results
with artificially imposed occlusion (as used in training here)
did not show obvious deterioration compared to simulation re-
sults without occlusion. However, when training with occlusion,
the generated predictions also include occlusion. Given an am-
biguous goal state, the system plans to generate something that
looks similar, insofar it can distinguish. This is not ideal. As
noted above, on real cloth we often observed the system pro-
ducing outcomes resembling the goal in silhouette but differing
from it in their internal shapes. Occlusion likely plays a role
here. Also, as we aim to extend plan length in future work, the
system will have to deal with more complex cloth shapes with
more potential for ambiguity, so some means of ambiguity re-
duction should be considered. A possible approach would be

1778 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 3, NO. 3, JULY 2018

to gather additional views of the cloth using a hand-mounted
camera.

Other avenues of improvement we intend to pursue are in-
clusion of grasp angles along with the grasp coordinates in the
system’s manipulation output, and extension of the manipulation
repertoire with separate movement trajectories for both hands.

The approach proposed here distinguishes itself from existing
work in a number of ways. Unlike most work on robotic cloth
manipulation, we do not constrain the task to a pre-specified
manipulation sequence or outcome: any cloth configuration that
can be produced with the manipulation repertoire is a potential
goal state. This problem setting requires that the system is capa-
ble of representing and predicting cloth states. Explicit models
(cloth simulators) provide representational and predictive abil-
ity (albeit with the caveats posed by the reality gap, as discussed
above). However, free-form, multi-step planning as discussed
here must consider a large number of potential manipulation
sequences in order to find a suitable plan. With the settings used
in this letter, plan generation considers up to 1000 sequences.
Performing large numbers of manipulation sequences in explicit
simulation quickly becomes too computationally expensive for
real-time use (generating our simulation dataset of 2500 se-
quences took a few days). Hence it is perhaps not surprising
that this task has, as far as we are aware, not been tackled using
explicit modelling.

One way of looking at the system presented here is that the
network functions as an implicit simulation that is differentiable,
and therefore searchable, w.r.t. the manipulation repertoire it is
trained on. This concept should be applicable to a broad variety
of fuzzy planning problems.

VII. CONCLUSIONS

In this letter, we presented a motion planning method for
automatic operation of cloth products. Under the problem setting
in which the initial shape and the goal shape of a cloth product
are given, we proposed a method to plan the gripping points
and manipulation procedure. The effectiveness of the proposed
method was shown by means of simulation experiments and
experiments using an actual robot.

REFERENCES

[1] E. Ono, H. Okabe, H. Ichijo, N. Aisaka, and H. Akami, “Robot hand with
sensor for handling cloth,” in Proc. IEEE Int. Workshop Intell. Robots
Syst., 1990, vol. 2, pp. 995–1000.

[2] K. Yamazaki, “Grasping point selection on an item of crumpled clothing
based on relational shape description,” in Proc. IEEE/RSJ Int. Conf. Intell.
Robots Syst., 2014, pp. 3123–3128.

[3] H. Yuba, S. Arnold, and K. Yamazaki, “Unfolding of a rectangular cloth
from unarranged starting shapes by a Dual-Armed robot with a mechanism
for managing recognition error and uncertainty,” Adv. Robot., vol. 31,
no. 10, pp. 554–556, 2017.

[4] F. Osawa, H. Seki, and Y. Kamiya, “Unfolding of massive laundry and
classification types by dual manipulator,” J. Adv. Comput. Intell. Intell.
Inf., vol. 11, no. 5, pp. 457–463, 2007.

[5] J. Maitin-Sphepard et al., “Cloth grasp point detection based on multiple-
view geometric cues with application to robotic towel folding,” in Proc.
Int. Conf. Robot. Autom., 2010, pp. 2308–2315.

[6] Y. Kita, F. Saito, and N. Kita, “A deformable model driven method for
handling clothes,” in Proc. Int. Conf. Pattern Recognit., vol. 4, 2004,
pp. 3889–3895.

[7] B. Willimon, S. Birchfleld, and I. Walker, “Model for unfolding laundry
using interactive perception,” in Proc. IEEE Int. Conf. Intell. Robots Syst.,
2011, pp. 4871–4876.

[8] A. Doumanoglou, A. Kargakos, T. Kim, S. Malassiotis, “Autonomous ac-
tive recognition and unfolding of clothes using random decision forests and
probabilistic planning,” in Proc. Int. Conf. Robot. Autom., 2014, pp. 987–
993.

[9] S. Cuen-Rochin, J. Andrade-Cetto, and C. Torras, “Action selection for
robotic manipulation of deformable planar objects,” in Proc. Front. Sci.
Conf. Series Young Res.: Exp. Cognitive Robot., 2008, pp. 1–6.

[10] Y. Kita, F. Kanehiro, T. Ueshiba, and N. Kita, “Clothes handling based
on recognition by strategic observation,” in Proc. Int. Conf. Humanoid
Robots, 2011, pp. 53–58.

[11] J. Stria, D. Prusa, V. Hlavac, L. Wagner, and V. Petric, “Garment perception
and its folding using a dual-arm robot,” in Proc. Int. Conf. Intell. Robots
Syst., 2014, pp. 61–67.

[12] Y. Li, Y. Yue, D. Xu, E. Grinspun, and P. K. Allen, “Folding de-
formable objects using predictive simulation and trajectory optimiza-
tion,” in Proc. IEEE/RSJ Int., Conf. Intell. Robots Syst., 2005, pp. 6000
–6006.

[13] T. Matsubara, D. Shinohara, and M. Kidode, “Reinforcement learning of a
motor skill for wearing a T-shirt using topology coordinates,” Adv. Robot.,
vol. 27, no. 7, pp. 513–524, 2013.

[14] A. Lee, H. Lu, A. Gupta, S. Levine, and P. Abbeel, “Learning force-based
manipulation of deformable objects from multiple demonstrations,” in
Proc. IEEE Conf. Robot. Autom., 2015, pp. 177–184.

[15] P. Yang, K. Sasaki, K. Suzuki, K. Kase, S. Sugano, and T. Ogata, “Repeat-
able folding task by humanoid robot worker using deep learning,” IEEE
Robot. Autom. Lett., vol. 2, no. 2, pp. 397–403, Apr. 2017.

[16] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic
grasps,” Int. J Robot. Res., vol. 34, no. 4–5, pp. 705–724, 2015.

[17] M. Abadi et al., “TensorFlow: Large-scale machine learning on hetero-
geneous systems.” [Online]. Available: tensorflow.org. Last accessed on:
Feb. 20, 2018.

[18] C. Igel and M. Hŭsken, “Improving the Rprop learning algorithm,” in
Proc. 2nd Int. Symp. Neural Comput., 2000, pp. 115–121.

[19] M. Riedmiller and H. Braun, “RPROP – A fast adaptive learning algo-
rithm,” in Proc. Int. Symp. Comput. Inf. Sci. VII, 1992.

[20] [Online]. Available: https://www.blender.org/. Last accessed on: Feb. 20,
2018.

[21] Y. Boykov and V. Kolmogorov, “Computing geodesics and minimal sur-
faces via graph cuts,” in Proc. IEEE ICCV, vol. 1, 2003, pp. 26–33.

[22] D. Baraff and A. Witkin, “Large steps in cloth simulation,” in Proc. 25th
Annu. Conf. Comput. Graph. Interactive Tech., 1998, pp. 43–54, doi:
http://dx.doi.org/10.1145/280814.280821

[23] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path
planning,” Comput. Sci. Dept., Iowa State Univ., Ames, IA, USA, Tech.
Rep. TR 98–11, 1998.

[24] [Online]. Available: http://nextage.kawada.jp/en/hiro/. Last accessed on:
Feb. 20, 2018.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

