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Abstract—Twin-twin transfusion syndrome requires interven-
tional treatment using a fetoscopically introduced laser to sever the
shared blood supply between the fetuses. This is a delicate proce-
dure relying on small instrumentation with limited articulation to
guide the laser tip and a narrow field of view to visualize all relevant
vascular connections. In this letter, we report on a mechatronic de-
sign for a comanipulated instrument that combines concentric tube
actuation to a larger manipulator constrained by a remote centre
of motion. A stereoscopic camera is mounted at the distal tip and
used for imaging. Our mechanism provides enhanced dexterity and
stability of the imaging device. We demonstrate that the imaging
system can be used for computing geometry and enhancing the
view at the operating site. Results using electromagnetic sensors
for verification and comparison to visual odometry from the distal
sensor show that our system is promising and can be developed
further for multiple clinical needs in fetoscopic procedures.

Index Terms—Surgical robotics: laparoscopy medical robots
and systems flexible robots mechanism design.

I. INTRODUCTION

ETOSCOPIC Laser Photocoagulation (FLP) is a minimally
I l invasive fetal intervention used to treat Twin-Twin Trans-
fusion Syndrome (TTTS) [1]. TTTS is caused by inter-twin
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Fig. 1. Schematic diagram of the FLP procedure for the treatment of TTTS
showing with the endoscope positioned to coagulate the placental vessel anas-
tomosis, Image reproduced with permission from UZ Leuven, Belgium.

vascular anastomoses on a monochorionic placenta, a shared
blood supply between fetuses joined to the same placenta, caus-
ing an imbalance in the blood flow, with one fetus receiving
too much blood and the other too little. While this condition is
rare, it occurs in approximately 20% of twins sharing a placenta
which make up 0.3% of pregnancies and it can result in the
death or severe impairments of both fetuses [2]. FLP is used to
coagulate the vessels (Fig. 1), thus severing the link, by using a
laser fibre through the working channel of a fetoscope (Fig. 2).
During FLP, the surgeon uses a rigid (straight or curved depend-
ing on the location of the placenta) fetoscope in order to observe
the placenta and selectively coagulate vessels after visually de-
termining the extent of the shared blood supply. The fetoscope is
inserted into the amniotic sac through a keyhole incision passing
through the abdomen, uterus and amniotic membranes, which
constrains its motion and limits the areas that can be treated. An
additional challenge is that forces exerted at the entry port can
cause weakening of the fetal membranes and should therefore
be minimised [3]. Additionally, the surgeon must refrain from
physical contact with the placenta which can cause bleeding and
lead to a loss of sight and complications [1]. Therefore main-
taining the fetoscope at an approximately even distance from
the tissue to deliver appropriate laser power is challenging and
not always possible depending on the position of the placenta.
In current procedures, up to 30% of shared vessels are missed
or not fully coagulated [1].

To address the challenges of FLP it is possible to increase
the dexterity and stability of the fetoscope by introducing actu-
ated components to the fetoscope design. Greater dexterity of
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(a) Example of current fetoscopes (Karl Storz, DE), the curved shaft allows the visualisation of the placenta when it is positioned on the anterior (abdomen

side); (b) Tip of the fetoscope, with optical, lighting and working channels; (c) typical image observed from the fetoscope showing a limited field of view of the

internal placental wall.

the tip of the instrument can facilitate observing and delivering
therapy to the anterior placenta [4] while stability can be con-
trolled by an articulated arm which constrains movement around
aRCM at the incision point [5]. A major challenge for delivering
robotic actuation to fetoscopic instrumentation is size. Contin-
uum mechanisms have been used in surgical robotics to facilitate
smaller diameter instruments and while increasing the number
of degrees-of-freedom (DOF) [6], [7]. However, these mecha-
nisms are often applied to single port surgery, intravascular or
neurosurgery, where the mechanism is fixed outside the body
(proximal to the surgeon) and the mechanism controls only the
movement from within (distal to the surgeon). An example of
continuum manipulators would be concentric tube robots [8],
[9]. This manipulator category uses a series of precurved tubes
positioned concentrically, the overall shape of the tubes can
be controlled by translating and rotating each tube. Concentric
tubes have been demonstrated with over six DOF, though they
often have a comparatively low position accuracy (3—4 mm)
without the use of external sensors [10], [11]. However, as the
overall shape can be controlled through proximal motion, this
allows for dense path planning [12] and other control schemes
such as “follow the leader” deployment [13] to be implemented.
In comparison, more established articulated mechanisms such
as those used in the da Vinci surgical robot (Intuitive Surgical,
US) utilise both proximal and distal motion from the paral-
lel linkage and wrist joints separately. This approach results in
seven active DOF, four proximal and three distal (one of which
being the end effector). Instruments featuring continuum mech-
anisms with both distal and proximal motion have previously
been presented using concentric tube robots coupled with a pas-
sive proximal arm for single port prostate surgery [14]. The
concentric tube robot was inserted through an endoscope with
a working channel allowing the endoscope to be manipulated
with the passive arm and the robot to be manipulated relative to
the endoscope. However, the proximal arm was mainly used for
the initial positioning of continuum mechanism and the coma-
nipulation of the device was not fully explored. Additionally, a
concentric tube mechanism has been integrated into a da Vinci
instrument providing three distal DOF along with the da Vinci
three proximal DOF constrained to a mechanical RCM [15].

In this letter, we present a mechanism design and control setup
of a 2DOF concentric tube robot coupled to a 7DOF robotic arm

constrained to a RCM. The combination of the two actuation
mechanisms allows the end-effector to be positioned with SDOF.
The mechanism was designed to be compact and attachable to
the proximal robotic arm. A stereoscopic micro CMOS camera
is also integrated into the tip of the inner tube. The workspace,
accuracy and repeatability of the coupled mechanism is then
demonstrated by tracking the tip of the nitinol tube using elec-
tromagnetic sensors as well as through visual odometry. To our
knowledge this is the first time a concentric tube mechanism has
been coupled to a redundant proximal arm and constrained to a
virtual RCM.

II. INSTRUMENT DESIGN

Our instrument is designed to assist in the imaging of the
placenta through the inclusion of distal manipulation allowing
the orientation of the tip to be decoupled from the position of
the instrument shaft. For FLP, there are two main considerations
in the design of each tube. For the inner tube it is the arc angle
of the curved section and the bending radius. The arc angle
determines the angular offset between the shaft axis and the
tip axis, while the bending radius is an important consideration
for imaging devices (particularly fibre based devices) as they
often have a restricted bending radius. For the outer tube it is
the outer diameter and the length. Current fetoscopes have an
outer diameter < 3.0 mm depending on the inclusion and size
of the working channel and a length between 200 and 300 mm.
However, a previously developed endoscope designed for FLP
had a length of 150 mm [16]. These values will be used as size
constraints for the instrument design.

The distal actuation mechanism uses two tubes: an outer steel
tube is used as the instrument shaft and fixed relative to the proxi-
mal manipulatorand an inner curved nitinol tube positioned con-
centrically to the outer tube. The curved tube can be translated
and rotated along the outer tube axis. One of the main advan-
tages of using a concentric tube robot for FLP applications is
that a working channel is inherently available. Therefore, there
is an open centred channel allowing curvature restricted imaging
and therapeutic components to be integrated within the system.
Our distal mechanism is designed to allow continuous rota-
tion of the tube to prevent any mechanical restrictions on the
manipulation capabilities, to be easily attached to the proximal
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Diagram of the mechanism coupled to the KUKA LBR iiwa 7 R800; a) zoomed view of the tip and camera mount; b) Diagram of the carriage with: the

lead screw nut (yellow); tube holder with the bearings and gear (blue); and rotation component with the square shaft couple, bearings and gear (green); ¢) View of

the entire concentric tube mechanism.

actuation mechanism, and for the mechanism to be compact and
lightweight.

Our design focuses on the use of a carriage as an interface to
transfer torque from motors, attached at the back of the distal ac-
tuation mechanism, to the curved tube following previous work
on similar designs [17]. The mechanism’s main components are
a leadscrew and square shaft of equal length positioned parallel
to one another [Fig. 3(b) and (c)]. The shafts are held in place
but allowed to freely rotate along their axis through bearings at
either end. A carriage holds the tube suspended by two bearings
at either side of the gear (See Fig. 3). The rotation component
of the carriage features a gear with a square profile cut through
the centre. This allows the square shaft to translate through the
profile but fixes the orientation of the gear to the square shaft and
the gear is used to drive the tube gear. The translation component
of the carriage consists of a lead screw nut fixed to the carriage
concentric to the lead screw and it uses the square shaft as the
linear guide. A diagram of the carriage is shown in Fig. 3(b).
While the mechanism housing holds the lead screw and square
shaft, the motors are not fixed to the mechanism. Instead, the
motors are fixed to the mounting plate on the proximal manipu-
lator. The motors can then be joined to the mechanism through
a hexagonal coupling to be slid into the housing and fixed with
a single machine screw. The use of the motor couples allows the
mechanism to be motor agnostic. By positioning the motors on
the mounting plate and adjacent to the proximal arm, the device
can be easily adapted during a procedure either to introduce
additional actuation capabilities or imaging functionality.

The majority of components constructing the mechanism
housing, carriage and mounting plate were 3D printed us-
ing Polylactic acid (PLA), (RS Components, GB) on an Ul-
timaker 2 (Ultimaker B.V., NL). The tube couples, inner and

instrument shaft, were printed using tough resin on a Formlabs
1+ (Formlabs Inc., USA) and the camera housing was printed
using a Connex 500 (Stratasys Ltd, US) in Vero Clear material.
The linear bearing to provide the interface between the carriage
gear and square shaft is printed on the Ultimaker using iglide
Tribo-Filament (Igus, DE) which is a wear resistant filament.
Actuation is delivered by Dynamixel MX-28 motors (Robotis
Inc., US) which drive the mechanism. Distally, the instrument
was assembled with a steel outer tube with an inner and outer
diameter of 1.8 mm and 2.45 mm respectively and a length of
150 mm, and a nitinol inner tube, 1.4 mm and 1.59 mm in di-
ameter. These specifications allowed a good interface between
the tube and maintained a diameter below 3.0 mm with inte-
gration to the camera discussed at the end of this section. The
nitinol tube was curved following conventional processes [18],
where the tube is constrained to the desired shape in a heat-
resistant jig then placed in a box furnace at 550° for 20 minutes.
The tube was set to a bending radius of 30 mm, to reduce the
strain on the imaging components, and arc angle of 80° (Arc
length, 41.89 mm), with a straight section, 7 mm long at the tip
to join the instruments, and a transmission length of 170 mm. A
Naneye Stereo camera (AWAIBA Lda, PT) was integrated into
the tip of the inner tube to provide a temporary imaging solu-
tion (Fig. 3(a)). The solution is temporary because it effectively
occupies the entire working channel leaving no flexibility for
including a light source or a therapeutic laser. The Naneye has a
profile of 2.2 mm x 1.0 mm and bounding diameter of 2.42 mm
and the tubes have an inner diameter of 1.4 mm, an interface
between them was made to fix the camera in place. The interface
features a rectangular channel 2.4 mm wide for the camera and
a connector with a diameter of 1.35 mm to fix it to the inner
tube.
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Fig. 4. (a) Image of the assembled distal actuation mechanism; (b) Diagram
showing the coordinate frames (F) and transformations (T) from the RCM to
the tip of the instrument with each kinematic variable.

III. SYSTEM CONTROL DESIGN
A. Distal Manipulation: Concentric Tube Robot

The principle of our distal mechanism relies on the bending
stiffness of the outer straight tube to be significantly larger than
the stiffness of the inner tube. This causes the shape of the inner
tube to conform to the shape of the outer tube when overlapping.
This allows the overall shape of the instrument to be modelled
as the shape of the outer tube and followed by the shape of the
inner tube with the length extruded from the outer tube. With the
inner tube having the fixed parameters, l4,crengtn, the length
of the curved section of the tube; I7;prengtn» the length of the
straight section at the tip extended from the outer tube; and k,
the curvature of the arc equivalent to the inverse of the bending
radius. While the controllable parameters, length extended from
outer tube, p and bending plane given by the orientation of the
tube, ¢/ (Fig. 4). This can be represented as:

Frip = {Z:ipLength, gtllljeréwlizéphngth M
= {2,— lTipLengtha gtﬁefwliZéPLength 2
[cos () —sin(p) 0 0
Shaftp, — sin 0(1/1) 0080(1/1) ? 8 3)
0 0 01
[ cos(kl) 0 sin(kl) (Cos(il)_l)
, 1
"Teur = —SiI(l) (k1) 0 cos(zkl) ging“) @
L 0 0 0 1
[1 0 0 O
000 1
Shaltp,, =Sy YTy, Ty (6)
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Where bold capital letters are used to represent 4 x 4 transfor-
mation matrices. and each kinematic variable is limited as fol-
lows ) € [—m,7],p € [0,larcrength + ITipLengtn]. The frames
declared are defined as follows: Shaft is the end of the outer tube,
1) is used to represent the orientation of the inner tube accord-
ing to the rotation of the actuator, cur represents the end of the
curved section of the inner tube, and Tip is the end of the inner
tube.

B. Proximal Manipulation

An articulated arm (KUKA LBR iiwa 7 R800, KUKA Gmbh,
DE) is used for the proximal manipulation of the instrument.
The arm is a 7DOF robot with torque sensors on each joint. As
a minimally invasive procedure, FLP requires the instruments
used to be constrained to a RCM due to the small incisions
used to access the inner anatomy through a port. An RCM
constrains the motion to 4DOF, translation, r, and rotations
along the instrument shaft (Z axis), and rotations of the X and
Y axes. However, the z axis rotation is restricted as the distal
actuation mechanism provides continuous rotation along the
z axis while the proximal manipulator has a limited range of
motion and velocity. From the RCM, the transform of the tip of
the instrument shaft, in this case the outer tube, can be shownas:

[cos () —sin(f) 0 0
ReMp _ | sin(0)  cos(d) 0 O
[ cos(¢) 0 sin(p) O
0 0 L ’ ’
To=]_ sin(¢) 0 cos(¢p) 0 ©
[1 0 0 0
01 0 O
Tshaft = 0 0 1 r ©
00 0 1
ROMpg, e = BOMTY 0T, ©Tgy, (10)

Where each kinematic variable is limited as: § € [—7, 7], ¢ €
[0,7] and 7 € [0, louterTube | (With loyterTupe being the length
of the outer tube). As the instrument shaft (Outer Tube) is rigidly
fixed to the kuka, the transform between T x4, 4c, given by the
KUKA application programming interface (API), and Ty, r¢
is found by moving the proximal manipulatorabout a series of
poses keeping the tip of the shaft stationary, giving the position,
while the orientation can be found by aligning the shaft with the
world axis. T s is then set with respect to the shaft coordinate
system at the start of the procedure.

C. Control Implementation

The control of the instrument is separated to each mechanism,
where the cartesian position of the instrument shaft relative to
the RCM is set explicitly in the path planning by the surgeon,
while the orientation of the tube is set to maintain a constant
orientation. The position (X, y, z) of the tip of the outer tube can
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(a) Image of the assembly instrument with EM sensor integrated at the tip; Scanning trajectories from the kinematic data and EM tracker projected to

the XY plane as the z position of the shaft remains constant throughout the scan; (b) Raster scan with an area (50 x 50) mm? with 1.5 mm steps along the y axis;

(c) Spiral scan with a maximum radius of 50 mm and 5 revolutions.

be explicitly set with respect to the RCM through:

RN an
6 = arctan (%) (12)
¢ = arccos (;) (13)

In controlling the instrument shaft, the position of the tip can
be constrained to remain parallel to the Z axis of the RCM. This
constraint may be resolved by calculating the orientation of the
tube, ¢, that aligns the bending plane of the tube perpendicu-
lar to the desired imaging plane; and secondly, length of the
tube extended, [, must be found to achieve the perpendicular
constraint. The orientation of the tube can be found by finding
the difference between Trc s and Ty, s, around the Z axis.
While the length can be found by finding the angle between the
RCM, the Z axis and the instrument shaft axis, 6.

The control system is implemented to run on the Sunrise Cab-
inet (KUKA) running Windows embedded Operating System
(0OS) (Microsoft Corp., US) and VxWorks (Wind River Sys-
tems Inc., US) providing a soft real-time system. The KUKA
is controlled through the DirectServo API, a Java library run-
ning on the Windows operating system communicating with the
VxWorks OS. The DirectServo API allows the robot’s flange to
be controlled in Cartesian space. The entire kinematic chain is
implemented in Java, while joint control for the concentric tube
mechanism is implemented using the Dynamixel SDK in C++
and integrated with the controller through a Java wrapper.

IV. EXPERIMENTS AND RESULTS
A. Experiments Comparing to EM Tracking

To validate the motion capabilities of the developed mecha-
nism, an electromagnetic (EM) tracker (NDI Aurora, Northern
Digital Inc., CA) was passed along the concentric tube and used
to compare the motion of the forward kinematics to the EM
measurements. The EM probe used was the 6DOF micro-probe
which has a diameter of 0.8 mm and length of 9 mm. The probe

TABLE I
METRICS ON TRAJECTORIES, SHOWING THE MEAN AND STANDARD DEVIATION

Translation Error (mm) Angular Error (deg)
Spiral Scan 3.10£11.91 22.31 +5.83
Raster Scan 0.77£0.25 10.17 £0.59

was fixed using a small printed ring to retain concentricity fab-
ricated using a Connex 500. The RMS accuracy of the tracker
is specified as 0.8 mm and 0.7°. The experiment was performed
on an optical table (Nexus, Thorlabs Inc., US) with the prox-
imal manipulator, EM field generator, and EM control unit as
shown in Fig 5(a). The transformation between EM tracker co-
ordinates and the RCM frame was found by using an adaptation
of the hand eye calibration method described in [19] with 30
synchronised poses.

The trajectory of the tip was assessed using the EM tracker
and commanding the instrument to follow a series of open-loop
scanning trajectories while the tip is constrained to remain per-
pendicular to the XY plane. Two types of scanning trajectories
were followed: spiral scans and raster scans. The spiral trajec-
tory to be applied to the shaft on a XY plane was defined by:
number of complete revolutions, ¢ and final radius, R, while
each position is generated from iterating along i within it’s lim-
its and the density of the path is determined by the number of i
values used.

a=i'R (14)
x = acos(/i(2m ¢)?), y = asin(/i(27 ¢)?) (15)
where i € [0, 1] (16)

The raster trajectory was defined by an area to scan and the
step along each axis, the scan area was centred to the initial
position. The instrument trajectories from the kinematics data
and EM tracking data were aligned and due to the difference be-
tween the sampling frequencies of each device each pose from
the em tracker was matched to a kinematic pose through a dis-
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(a) Image of the placenta imaging setup, showing the position of the probe and laparoscope relative to the placenta; (b) Image of the instrument partially

submerged in water with the tip extended to view the placenta along the normal to the placenta surface; (c) ex vivo imaging of human term placenta.
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(a) Image from the left channel of the Naneye Stereo camera (AWAIBA Lda, PT) of a human ex vivo placenta; (b) 3D rendition of the stereo reconstruction;

(c) Trajectory of ORB-SLAM and aligned kinematics in the ORB-SLAM coordinate system: Projected to the XY plane; (d) The trajectory from (c) but projected

on the YZ plane.

tance criterion. Once matched the distance between the points
was calculated and the orientation difference was determined
by finding the euler angles in ZYZ convention then calculating
the difference of the rotation along the Y axis. The kinematic
and tracked paths from a raster and spiral scan are shown over-
layed in Fig. 5(b) and (c) respectively. For each experiment the
RCM was placed 100 mm above the Shaft frame. The raster
scan (Fig. 5(b)) had an area of (50 x 50) mm? with 1.5 mm
steps along the y axis, the average error between the kinematic
position and tracked position was 0.77 mm while the average
orientation error was 10.17°. In comparison, the spiral scan had
a maximum radius of 50 mm and 5 revolutions, the average
translation error is 3.10 mm and the average angular difference
is 22.31° as shown in Table I. The repeatability of the scans
was assessed though tracking 5 identical trajectories, matching
the poses along each trajectory to a reference then finding the
average distance to the reference trajectory. The repeatability of
the path was 0.77 mm while the combined average translation
error was 3.50 mm.

B. Placental Scanning

To experiment in more realistic conditions and aim towards
demonstrating the potential clinical use of the reported instru-
ment, a term (approximately 40 weeks gestation age) human
placenta was collected following a caesarean section deliv-

ery and after obtaining a written informed consent from the
mother at University College London Hospital (UCLH). The
Joint UCL/UCLH Committees on the Ethics of Human Re-
search approved the study (ethical approval UCL 08/H0714/87).
The placenta was transported to our laboratory and immersed in
water within a container. The instrument was immersed in the
water and introduced above the placenta as shown in Fig 6(a).
Additionally a stereo laparoscope was positioned alongside the
instrument to illuminate the workspace as the instrument does
not currently have an integrated lightsource. The immersed pla-
centa was imaged a number of times using both raster scans
and spiral motion patters acquiring stereoscopic data, the po-
sition of the instrument relative to the placenta can be seen in
Fig 6(b). The camera acquires synchronised images at 27 frames
per second (fps) with a resolution of 250 x 250 in each cam-
era, an image from one of the cameras can be seen in Fig 6(c).
To demonstrate the potential information that can be derived
from the scans of the placenta, stereoscopic reconstruction of
the placenta was undertaken using the method described in [20]
and shown in Fig. 7(a) and (b). In addition, the camera tra-
jectory was reconstructed using ORB-SLAM [21] and aligned
with the instrument kinematics, however due to the fast “wind
back” motions during the spiral scan, the video and kinemat-
ics were sub sampled to 60 keyframes with the path shown
in Fig. 7(c) and (d). A mosaic using the method described in
[22], [23] was constructed of three scanned areas, raster scan
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Mosaics formed from the scanning trajectories; (a) Raster scan of the human ex vivo placenta, 30 mm x 30 mm; (b) Spiral scan of the human ex vivo

placenta, radius of ~20 mm; (c) Spiral scan of a model placenta, radius of ~20 mm.

and spiral scan of a real placenta, and a spiral scan of a model
placenta for Fig. 8(a)—(c) respectively. The mosaics provide an
increased field of view of the placenta and crucially the surface
vasculature.

V. DISCUSSION

FLP is challenging due to the small field-of-view, which in-
hibits localisation and makes it difficult to be certain that all ves-
sels are ablated. Intra-operative motion of the fetuses and phys-
iological signals from the mother make it difficult to maintain
a measured energy delivery and ensure consistent therapeutic
delivery. The instrument we have developed improves the dex-
terity of the fetoscope by providing DOF at the tip and enhances
the ergonomics of the system by an RCM constrained arm. Our
prototype was fabricated using mostly 3D printed components.
The current design allows the tubes to be easily swapped and
the joint workspace to be modified as the system evolves. The
layout of the mechanism and the interface with the actuators,
groups the non-sterilisable objects (actuators and proximal ma-
nipulator) together. This design decision was made bearing in
mind clinical translation to allow a single sterile sheet to be
used with two coupling adaptors to transmit the motion through
the sterile barrier. The RCM is currently placed manually by
the operator, however the intention is for the RCM to be placed
at the amniotic sac entry point, minimising forces applied to
the membranes, this may require sensor guidance for accurate
results.

Our current model for the distal manipulation assumes that
the outer tube is rigid, there is no torsion along the nitinol
tube and that the straight tip of the tube is extended from the
outer tube along the outer tube axis. This model has the advan-
tage of being quick to solve but can be improved in accuracy.
This is reflected in the trajectory comparisons, shown in Fig. 5
where the pose accuracy of the instrument was shown to be

3.10 £ 11.91 mm and 22.31 £ 5.93° for the spiral scans and
0.77 £0.25 mm and 10.17 4 0.59° for the spiral scans. This
disparity in accuracy information is likely due to the compar-
ison of unsynchronised trajectories, and the individual poses
being incorrectly matched. Synchronisation of the instrument
controller and tracker could allow poses to be directly mea-
sured against one another. However, the repeatability of the
trajectories was shown to be 0.77 mm, we believe that learn-
ing approaches can help us to better parameterize the con-
trol of the concentric tube while maintaining computational
performance.

In our experiments, we show the combination of the proximal
motion controlled by the manipulator constrained to a RCM and
the distal motion from the concentric tube. We performed two
scanning motions that have regular structure for analysis: raster
and spiral. Spiral motions are often applied in visual scanning
mechanisms [24], [25], they require the imaging component
to be capable of continuous rotation or to be “wound back”
to an initial position. Our current system resolves this by lim-
iting the rotation to a single revolution. While this prevents
wind up, it also affects the trajectory of the instrument during
scans especially spirals as the rotation has to reset during the
scan interrupting the commanded trajectory. This can be seen in
Fig. 5(c) along the left side of each revolution. In comparison
the raster scan has an offset at the peripheral, however, it does
not have the sudden “wind back” motions. We plan to explore
the links between kinematics and imaging more in future studies
because stereoscopic reconstruction has the potential to provide
additional information during the procedure, for example the
distance from the camera to the vessels and vessel size. The
mosaics presented show the potential to increase the field of
view intra operatively, however, they do not currently use the
kinematic data in the reconstruction process which similar to
other tracking systems would allow larger and more accurate
mosaics.



DWYER et al.: CONTINUUM ROBOT AND CONTROL INTERFACE FOR SURGICAL ASSIST IN FETOSCOPIC INTERVENTIONS

VI. CONCLUSIONS

We have developed a new concentric tube robot designed for
fetoscopic procedures where the instrument needs to be small
with limited DOF at the tip. Our mechanism has a small di-
ameter of 2.4 mm in order to minimise access trauma which is
crucial in fetoscopy. While this is the first version of our robot
and hence aspects are still preliminary, the architecture has the
advantage of being extensible. The control system we imple-
mented was developed to improve fetoscopic interventions by
providing a stable view of the placenta at a constant orientation.
This capability will facilitate surgical assist in the delivery laser
photocoagulation of placental vasculature for the treatment of
TTTS. Our future work, will focus on integration of a therapeu-
tic laser and light source at the tip to understand the practical
use of our system as well as developing a control scheme to
allow comanipulation while minimising the forces at the entry
point by adapting the position of the RCM according to external
forces such as those from patient motion.
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