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Enabling grasp synthesis approaches to task-oriented grasping
considering the end-state comfort and confidence effects

Emilio Maranci1, Salvatore D’Avella1, Paolo Tripicchio1 and Carlo Alberto Avizzano1

Abstract—Choosing a good grasp is fundamental for accom-
plishing robotic grasping and manipulation tasks. Typically, the
grasp synthesis is addressed separately from the planning phase,
which can lead to failures during the execution of the task. In ad-
dition, most of the current grasping approaches privilege stability
metrics, providing unsuitable grasps for executing subsequent
tasks. The proposed work presents a framework for high-level
reasoning to select the best-suited grasp depending on the task.
The best grasp is chosen among a set of grasp candidates by
solving an optimization problem, considering the environmental
constraints, and guaranteeing the end-state comfort and the
confidence effects for the task, similar to human behavior.
The framework leverages Generalized Bender Decomposition to
decouple the main non-linear optimization problem into sub-
problems, thus presenting a modular structure. The method is
validated with an experimental campaign using three different
state-of-the-art grasping algorithms and three low-level motion
planners in three different types of tasks: pick-and-place in
a constrained environment, handover/tool-use, and object re-
orientation. The experiments show that the proposed approach
is able to find the best grasp, or at least one feasible, among the
provided candidates for each task.

I. INTRODUCTION

Since the first years of life, human children learn by
experience how to grasp objects of different shapes and in
different scenarios. Thanks to that, for adult human beings,
pick-and-place becomes a mechanical movement, and it is
quite easy to understand how to grab an object never seen
before thanks to their baggage of experience [1]. Psycholo-
gists have demonstrated that humans are driven primarily by
safety and comfort considerations when moving in constrained
environments [2]. The two principal metrics considered are the
end-state comfort effect [3] and the clearance from obstacles
during the motion [4], [5], which hereafter is referred to as
confidence effect. The end-state comfort effect is a well-known
phenomenon that involves choosing an initial configuration
that is apparently unusual for grasping the object per se but
maximizes the comfort of the final pose. For example, waiters
grab inverted glasses to be filled with water holding each
upside-down glass with an unusual thumb-down grasp rather
than a more usual thump-up grasp to increase the comfort
of the final posture. In addition, obstacles on the direct path
toward the goal position influence human behavior during
task execution [4]. Indeed, humans tend to maintain a safe
distance from obstacles on their path, even if that means
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Fig. 1. Top-ranked grasps according to quality metrics are not always suited
to task-oriented grasping tasks in constrained environments. The proposed
approach still leveraging the same grasp synthesis method enables it to task-
oriented setting with high-level reasoning.

following longer routes to reach the destination (confidence
effect) [4]. Recently, both hypotheses have been consolidated
by demonstrating that humans usually choose overall comfort -
manipulability and distance from obstacles - preferring longer
but safer and more comfortable trajectories in the presence of
obstacles [2]. In the recent literature, the problem of grasping
objects is typically faced through a hierarchical approach that
involves two distinct phases: the grasp synthesis and the task
execution. The grasp synthesis often provides one or multiple
grasp candidates ranked by some quality metrics [6], [7] or
heuristics, either with classical [8] and data-driven techniques
[9], [10], [11], that are sent afterward to the low-level planner
to be executed. Since there is no flow of information between
the high-level grasp strategy and the low-level planner, it could
happen that the selected grasp is not suitable, and a different
grasp should be tested, increasing the cycle time. Additionally,
not all stable grasps are suitable for the subsequent manipu-
lation tasks since they do not consider the comfort and the
safeness of the task execution. Handing a screwdriver to a
human collaborator implies grasping the metallic part of the
screwdriver close to the sharp tip, which is not a good location
in terms of stability or for using the screwdriver as a tool to
tighten a screw. In recent years, some novel approaches have
emerged that provide suitable grasping for tool use or handover
in human-robot [12], [13] collaboration scenarios. However,
these methods can still be seen as grasp-synthesis techniques
and are limited to a few tasks and scenarios.

The proposed work presents a framework that, starting from
a set of grasp candidates provided by any off-the-shelf grasp
synthesis approaches and given the desired pose of the item
to be manipulated for the specific task, selects the best-suited
grasp by solving an optimization problem taking into account
the end-state comfort and confidence effects (fig. 1). The
framework is general as it can be used with any grasping
methods and low-level motion planners exploiting the novel
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shortcoming in the field and can also be applied to multiple
tasks not limited to handover and tool use only having the
desired pose of the target object, which is not uncommon in
many industrial scenarios. The grasping synthesis method and
the low-level motion planner can be chosen to satisfy the user’s
needs. In particular, the only requirement for the planner is to
consider the distance between the robot and the obstacles in the
scene in the computation, thus satisfying the end-state comfort
and confidence effects. The proposed approach provides a
general formulation and an example of implementation to
embed these aspects into high-level reasoning. The method is
validated with an experimental campaign using three different
state-of-the-art grasping algorithms and three low-level motion
planners in three different tasks: pick-and-place of objects in a
constrained environment, object tool-use/handover, and object
re-orientation. The experiments show that using the grasp with
the highest score provided by the grasping methods is barely
ever the best for accomplishing the tasks or is even feasible to
be executed by the motion planner. In contrast, the proposed
framework tends to find from the grasp candidate set the most
suitable one for executing the task, provided that the low-level
planner is able to compute a feasible path within the obstacles
in the scene. The guarantees on the low-level motion planner
depend on the chosen algorithm.

The following list summarizes the contributions of the
proposed work:

• a high-level reasoning framework that can enable any
grasping method to task-oriented grasping;

• considering the end-state comfort and confidence effects
into the computation; and

• an optimal inverse kinematic solver for redundant robots
that exploits null space control actions.

The remainder of the work is organized as follows: Section
II introduces the works related to the field under discus-
sion; Section III formally describes the proposed framework;
Section IV presents the experimental setups, the validation
procedures, and discusses the results; Section V concludes the
paper.

II. RELATED WORKS

The problem of task-oriented grasping is relevant to the
industry. The new concept of flexibility and human-robot
collaboration introduced by Industry 4.0 implies that robots are
not meant any more to repeat the same exact pre-programmed
movement but have to demonstrate the ability to adapt to the
changing and unpredictability of the environment. In many
industrial tasks, robots have to grasp an object to place it in a
specific pose [14], use it in a subsequent task [12], grasp the
target to re-orient it [15], or even to help a human operator
[13]. However, such solutions are restricted to that given task
and are not versatile or easily adaptable to other situations,
different from the proposed method.

Humans select grasps to satisfy three main constraints:
hands, object, and task-based constraints [16]. Task require-
ments may need a less optimal grasp in terms of stability
in favor of a higher ability to manipulate the object. The
two principal metrics considered by humans are the end-state

comfort effect [3] and the clearance from obstacles during
the motion [4]. Many recent approaches typically perform
grasp synthesis and planning separately [17]. The trend is to
approach a target and execute the grasp without considering
what should be done once the object is picked. However, by
knowing the manipulation trajectory, it can be exploited to
impose checks on the kinematic feasibility of grasps at the
start and end poses and considerably reduce the grasp space.
In addition, given a desired post-grasp trajectory of the object,
different choices of grasp will often determine whether or not
collision-free post-grasp motions of the arm can be found,
which will deliver that trajectory.

Methods developed to use task-specific constraints and
regions suitable for grasping an object for a given task learn
these regions from simulation trials, large numbers of labeled
images [18], or as abstract functions [19] that define task-
specific structures. Recently, some approaches have focused
on the tasks of handover and tool use, but they can still be
considered grasp synthesis techniques [20] as they do not
connect the high-level grasp with the low-level planner.

More recently, a few novel solutions specifically developed
for general task-oriented grasping try to exploit scene compre-
hension. The most promising ones propose approaches that
leverage deep neural networks and affordances theory [21],
sometimes even exploiting LLMs (Large Language Models)
to generalize the results to unknown tasks [22], to generate
the best grasp candidate according to the required task. How-
ever, even if these recent approaches take into account the
environment to avoid collisions during the grasping phase,
none of them consider the path and final pose as constraints,
and the task itself often ends with the grasping action without
planning. Additionally, they cannot handle generic pick-and-
place tasks and cannot manage objects that do not present
functional parts that do not appear in the dataset the network
has been trained on for that task.

Therefore, the idea is to enable some less recent grasping
strategies [9], [10], [11] based on geometric considerations
for pick-and-place tasks to the task-oriented setting. This
work demonstrates that the best grasp according to traditional
quality metrics used by most grasping strategies is not always
feasible to accomplish the task and is also not optimal.

III. PROPOSED APPROACH

The proposed task-oriented grasping pipeline takes as input
the set of grasp candidates from an off-the-shelf grasp synthe-
sis algorithm, the task to be executed as the desired pose of
the target object, and the environmental constraints. Therefore,
the pose of the object, the obstacles, and task constraints
can be assumed to be known in the inertial frame without
limiting the usability of the framework since the poses can
be easily estimated by existing approaches (like [23]). Grasps
are represented as a set of frames with translation and rotation
expressed with respect to the inertial frame. The task has
to be executed in a single movement thus, re-grasping and
object re-orientation are not allowed. In addition, whether re-
picking had been allowed, every grasp in the set could have
been feasible as the object could have been re-oriented to
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Fig. 2. Schematic overview of the proposed task-oriented grasp pipeline. The framework takes as input a set of grasp candidates provided by any grasp
synthesis method, the task to be executed as the desired pose of the target object, and the environmental constraints for collision-free path planning. The set
of grasp candidates is first evaluated to filter out unfeasible configurations that do not allow achieving the desired object pose by knowing the environmental
constraints and the kinematics of the robot. For the grasps suitable for the task, a trajectory is computed, and those grasps for which a collision-free trajectory
does not exist are discarded. The remaining grasps are scored using the optimization problem in eq. (7), and the best grasp, along with a collision-free
trajectory, is returned.

achieve the desired pose, increasing execution time and control
complexity. Therefore, once the object has been picked using
a certain grasp, the transformation between the end effector
frame and the object frame is fixed until the object is placed.

The proposed method assigns a cost to each grasp that
indicates how suitable the grasp is to perform the task (end-
state comfort + confidence effects), considering the object
attached to the end-effector in the way it has been grasped. The
costs are obtained by solving a set of Non-Linear Optimization
Problems (NLOPs) in which the choice of the specific grasp
represents the boundary conditions, each returning the optimal
path P ∗ = {q∗0 , . . . , q∗N} to achieve the task, where q∗i is the
optimal arm configuration of the i-th waypoint of the path and
N is arbitrary. Every NLOP in the set can be expressed as:

min
Q

C(Q)

s.t. FK(q0) = EEpick

FK(qN ) = EEplace

(1)

where Q = {q0, . . . , qN} is the set of configurations to be
optimized, C(·) is an arbitrary nonlinear convex cost function,
FK(·) is the forward kinematic of the robotic arm, and
EEpick/place ∈ SE(3) is the pick/place end-effector pose
required for grasping, which is fixed.

By splitting the set of optimization variables Q into two
subsets y = {q0, qN}, x = {q1, . . . , qN−1}, and exploiting
the Generalized Benders Decomposition [24], problem (1) can
be written as two sub-problems:

min
y

C0(y) + v(y) [Master] (2a)

v(ȳ) = min
x

Ct(ȳ, x) [Primal] (2b)

s.t. FK(ȳ) = [EEpick, EEplace]

where ȳ is arbitrary and fixed in the primal sub-problem (2b),
and the constraints are the same as problem (1), written in
compact form. The functions C0 and Ct are both nonlinear
convex cost functions.

In the literature, this particular category of NLOPs is typi-
cally solved by an iterative procedure in which the two sub-
problems are solved repeatedly until convergence is achieved:
primal problem is solved first, starting with an initial guess
of the fixed variables in the subset ȳ and then, whether a
feasible solution is obtained, the procedure switches to the
master problem, and so on.

In contrast, this work follows a different strategy to solve
the optimization problem. The approach is to evaluate the
optimal pick and place configurations ȳ∗ that minimize the
first term of the Master problem (2a). Subsequently, the Primal
problem is solved by initializing it with the optimal value ȳ∗.
If a solution for the Primal problem can be found, solving
the Master problem is straightforward, as the sub-problems
are decoupled and similar convex functions are used during
optimization. This way of proceeding helps to prematurely
exit the optimization problem if no solution for the optimal
pick and place configuration can be found, indicating that the
robotic arm is unable to place the end-effector in the desired
pick/place pose. The whole procedure with premature exits is
displayed as a flowchart in Fig. 3.

Therefore, in this work, the decomposed problem eq. (2)
is interpreted as a one-shot two-step procedure that returns
the optimal path to perform the required task using a specific
grasp, which involves solving two decoupled optimization
problems: first finding the best pick and place configuration
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Fig. 3. Flowchart of the optimization process.
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(end-state comfort effect), and then finding the best path that
connects these two configurations guaranteeing a safe distance
to the obstacles in the scene (confidence effect). The following
subsection first introduces the principal paradigm for the cost
functions that the low-level planners have to embed for being
applied within this framework, then gives more details on the
sub-problems implementations.

A. Cost function formulation

An appropriate convex nonlinear cost function based on the
distance between the robotic arm having the target attached
to the end-effector and the obstacles in the scene needs to
be employed in both the optimization sub-problems (see box
A and B in Fig. 3) to respect the end-state comfort and the
confidence effect. In general, the convex cost function can be
expressed as:

C(q) = C( d(R(q),O), η(q)) (3)

where d(R,O) is a generic term that takes into account the
distance between the robot R and the set of obstacles O in
the scene, and η is an optional term that could consider other
aspects like the smoothness of the trajectory, joint velocities or
any other, depending on the user needs. Indeed, many individu-
als account for secondary metrics (η(q)) with different extents
in addition to the end-state comfort and confidence effect [4].
This also allows the proposed framework to be flexible to work
with multiple optimizers and planners, returning the best path
by considering the distance from obstacles and other relevant
metrics.

We propose in the following an example of implementation
for the cost function that has been designed to be as general
as possible to meet the level of abstraction of a generic
planning scene, which can be composed of multiple entities.
The obstacles and the robot are modeled as volumetric shapes
that can be composed of discrete parts: the robot can be
composed of several links and some obstacles decomposed
into simpler shapes. Given an arbitrary pair of elements in
the scenario, named A and B, formed by n and m parts,
respectively (Fig. 4), the matrix of distances between every
part of A and B can be written as:

D(A,B) =

d(a1, b1) . . . d(an, b1)
...

. . .
...

d(a1, bm) . . . d(an, bm)

 ∈ Rn×m (4)

Minimizing eq. (4) along the rows yields the column vector
of minimum distances between each part of A and the element
B, shown in eq. (5):

Dmin(A,B) =

dmin(a1, B)
...

dmin(an, B)

 ∈ Rn×1 (5)

Finally, the cost component for the generic pair (A,B) can be
expressed as:

C(A,B) =

n∑
i=1

1

dmin(ai, B)2 + δ
(6)

where the squared reciprocal of distances weighs less the large
distances, not affecting much the total cost. The introduction
of the machine precision δ avoids division by zero in case of
contact and also preserves the convexity of the function. In
addition, to prevent the optimal problem from converging on
configurations in which one link of the robot goes much closer
to an obstacle than all the others, a minimum safety distance is
used to penalize such configurations. The radius of the safety
spheres ρ can be set as a hyperparameter depending on the
user requirement and has been put equal to 2.5 cm for the
experimental campaign. The total cost associated with each
robot configuration is obtained by summing multiple terms
similar to eq. (6), weighing the distance between the robotic
arm and each obstacle in the scene:

C(q) =
∑
o∈O

C(R, o) =

=


∑
o∈O

∑
l∈R

1

dmin(l, o)2 + δ
, if dmin(l, o) ≥ ρ

∞, otherwise

(7)

where R is the robot composed by a set of links l and O is
the set of obstacles o.

B. Optimal Pick/Place confs. sub-problem

The framework is meant for redundant manipulators thus,
the optimal arm configuration for the pick and place pose (box
A in Fig. 3) can be found by solving an optimization problem
iteratively through the exploration of the null space of the
end effector. Therefore, the optimization problem is tackled
as shown in eq. (8): it starts from a configuration obtained
through inverse kinematics, constraining the end effector pose
to be the one required for pick or place, and then the state
vector is varied with control actions in the null-space of
the positioning task of the end effector, perturbing the robot

Fig. 4. Sketch example for the distance matrix computation. The dotted lines
represent the distances between the robotic arm (composed of several links
a1, . . . , a5) and the object B (formed by two parts b1 and b2, for generality).
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configuration with a fixed amount at each iteration.

q0 = IK(ITEE,des) −→ C(q0)

q1 = q0 +∆q0 −→ C(q1)

... until qi ≃ q0

qk = qk−1 +∆qk−1 −→ C(qk)

...
C(q∗) = min(C(q0), C(q1), . . . , C(qk), . . . )

(8)

where q is a configuration of the robot R, q∗ represents the
configuration that minimizes the cost, and ∆q is the discrete
increment in the null space direction that is added to the
configuration at each iteration of the process. The initial
configuration is obtained by solving the inverse kinematic at
the desired pose of the end effector. The procedure terminates
when the configuration at a given iteration i is similar to the
initial one, and the update step depends on the control action
in the null space as follows:

∆qk−1 = (I − J+
k−1Jk−1)v (9)

where J+ is the right pseudo-inverse of the jacobian evaluated
at the corresponding step, v ∈ Rr×1 is a gain vector that
determines the amount of perturbation at each iteration of
the process and r represents the number of joints of the
manipulator. In this way, the optimization problem in eq. (8)
aims to find the best arm configuration among the solutions
of the inverse kinematic of the end effector (end-state comfort
effect).

C. Optimal Path b/w optimal pick/place confs. sub-problem

Once the optimal boundary configurations are generated, the
Primal (planning) problem (box B in Fig. 3) can be solved
using an optimal planner, either distance-based or embedded
with the custom cost (7) to reflect the confidence effect.
Therefore, any low-level motion planner implementing a cost
function that can be expressed as eq. (3) can be used. This
modularity and flexibility of the framework derive from the
main intuition of the proposed approach, which is connecting
the high-level grasp synthesis method to the low-level mo-
tion planner through a distance-based cost. This connection
enables including path and target position constraints into the
grasp decision and represents the high-level reasoning process
demanded by complex arbitrary tasks.

It is worth noticing that some considerations about the com-
pleteness and optimality properties of the overall framework,
which is a combination of two algorithms, can be made. The
completeness and the optimality of the null-space iterative
search procedure are guaranteed since it is an optimal brute-
force approach that can fully explore the space of solutions
with the norm of step ∆q going to 0. Therefore, the framework
inherits the properties of the embedded low-level planner.

IV. EXPERIMENTAL VALIDATION AND DISCUSSION

The proposed framework has been tested on three different
types of tasks: two pick-and-place tasks in constrained static
environments in which a target object has to be grasped and

Fig. 5. Simulated scenario (left) resembling the real one (right). The object to
be manipulated is the violet cross-shaped item that has to be moved inside the
blue container in the orange pose, avoiding collision with the yellow obstacles
and the container itself.

placed in a desired pose inside a container, avoiding obstacles
along the path; a handover/tool-use task where the robot has
to understand where to grasp a screwdriver or a hammer
depending if the tool has to be used or passed to a human
operator; and an object re-orientation task where the target
needs to be picked and placed with a different orientation.
The framework has been developed in ROS Noetic and tested
first in simulation using Gazebo and then in the real world
on the Franka Emika Panda robot equipped with a Realsense
D435 camera.

The procedure involves performing the required task using
the best grasp selected by the proposed framework and a naif
approach - just employing the top-scoring grasp outputted by
the selected grasp synthesis methods, i.e., the works presented
in [9], [10], [11] that are task-agnostic methods that generate
grasp candidate without considering the subsequent task. The
baseline algorithms are not adversarial methods but serve as
proof of the effectiveness of the framework, showing that
the proposed methodology can enable task-agnostic grasping
algorithms into task-oriented ones where choosing a good
grasp is mandatory for the execution of the task. The inverse
kinematic of the manipulator is obtained using the Trac-IK
algorithm [25]. After finding the optimal grasping and placing
robot configuration with the problem formulated in eq. (8),
the planning is performed through three different low-level
motion planners: RRTConnect∗ from OMPL [26], which is a
sample-based planner, endowed with the proposed functional
cost (7) to respect the requirement of the presented frame-
work, CHOMP [27], and TrajOpt [28] which are two optimal
planners that embed convex cost functions, and in addition,
RRTConnect with CHOMP as post-processing adapter step.
The experiments have been executed in a docker machine
with Ubuntu 20.04 LTS running ROS-Noetic on a laptop intel-
core i7 (11th gen) with 16GB of RAM and NVIDIA MX450
graphic card with 2GB of vRAM.

Finally, since the properties of the overall framework are
inherited from the low-level planner, using optimal sample-
based planners, like RRTConnect∗, enables the pipeline to be
probabilistically complete and optimal, ensuring that a feasible
solution does not exist if the pipeline cannot find it in an
unlimited amount of time. The same way of reasoning applies
to CHOMP and TrajOpt.

A. Pick-and-place in constrained environment
The scenario consists of a target object that has an asym-

metric shape, which can be placed anywhere on the working
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TABLE I
RESULTS OF THE STATISTICAL ANALYSIS (SIMULATION)

ON THE PICK-AND-PLACE TASK IN CONSTRAINED ENVIRONMENT

Bas. Appr. Planner Succes Pick/Place confs Task exec. Planning Planning
rate failure rate time [s] failure rate time [s]

G
PD

[9
] Ours

RRTConnect∗ (cost eq. (7)) 100.00% 0% 92.16 0% 16.42
CHOMP 50.00% 4.16% 62.85 45.83% 5.52
TrajOpt 0.00% 0.00% - 100.00% -
RRTConnect + CHOMP 87.50% 4.16% 90.45 8.33% 15.85

Naif

RRTConnect∗ 12.50% 87.50% 16.24 0.00% 15.00
CHOMP 4.16% 87.50% 6.48 4.16% 5.33
TrajOpt 0.00% 100.00% - 0.00% -
RRTConnect + CHOMP 8.32% 87.50% 17.39 0.00% 16.62

G
Q

-C
N

N
[1

0] Ours

RRTConnect∗ (cost eq. (7)) 75.00% 25% 85.53 0% 16.27
CHOMP 45.83% 20.83% 60.03 33% 5.63
TrajOpt 0.00% 20.83% - 79.16% -
RRTConnect + CHOMP 79.16% 20.83% 88.75 0.0% 15.74

Naif

RRTConnect∗ 4.16% 95.83% 16.03 0% 15.05
CHOMP 4.16% 95.83% 6.37 0% 5.49
TrajOpt 0% 100% - 0% -
RRTConnect + CHOMP 4.16% 95.83% 8.17 0% 7.02

G
ra

sp
ne

t
[1

1] Ours

RRTConnect∗ (cost eq. (7)) 95.83% 4.16% 100.10 0.00% 16.71
CHOMP 70.83% 8.33% 67.49 20.83% 6.22
TrajOpt 0.00% 8.33% - 91.60% -
RRTConnect + CHOMP 95.83% 4.16% 103.07 0% 15.77

Naif

RRTConnect∗ (cost eq. (7)) 0.00% 100.00% - 0.00% -
CHOMP 0.00% 100.00% - 0.00% -
TrajOpt 0.00% 100.00% - 0.00% -
RRTConnect + CHOMP 0.00% 100.00% - 0.00% -

table, two obstacles that hinder the trajectory from the picking
configurations to the placing configuration, and a box container
in which the target object has to be placed in a precise pose
having wall constraints. Figure 5 shows the scenario realized in
Gazebo and in the real world. The use of the asymmetric object
is meant to stress the fact that only some grasps are suitable
to accomplish the task. In addition, the generalizability of the
framework is not limited to objects presenting such a similar
shape since the grasp set is provided by off-the-shelf grasp
synthesis algorithms.

Several experiments have been done comparing the results
obtained using the grasping configuration selected through
the presented optimization problem in the case of the pro-
posed framework and as the top-scoring grasp for the other
three grasp synthesis methods with different low-level motion
planning algorithms (RRTConnect∗, CHOMP, and TrajOpt).
During the experiments, the pose of the target object is
varied at each run, keeping the same pose for each method
to guarantee a fair comparison. In particular, the object has
been placed into five different positions rotating by steps
of 45 degrees in each position until a complete rotation is
reached for a total of 40 trials per method. Each baseline has
been configured to provide 10 grasp candidates, and each run
consists of comparing the result of the best grasp candidate
selected by the baseline and the best grasp chosen by the
proposed framework using the set of grasps given by the
baseline to vary the low-level motion planner.

It has been noticed that if the proposed method fails to
complete the task it is due to the fact that the baseline does
not provide any feasible grasp of the set of candidates or that
the low-level motion planner does not find a feasible path (in
case of TrajOpt, which is not able to plan in tight constrained
environments). When this behavior occurs, i.e., if neither the
proposed procedure nor the baseline can accomplish the task,
the whole run is repeated, up to a maximum number of
ten times equal. After the 10th attempt without any success,
the next object pose is considered by registering a failure.
Table I reports the results of the statistical analysis giving a

comparison of the grasping success rate and then a breakdown
of some detail of the procedure providing the failure rate
ascribable to the absence of a feasible grasp in the set of the
grasp candidate (Pick/Place confs failure rate column) and to
the low-level planner (Planning failure rate column), and the
time required to accomplish the whole task and computing the
trajectory for connecting the pick and the place configurations.
It is worth noticing that the task completion time is averaged
on the number of experiments accounting for the total number
of grasps in the grasp candidates set (N=10). Instead, the
planning time is averaged only on the experiments in which
the planning can actually take place as there are valid pick-
and-place configurations. The average time required by our
framework to determine a pick or place configuration is 0.75
s, while [9], [11], and [10] require on average 4.36, 1.31,
and 1.91 s, respectively. Such experiments demonstrated how
the grasp with the highest score returned by the baselines is
rarely the best grasp to use to execute the task in a constrained
scenario, getting even no success for [11]. On the contrary, the
proposed procedure manages to find a feasible grasp in most
cases. Some examples of the grasp candidates generated by
baseline algorithms during the tests are shown in Fig. 6.

B. Handhover/Tool-Use

The scenario consists of an object (a screwdriver or a
hammer) placed on the working table without environmental
constraints. The robot should understand where it is better to
grasp the tool to use it or to give it to the human operator.
Fig. 7 shows graphically the setup, where the green box
region represents the human-robot collaboration sharing area.
Exploiting the same three baselines used in the previous
scenario, the proposed framework can determine the best grasp
to discriminate between the tool use or the handover depending
on the presence of the human operator in the scene represented
as an obstacle for the pipeline. Ten runs have been executed
with the three baselines, also varying the low-level motion
planner, comparing each approach with the presented method
mimicking the tool use or the handover. Table II summarizes
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Fig. 6. Some examples of grasp candidates generated by the three baselines
[10], [9], [11] during tests. The first two columns compare the whole set
of grasp candidates and the best grasp, i.e., the one with the highest score
obtained in a run, where the proposed procedure registers a success and the
compared baseline failed. The third column presents the grasp sets obtained
in cases both procedures have failed.
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Fig. 7. First two: example of a tool use task with a screwdriver tightening a
screw (left) and with a hummer humming a nail (right). Second two: example
of handover in a human-robot collaboration scenario where the robot gives the
tool (the screwdriver on the left and the hammer on the right) to the operator
in the green area demanded to the interaction.

the obtained results. In this case, a breakdown is not provided
since the choice of the low-level motion planners does not
affect much the performance of the overall task since the
environment is not as complex as the previous one, and
the grasp selection and planning times reflect the outcomes
presented in the previous experiments.

Depending on the geometry of the object, the three baselines
work well for one of the two tasks. For example, GQ-
CNN [10] can quite successfully perform the tool-use with
the hammer but not with the screwdriver at all, and, on
the contrary, perform quite well in the handover with the
screwdriver and poorly with the hammer. The same reasoning
can be applied to the other two baseline methods because,
in general, neural network-based approaches are biased by the
dataset on which they have been trained. In addition, the grasp
candidates are mostly concentrated in some regions of the
object and not distributed on all its surfaces, limiting in some
circumstances the proposed approach, like in the case of tool-
use with a screwdriver using GPD [9]. However, the proposed
solution can accomplish both tasks remarkably, highlighting
the versatility of the method. For the sake of simplicity, the
action of tightening a screw or hammering a nail has not to
be performed since it is out of the scope of the presented
work and would have required implementing a sequence of
actions to complete the task that are only technical. However,
the results consider if such an action could have been executed
with the given grasp, no matter the required time.

C. Real world experiments

1) Pick-and-place tasks: The same pick-and-place exper-
iments run in simulation have been performed on the real
robot in the world, using a setup similar to the virtual one. We
selected RRTConnect∗ endowed with the proposed functional
cost as the low-level motion planner since it provided the best
performance in simulation on average.

In addition, a more daily life task, i.e., picking a book and
placing it on a shelf has been performed using a box in place
of the book. It is worth noticing that the box has been selected
on purpose such that only grasps on one side were suitable to
complete the task of inserting the box into the shelf. If the
naif approaches selected the proper side randomly (depending
on their scoring criteria), the proposed method could always
choose the correct one.

2) Object re-orientation: To further highlight the flexibility
of the proposed method, an object re-orientation task in which
a mug has to be stored in a cupboard has been executed. The
same shelf has been used in place of the cupboard for practical

TABLE II
RESULTS OF THE STATISTICAL ANALYSIS (SIMULATION)

ON THE TOOL-USE/HANDOVER WITH SCREWDRIVER AND HAMMER

Bas. Appr. Planner Tool-use Handover
Screwdriver Hammer Screwdriver Hammer

G
PD

[9
] Ours

RRTConnect∗ (cost eq. (7)) 100% 100% 80% 100%
CHOMP 100% 100% 80% 100%
TrajOpt 100% 90% 80% 100%
RRTConnect + CHOMP 100% 100% 80% 100%

Naif

RRTConnect∗ 90% 60% 0% 60%
CHOMP 90% 60% 0% 60%
TrajOpt 90% 50% 0% 60%
RRTConnect + CHOMP 90% 60% 0% 60%

G
Q

-C
N

N
[1

0] Ours

RRTConnect∗ (cost eq. (7)) 10% 100% 100% 70%
CHOMP 10% 100% 100% 70%
TrajOpt 10% 80% 100% 70%
RRTConnect + CHOMP 10% 100% 100% 70%

Naif

RRTConnect∗ 10% 70% 80% 30%
CHOMP 10% 70% 80% 30%
TrajOpt 10% 60% 80% 30%
RRTConnect + CHOMP 10% 70% 80% 30%

G
ra

sp
ne

t
[1

1] Ours

RRTConnect∗ (cost eq. (7)) 100% 100% 60% 100%
CHOMP 100% 100% 60% 100%
TrajOpt 100% 100% 60% 100%
RRTConnect + CHOMP 100% 100% 60% 100%

Naif

RRTConnect∗ (cost eq. (7)) 100% 10% 0% 70%
CHOMP 100% 10% 0% 70%
TrajOpt 100% 10% 0% 70%
RRTConnect + CHOMP 100% 10% 0% 70%

reasons. Similarly to the other cases, the naif approaches
barely ever choose a correct grasping configuration that allows
storing the mug on the shelf in the desired pose, in contrast
to our approach.

The results obtained during the real experiments reflect the
outcome of the statistical analysis. Figure 1 and 8 show a few
runs.

V. CONCLUSIONS

Grasping is a long-studied field in robotics. Many works
have focused on how to grasp an object to maximize stability.
However, such grasps may not be suitable to accomplish the
subsequent task after the grasping, and the high-level grasping
algorithm often does not communicate with the low-level path
planner that takes into account the environmental constraints
of the scene. Humans have this high-level reasoning ability
and often prioritize end-state comfort and confidence effects
over stability during manipulation tasks. Based on this insight,
the proposed work presents a general framework for task-
oriented grasp planning based on an optimization problem. The
framework is general and can be used in different scenarios
as it is agnostic to the identity of the objects exploiting
the grasping candidates set provided by off-the-shelf grasp
synthesis methods. The purpose of the framework is not
to generate grasp candidates but to connect the high-level
grasping with the low-level planner through a grasp score,
taking into account the environmental constraints and the task
to be executed. Compared to recent approaches, the presented
framework is not limited to tool use or handover tasks but can
interface with other tasks.

The framework has been validated in three different tasks
and compared with naif baselines grasp algorithms using
diverse low-level motion planners. The experimental campaign
highlighted the inadequacy of traditional grasping algorithms
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Fig. 8. Example of a run in the real world. Left: pick the crossed-shaped object and place it inside the box. Right: store a mug in a cupboard.

that do not take into account the subsequent task to be
accomplished in highly constrained environments.

The limitation of the proposed method is that the success
of the task is constrained to the existence of at least a
feasible grasp in the set of candidates provided by the grasp
synthesis method and to the ability of the low-level planner to
find a collision-free trajectory, which is not trivial in tightly
constrained environments. Future work will involve including
more proper grasp synthesis algorithms and improving the
planners’ performance, as well as reducing the planning time.
However, the pipeline is modular, and the new shortcomings
in the two fields can be applied.
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