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Polytope-based Continuous Scalar Performance
Measure with Analytical Gradient for Effective

Robot Manipulation
Keerthi Sagar1, Stéphane Caro2, Taşkın Padır3, Philip Long4

Abstract—Performance measures are essential to characterize
a robot’s ability to carry out manipulation tasks. Generally,
these measures examine the system’s kinematic transformations
from configuration to task space, but the Capacity margin, a
polytope based kinetostatic index, provides additionally, both
an accurate evaluation of the twist and wrench capacities of
a robotic manipulator. However, this index is the minimum
of a discontinuous scalar function leading to difficulties when
computing gradients thereby rendering it unsuitable for online
numerical optimization. In this paper, we propose a novel perfor-
mance index using an approximation of the capacity margin. The
proposed index is continuous and differentiable, characteristics
that are essential for modelling smooth and predictable system
behavior. We demonstrate its effectiveness in inverse kinematics
and trajectory optimization application. Moreover, to show its
practical use, two opposing robot architectures are chosen: (i)
Serial robot - Universal Robot- UR5 (6-dof); Rethink Robotics-
Sawyer Robot (7-dof) and (ii) Parallel manipulator - Cable Driven
Parallel Robot to validate the results through both simulation and
experiments. A visual representation of the performance index
is also presented.

Index Terms—Kinematics, Optimization and Optimal Control,
Parallel Robots

I. INTRODUCTION

ARobot’s capability to perform motion and exert neces-
sary forces are of fundamental importance in workspace

design and task planning. Performance measures provide the
necessary tools to quantitatively measure these capabilities,
that allow studying, evaluating and optimizing the behaviour of
manipulators from design to application phase. Specifically for
manipulation control, local indices based on Jacobian matrix
[1] are widely used. These measures, due to the dualistic
properties [2] between the first order kinematics and statics
of a rigid body are termed kinetostatic performance measures.
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Fig. 1: Continuous capacity margin for robot shown as orange
line between the closest vertex (brown) in the desired velocity
polytope (green) and the closest facet (red) in the feasible
velocity polytope (blue) for a given configuration.

They enable posture variation for generating required motion
or specific desired forces at the robot’s end-effector. The most
widely used measure is the manipulability index proposed by
Yoshikawa [3], which measures the distance to singular con-
figuration using volume of manipulability ellipsoid. Similarly,
the dexterity index, analyzed by Salisbury and Craig [4] com-
putes the sphericity/evenness of the velocity ellipsoid via the
condition number. Manipulability ellipsoid based measures,
although widely adapted due to their ease of computation
and geometric description, can lead to under-estimation of
kinetostatic capacities [5] and generally do not take into
consideration the boundary of joint’s velocities or torques.
On the other hand, manipulability polytopes establish a linear
estimate of the exact joint constraints in task space [6] and
take into account the robot’s torque and velocity joint limits.
Hence, they provide a much accurate characterization [7], [8]
of the manipulator’s capabilities in contrast to manipulability
ellipsoids. While historically considered computationally ex-
pensive, methods have been developed to substantially reduce
polytope computation time [9] and more recently in [7] where
online evaluation of force polytopes using improved vertex
search algorithm has been demonstrated. Polytopes encap-
sulate both geometric properties and a system of linear in-
equalities. The convex nature can be used in conjunction with
geometric operations such as Minkowski sum or intersection to
obtain capacities of composite chains [10]. Additionally, con-
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strained motion polytopes [11], which consider both intrinsic
and environmental constraints, can be used as visual aids and
virtual guides in virtual reality for shared teleoperation [12].
With its algebraic representation, supplementary constraints
such as proximity to danger zones [13], zero-moment points
(ZMP) [14] or multi-contact humanoid locations [15] can be
easily added. Hence, a polytope based performance index is
practical to apply for both accurate and fast evaluation of the
capacities of a robot for executing a task.

Guay et al. [16] introduced the Capacity margin (CM),
a polytope based minimum degree of constraint satisfaction
index, that quantifies the robustness of equilibrium of an
object using a single scalar function. This kinetostatic index is
applied to Cable-Driven Parallel Robots (CDPR), to determine
Wrench Feasible Workspace (WFW) [16]–[18] with bounded
forces/tensions, for path planning [19], designing optimal
cable winches [20] for Aerial Cable Towed System (ACTS),
reconfiguration planning [21], and subsequently for their di-
mensional [22] synthesis. Similar to wrench analysis, the CM
also provides a good estimate of the available acceleration set
for motion generation [23].

Prior work has utilized CM [19] [21], as cost functions with
only heuristic based planners, which can have good, but not
guaranteed convergence. The index in its original form is based
on a discontinuous min function which renders it inconvenient
for many optimization algorithms. To overcome this, in this
article we propose an analytical continuous version of this
performance index, denoted as the continuous capacity margin
(CCM) as shown in Fig. 1, which can be effectively used
with simple iterative optimization algorithms. With its explicit
analytical gradient, the index can be used for estimating
a kinetostatic performance index as a continuous function,
and thus alongside numerical optimization solvers to aid in
directional search for a solution with faster convergence. The
contributions of this work are:

• A continuous scalar performance measure based on the
capacity margin is proposed.

• Practical application in inverse kinematics and trajectory
optimization for serial robots and wrench-feasible bound-
ary estimation for cable robots are demonstrated.

• Software toolbox for proposed index visualization
and gradient computation is provided, https://gitlab.com/
KeerthiSagarSN/rospygradientpolytope.

The paper is organized as follows, necessary preliminaries
for the performance index based on polytopes are presented
in Sections II and III. Performance measure formulation is
proposed in Section III and its applications demonstrated in
Section IV. The concluding remarks are drawn in Section V.

II. KINEMATIC MODELING AND POLYTOPES

Consider a n degree-of-freedom (DOF) manipulator oper-
ating in m dimensional space. The pose of the end-effector is
represented as xe, where xe ∈ Rm and can be obtained from
the manipulator’s configuration variables, q = [q1, q2 . . . qn],
using the forward position kinematics, xe = ffp(q). For a
serial manipulator with m degree-of-freedom and n active
joints, the Jacobian matrix J(q) ∈ Rm×n provides the

necessary mapping from joint twist νj to Cartesian twist V
at end-effector e, defined as

J =
[
ν1 ν2 . . . νn

]
. (1)

V consists of translational and angular velocity components
denoted as v and ω, respectively. The kinematic mapping for
a serial manipulator with 6-DOF in its task-space is given as

V =

[
v
ω

]
= J(q)q̇ s.t q̇min ≤ q̇ ≤ q̇max (2)

where q̇ is the joint velocity vector, and q̇min, q̇max are
the minimum and maximum joint velocity vector, respectively.
Components in V are chosen based on task requirements.

Dual to the twist space for serial robots, the wrench space
is essential to analyse the force capacities of CDPR, a class of
parallel manipulators. CDPRs consists of a moving- platform,
which is suspended or constrained by a number of cables.
CDPRs unlike traditional parallel manipulators with rigid body
links, employ cables/flexible links, which can only pull. This
leads to certain configurations of the end-effector/platform
causing slack or no-tension in some cables. Hence, wrench
capability analysis is a requisite to ensure the robot can
generate arbitrary wrenches in all DOFs.

Let f denote the wrench at CDPR’s end-effector E, where

f =

[
f
τ

]
= −Wt tmin ≤ t ≤ tmax

∣∣∣ tmin > 0 (3)

where f are the forces and torques τ generated at the platform
point E, and t = [t1, . . . , tn]

T is the cable tension vector and
where the vectors containing the maximum and minimum ca-
ble tensions are denoted as tmax and tmin respectively. Similar
to Jacobian matrix J(q), W = [w1 w2 . . . wn] ∈ Rm×n is
the wrench matrix for the CDPR moving-platform to remain in
equilibrium when external wrench f is applied to the platform,
where wj is the unit wrench due to cable j.

Given these constraints, the robot’s current capacities to
generate a desired set of wrenches or twist can be conveniently
represented by an m-dimensional polytope in task space.
A generalized polytope, P can be represented using vertex
representation, denoted as V-rep, and is obtained by computing
the convex hull of its vertex set. A hyperplane representation
denoted, H-rep, where the polytope is computed using the
volume bounded by a finite number of half-spaces. Explicit
analytical representation of these polytopes using H-rep is
written as P = Ax ≤ B, where A contains the half-
space’s normals and B is its shifted distance from the origin
along the normal. A desired polytope is defined as PD,
which represents the required maximum and minimum task-
specific wrench or twist capacities for the end-effector at any
particular time. For example, for a serial manipulator, when
the end-effector is required to operate within a minimum and
maximum Cartesian linear velocities in x,y and z directions
at all times, then the resulting twist polytope PD is a cuboid
[24]. Similarly, the feasible polytope, PF is defined as (4), is
obtained following a linear mapping [25] from the feasible
joint-space to the twist-space using the Jacobian operator
defined in (2) or from the cable tension space to the Cartesian
wrench-space using Wrench matrix as in (3). A compact, yet
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implicit representation [7] of these feasible wrench PF
f and

twist polytope PF
v from (2) and (3) can be written as

PF
f = {f ∈ Rm|tmin ≤ t≤ tmax,Wt = −f}

PF
v = {V ∈ Rm|q̇min ≤ q̇ ≤ q̇max,V = J(q)q̇}

(4)

The feasible polytope in this case, is a special type of [24],
[25] centro-symmetrical convex polytope known as zonotope.
The properties of the zonotope [24] is used to construct
feasible twist/wrench capacities using the hyperplane shifting
method. Unlike polytope vertex search algorithms, these are
computationally efficient and non-iterative in nature. In the
following, hyperplane shifting method and activation functions
used in neural networks are adapted to develop a continuous
analytical version of the CM index. Although the proposed
methodology works for n-DOF, for ease of visual illustration,
the task-space twist is limited to linear-velocity components
(v ∈ Rm) and the task-space wrench to its force (f ∈ Rm)
components.

III. PROPOSED CONTINUOUS KINETOSTATIC
PERFORMANCE INDEX FORMULATION

A. Capacity Margin

The CM is represented as the signed distance between a
desired polytope and the feasible polytope, positive when the
desired polytope is completely inside the feasible polytope and
negative otherwise. Let the position of the kth vertex of the
desired polytope PD be denoted as ηD

k , where ηD ∈ R(l×m),
where l is number of vertices in PD, and facets f of the
feasible polytope PF be defined as p+

f and p−
f , where {+,−}

represent the upper and lower half-space of PF , respectively.
A distance dfk between every vertex ηD

k in PD and every
facet in PF , where pf is a point on facet f and nf is its
corresponding normal, is defined as

dfk = projnf
(pf − ηD

k ) (5)

where projnf
is defined as the vector’s projection onto

the normal nf . Let d be a vector containing all distances
from every vertex to every facet, thus, CM is defined as the
minimum distance among all these (vertex,facet) pairs , i.e.,

γ = min
f,k

(d) (6)

For the sake of demonstration, the parameters are illustrated in
robot’s Cartesian space by scaling down the velocity polytope
by a factor as shown in Fig. 2.

We propose a continuous kinetostatic performance index γ̂
based on the above defined CM (γ) [16], [18] of a polytope.
The proposed index γ̂ is an estimated approximation of the
actual measure and further can be expressed as a continuous
analytical function. The capacity margin and its estimate are
derived using hyperplane shifting method. For clarity, we
present notations of vectors only for twist space represented
in (1) and (2).

B. Hyperplane Shifting Method
A hyperplane [24] is a geometrical object that splits a space

into two half-spaces. The hyperplane shifting method (HSM)
defines a convex polytope [26] as the intersection of half-
spaces bounded by its supporting hyperplanes. The convex
polytope in this scenario, refers to the feasible twist/wrench
set of the robot for a given configuration and the supporting
hyperplanes refer to the facets of this polytope.

To fully define the hyperplanes, it is necessary to obtain
their orientation by obtaining their corresponding normals and
secondly, their shifted distance from the origin. Consider a
serial manipulator with n-DOF operating in m dimensional
space. We define normal n, where n ∈ Rm, a unit vector
perpendicular to a hyperplane that includes the chosen unit
twists νj as:

n =
u

∥u∥
, u = ν1 × . . .× νm−1 (7)

where u is the generalized cross product [24] of the selected
degrees of freedom, where the ith component of u is

ui = (−1)i+1det([iν1 . . .
i νm−1]) (8)

where iνj represents νj with its ith component removed.
We develop the index based on the twist capacities of a

serial manipulator where m = 3, for instance by consider-
ing only the Cartesian translational velocities. Following the
development in [24], we select a combination of (m − 1)
linearly independent twists that can define n, a unit vector
perpendicular to a hyperplane that includes the chosen unit
twists. For any two joints, for instance, joint 1 and joint 2 for
a serial manipulator with 6 joints (n = 6), where only linear
velocity components in the twists are considered, i.e νj ∈ R3

and with m = 3, n ∈ R3 using (7) becomes,

n =
ν1 × ν2

∥ν1 × ν2∥
, (9)

where twists ν1, ν2 define the orientation of the two faces of
the hyperplane, while the remaining n− (m− 1) unit twists,
denoted as νj . . .νr, define its position.

Let N collect these unit vectors by choosing lin-
early independent combination of twists νj , where N =[
n1,n2, · · · ,nκ

]T
, and κ =

(
n

m−1

)
, with

()
representing

the combination operator.
The matrix C ∈ R(

n
m−1)×(n−m−1), is computed by pro-

jecting each twist onto all normals excluding those used in
the normal’s definition. For a twist νj and normal ni, the
corresponding element in matrix C is given as

cij = nT
i νj . (10)

Since points on the hyperplane faces correspond to combi-
nations where joint velocities are at a maximum or minimum,
all unit twists are scaled by either 0 or δq̇ = q̇max−q̇min. The
maximum and minimum distances between the defined hyper-
planes are contained respectively within h+ and h− ∈ Rκ ,
where the ith element is defined as

h+
i = max(

r∑
k=j

αkδq̇kcik), h−
i = min(

r∑
k=j

αkδq̇kcik)

(11)
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where αk = {0, 1}. These can be used to obtain points on
parallel hyperplanes as follows

P+ = h+N+ Jq̇min, P− = h−N+ Jq̇min, (12)

where the points contained in P+ = [p+
1 ,p

+
2 , . . . ,p

+
κ ] and

P− = [p−
1 ,p

−
2 , . . . ,p

−
κ ] may not necessarily lie on the facets

of the zonotope, but lie along the extension of the supporting
hyperplane which is not included in the intersection.

Therefore for this selection, the normals to the hyperplane
are given by N and −N, while the shifted distance is given by
NTP+ and −NTP−. This is repeated for each combination
of the (m − 1) linear independent twists. For the proposed
case of translational velocities (m = 3) and a 6-DOF system,
there would be

(
6
2

)
=15 combinations and thus 30 hyperplanes,

defined in H-representation as

A =
[
n1, · · · ,n15, · · · ,−n1, · · · ,−n15

]T
(13)

b =
[
nT
1 p

+
1 , · · · ,nT

15p
+
15, · · · ,−nT

1 p
−
1 , · · · ,−nT

15p
−
15

]T
(14)

In its H- representation, the zonotope-shaped Feasible
Wrench Set A+

f and Twist set A+
v are expressed as

A+
f = f ∈ Rm | Af ≤ b,A+

v = v ∈ Rm | Av ≤ b (15)

We direct the readers to [24], [26] for an in-depth understand-
ing of HSM. The capacity margin is obtained by finding the
minimum distance between each vertex of the desired twist
(PD

v ) or wrench (PD
f ) polytope and the corresponding facets

of feasible twist (PF
v ) or wrench (PF

f ) zonotope computed in
(15). The elements of the capacity margin are computed as

Γ+ = NT (P+ − ηD), Γ− = NT (P− − ηD) (16)

The dot product operator between NT and (P+ and P−) pre-
serves information about the signed distance, thus determining
when the distance between a facet and vertex becomes negative
or zero, indicating infeasibility.

The coordinates Γ+ and Γ− are calculated for all l vertices
in PD

v , i.e. in ηD and all f facets of PF
v , resulting in 2×f×l

values, which are arranged as

Γ+ =
(
Γ+
1 . . .Γ+

f×l

)
, Γ− =

(
Γ−
1 . . .Γ−

f×l

)
(17)

The capacity margin is the worse case scenario i.e. the
minimum distance between a vertex and a facet, given as

γ = min
(
Γ+,−Γ−) (18)

γ defined above is based on the min function, and to identify
the supporting hyperplane facets requires both max and min
function as shown in (11), which are both discontinuous. To ef-
fectively utilize the capacity margin as a performance index for
control/optimization, a continuous differentiable function with
an analytical gradient is required. The availability of deriva-
tives are essential for control techniques such as gradient-based
optimization and more importantly, linearization. The follow-
ing section provides a smooth estimate of the discontinuous
CM (γ).

C. Smooth Hyperplane Definition
To replace the discontinuous min and max functions, we

propose to use the widely-effective sigmoid (sig) activation
function [27], where

sig(x) = 1.0./(1.0 + e−λx). (19)

and λ is the slope parameter of the sigmoid activation function.
It is a non-linear activation function [28] with real-valued
inputs where, f : X → Y and {X ∈ R, Y ∈ [0, 1]}. The larger
the value of the input in the positive domain, the closer to the
activation function firing, i.e output equalling 1.0. Hence the
activation function implicitly assigns higher weights to larger
inputs and zero-weights to relatively smaller inputs enabling
the effective replacement of the max function. Reformulating
(11), by eliminating the temporary variable cik , and redefining
the distances as

ĥ
+

i =

r∑
k=j

sig
(
nT
i νk

)
δq̇kn

T
i νk (20)

ĥ
−
i =

r∑
k=j

sig
(
−nT

i νk

)
δq̇kn

T
i νk. (21)

The min function in (11) for identifying h− is reformulated
as a max function by assigning negative inputs to the sig
function. Similarly, (12) is recalculated using the estimated
distances ĥ

+
and ĥ

−
as follows

P̂+ = ĥ
+
N+ Jq̇min, P̂− = ĥ

−
N+ Jq̇min (22)

The new points, P̂+, P̂− can be used to obtain the CCM.
The key characteristic property of this proposed methodology,
is that the sigmoid activation is conservative. Regardless of the
input value in (19), the output is always bounded between 0
and 1. The characteristic ”S” shape curve behaviour of the sig-
moid function ensures that the function is smooth, continuous
and does not have any sharp spikes or discontinuities.

D. Smooth Capacity Margin
Reformulating the distance array (16) for identifying the

smooth capacity margin index as follows

Γ̂+ = NT (P̂+ − ηD), Γ̂− = NT (P̂− − ηD) (23)

Substituting, (22) into (23), the capacity margin as a function
of the joint configuration of the manipulator Γ̂ (q) is

Γ̂+ (q) = NT
(
ĥ
+
N+ Jq̇min

)
− (NTηD) (24)

Γ̂− (q) = NT
(
ĥ
−
N+ Jq̇min

)
− (NTηD) (25)

recognizing that N is a matrix of unit vectors, where NTN =
1, we simplify this to:

Γ̂+ (q) = ĥ
+
+NTJq̇min − (NTηD)

Γ̂− (q) = ĥ
−
+NTJq̇min − (NTηD). (26)

The coordinates Γ̂+ and Γ̂− are calculated between all l
vertices in ηD and all f facets in P̂+

f and P̂−
f of the continuous

feasible twist polytope as shown below

Γ̂+ =
(
Γ̂+
1 . . . Γ̂+

f×l

)
, Γ̂− =

(
Γ̂−
1 . . . Γ̂−

f×l

)
, (27)
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Fig. 2: Polytope representation, velocity scale = 10%, λ = 10.

Finally, since the capacity margin is defined as the worse
case scenario, i.e., min

(
Γ̂+,−Γ̂−

)
, to estimate this, we

propose the use of the log-sum-exp (LSE) or RealSoftMax
function [29]. Unlike the estimation of hyperplane param-
eters, an estimate of each distance in the capacity margin
vector is required. This is due to the proposed measure (γ̂)
being the minimal distance with respect to all other distances
between the vertex and the facet. The sigmoid activation
function which is a binary classifier and provides only isolated
probabilities is unsuitable. Whereas, RealSoftMax function
takes into account the probability distribution over all the
vector inputs, thereby belonging to the multi-class logistic
regression. As the closest (vertex,facet) pair is constantly
changing, RealSoftMax aids in predicting and keeping track
of the next closest minimal pair based on the input joint
configuration. For a vector of values x = [x1 . . . xn], LSE
is defined as

LSE(x) = log (ex1 + ex2 . . .+ exn) (28)

Thus (18) is rewritten as

γ̂ = − log
(
e−Γ̂+

1 + . . . e−Γ̂+
f×l + . . . eΓ̂

−
f×l

)
, (29)

LSE function estimates the max function using a minus
sign manipulation. Thus, for a desired set of velocities, (29)
estimates the robots capacities at a current configuration. The
proposed index is applicable to both a serial manipulator’s
loss of twist capacities and a parallel system or CDPR’s loss
of wrench capacities by making the following substitutions:

J → W, q̇ → t, q̇min, q̇max → tmin, tmax (30)

To effectively use the index, an explicit analytical gradient
for any generalized serial manipulator is derived in the fol-
lowing section. Finally, for a serial manipulator the gradient
is obtained with respect to the joint configuration, whereas for
the CDPR system the gradient is obtained with respect to the
platform pose, point E in this case,i.e dγ̂

dq → dγ̂
dE .

E. Gradient of smooth capacity margin
The gradient of (28), is a n component vector given as

d(LSE(x))
dx

=

[
e(x1)

e(x1) + . . . e(xn)
. . .

e(xn)

e(x1) + . . . e(xn)

]
(31)

where, for numerical stability the implementation of LSE and
its gradient is slightly altered1, using the log-sum-exp trick
[30]. For a given configuration, suppose γ̂ = min

(
Γ̂
)
= Γ̂i,

where i is the index of Γ̂ containing the minimum value. The
capacity margin’s gradient is given as

dγ̂

dq
=

d(LSE(Γ̂))

dΓ̂
[i] · dΓ̂i

dq
, (32)

where
d(LSE(Γ̂))

dΓ̂
[i] is the ith component of

d(LSE(Γ̂))

dΓ̂
,

which is implemented by finding the index of the minimum
value of Γ̂. Physical significance of (32) can be seen as the
probability that the existing minimum (vertex,facet) pair con-
tributes to the CCM. To derive the analytical gradient, firstly,
the gradient of the elements of Γ̂ with respect to input joint
configuration are obtained using chain rule differentiation,
where i ∈ (f × l) of (26)

dΓ̂+

dq
=

∂ĥ
+

∂q
+

∂NT

∂q
Jq̇min +NT ∂J

∂q
q̇min − ∂NT

∂q
ηD

dΓ̂−

dq
=

∂ĥ
−

∂q
+

∂NT

∂q
Jq̇min +NT ∂J

∂q
q̇min−

∂NT

∂q
ηD.

(33)

Each element of (33) is derived. Firstly, ∂ĥ
+

∂q is derived as

∂ĥ
+

i

∂q
=

r∑
k=j

∂ sig
(
nT
i νk

)
∂q

δq̇kn
T
i νk + sig

(
nT
i νk

)
δq̇k

∂nT
i νk

∂q

(34)
where, the derivative of the sigmoid function in (34) is
computed as shown below, where x = nT

i νk:

∂ (sig (x))
∂q

= sig (x) (1− sig (x))
∂x

∂q
(35)

∂
(
nT
i νk

)
∂q

=
∂nT

i

∂q
νk + nT

i

∂νk

∂q
(36)

Secondly, the gradient of each unit normal of the supporting
hyperplane containing the input twists is obtained For exam-
ple, for twists ν1,ν2, if unit normal n = ν1×ν2

∥ν1×ν2∥ . The partial
derivative of the cross product ν1 × ν2 with respect to q, i.e
∂nT

∂q using the quotient rule of differentiation is as follows

∂n

∂q
=

(∂(ν1×ν2)
∂q )∥ν1 × ν2∥ − (ν1 × ν2)

∂(∥ν1×ν2∥)
∂q

∥ν1 × ν2∥2
(37)

where the gradient of the cross product is written and simpli-
fied based on skew-symmetric matrix []× as

∂(ν1 × ν2)

∂q
= −[ν2]×

∂ν1

∂q
+ [ν1]×

∂ν2

∂q
(38)

The partial derivative of ∥a(x)∥ with respect to x is given as
∂∥a∥
∂x =

(
∂a
∂x

)T
a(aTa)−

1
2 , therefore

∂ (∥ν1 × ν2∥)
∂q

=

(
∂(ν1×ν2)

∂q

)T

(ν1 × ν2)

((ν1 × ν2)T (ν1 × ν2))
1
2

(39)

1https://timvieira.github.io/blog/post/2014/02/11/exp-normalize-trick/
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TABLE I: IK optimization for 100 observation trials

Sigmoid Slope (λ)
Manipulator 50 100 150 200 400

UR5 Success 62 63 63 62 66
µiter 193.161 162.22 166.44 156.64 126.85
µCM 0.568 0.594 0.593 0.602 0.5882

Sawyer Success 71 78 78 73 73
µiter 219.05 210.43 226.68 197.57 233.51
µCM 0.603 0.605 0.588 0.595 0.598

∂J
∂q is the kinematic Hessian tensor which can be obtained

analytically from the kinematic Jacobian matrix [31], where
∂J
∂q = H, and ∂νk

∂q = H[1 . . .m, k, q]. All gradient terms in (33)
can be obtained directly from the Hessian tensor H without
iterative computation, as such, if the manipulator’s Jacobian
is J ∈ Rm×n, then the Hessian is H ∈ Rm×n×n. Hence, the
parameters are derived and represented explicitly as a function
of the joint configuration. The formulation takes advantage of
the multi-processing capabilities, where, gradient of each joint
is computed in parallel, resulting in quicker convergence for
optimization.

IV. EXPERIMENTS AND RESULTS
To show the CCM’s effectiveness, three different scenarios

are proposed: the translational velocity for (i) the UR5, a 6-
DOF robot (n=6, m=3); (ii) Sawyer Robot a 7-DOF (n=7,
m=3), and planar forces for (iii) a 2-DOF CDPR (n=4, m=2).

A. Serial Manipulator
1) Error analysis: Experiments are performed that show

the continuous nature of CCM (γ̂) versus CM (γ) for random
configurations and CCM’s accurate yet conservative nature.
First, the error between the CCM (γ̂) and CM (γ) is compared
over 1000 configurations with varying λ as shown in Fig.
3c. The error decreases withing increasing slopes, indicating
that steeper slopes improve the estimation. The analysis (Fig.
3c) shows that the error lies between (0, 1), validating the
conservative nature i.e., γ̂ ≤ γ, showing that every valid γ̂ is
sufficient to indicate a valid γ. Secondly, the numerical gradi-
ent of γ, dγ

dq computed through finite differences, and analytical
gradient of γ̂, dγ̂

dq , with varying sigmoid slope λ are compared.
From a random configuration, one joint is iteratively increased
by 0.001 rad. Figures. 3a, 3b, demonstrate the continuous
profile of γ̂ and its corresponding analytical gradient. The
discontinuities in the numerical gradient arise from the sudden
change in the (vertex,facet) pair corresponding to γ, whereas γ̂
accounts and preemptively assigns a equal probability for the
next closest (vertex,facet) pair, resulting in a smooth transition.

2) Inverse Kinematics: In contrast to CM, the continuity of
CCM and its corresponding gradient enable the use of gradient
based optimization methods for inverse position kinematics
(IK) computation. For simplicity, the IK accounts for position
and neglects orientation. We use sequential least squares
quadratic programming SLSQP within Python3 Scipy mod-
ule, which transforms complex nonlinear constraint opti-
mization into manageable simple quadratic programming and

explicitly considers, the Jacobian of the objective function
and its constraints, in this case the analytical gradient dγ̂

dq .
An optimization model is formulated to maximize the CCM
(γ̂) while constraining solutions to the desired end-effector
position (xp

e), i.e.,

minimize
δq

(−γ̂)

subject to : ||ffp(q+ δq)− xp
e||=0

qmin ≤ q ≤ qmax, γ̂ > 0

(40)

where δq is the joint variables’ displacement and qmin,qmax

are the minimum and maximum joint angles. xp
e is reached

by solving the forward kinematics (ffp) as a constraint. A
solution is successful, if the performance index is positive
and if the solver terminates within 1000 function iterations.
Joint limits are considered, but self-collisions neglected. The
algorithm’s implementation has not been tuned for run-time
performance, thus the number of function iterations are used
as a more meaningful statistic. The desired Cartesian velocities
are in the range of (−0.6 m/s to 0.5 m/s).

For 100 random Cartesian positions, the results in Table.I
indicate reduced average iterations (µiter) to converge to a
maximum γ̂ with the 6-DOF UR5 robot due to fewer active
joints involved in gradient evaluation. Overall, for the same
desired Cartesian velocity, 7-DOF Sawyer robot had more
successful convergences and a slightly better average capacity
margin (µCM). The reduced success are due to incapability
of achieving the desired twist polytope. The sigmoid slope
must to be carefully selected as the relationship between the
sigmoid slope, µiter and µCM are not linear. While experiments
are based on constant desired polytope, the model can be used
for task-based, variable desired Cartesian forces/velocities.

3) Trajectory Optimization: To demonstrate the practical
application of CCM, we use (∂γ̂∂q ) to optimize the trajectory
of redundant manipulator, through the gradient projection
method [32]. The results show that CCM can lead to improved
configuration with respect to classical performance measures.
The joint velocities for a redundant manipulator to effectuate
a desired twist Vd can be obtained by

q̇ = J+(q)Vd︸ ︷︷ ︸
end-effector motion

+(I− J+(q)J(q))q̇null︸ ︷︷ ︸
null-space motion

(41)

where J+(q)Vd produces the required task-space motion,
I is the (n× n) identity matrix and J+ = JT (JJT )−1 is the
Moore-Penrose pseudo-inverse [32]. The manipulability index
[3], w, and its gradient are given as

w =
√
det(J(q)(J(q))T ),

∂w

∂qi
= w(trace

{
∂J

∂qi
J+

}
)

(42)

To exploit kinematic redundancy to optimize a secondary
criterion, q̇null ∈ Rn is projected into the null space of J+

and, to maximise w or γ̂, q̇null is defined respectively as
q̇null = −∂w

∂q or q̇null = −(∂γ̂∂q ).
A straight line trajectory is defined and discretized into

points, [xinit . . .xfinal]. Vd is the velocity required to move
the end-effector between successive waypoints in a timestep
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Fig. 3: (a) Sawyer Robot: Comparison between smooth analytical ( dγ̂dq ) gradient and discontinuous finite difference numerical
gradient ( dγdq ) (b) UR5: Comparison between smooth analytical ( dγ̂dq ) and ( dγdq ); (c) Error estimate between actual (γ) & CCM
(γ̂), where Error = γ−γ̂

max(γ) for Sawyer: µerror = 0.0273 and µt= 4.8 ms and for UR5: µerror = 0.0212 and µt= 3.7 ms (d)
Comparison between capacity margin γ obtained during gradient-projection optimization using CCM and w, (e) Sawyer robot
traversing the linear trajectory with optimized joint profile using CCM (λ = 150) (solid) and w (transparent).

δt, i.e., Vd = xi+1−xi

δt . To evaluate the performance of γ̂,
the joint trajectories are computed for a time period of 10s
with maximum velocity of 0.1 m/s. We compare γ obtained
from optimizing for γ̂ versus w, where a common initial
pose is used. Fig. 3d shows that CCM provides better overall
twist capacities along the trajectory. While, twist capacities
are improved with CCM, the joint profile diverges from the
initial first time-step as shown in Fig. 3e and indices can lead
to very different final configurations. However, it should be
noted that local approach of (41) method means there is no
guarantee of better configurations throughout the motion.

B. Cable Driven Parallel Robot

The primary objective during design of CDPRs is to ensure
operations across a workspace, i.e the end-effector can ex-
ert/withstand the forces/moments at the payload. A common
practice is to evaluate the capacity margin distribution for a
given design along a desired static workspace and understand
where wrench feasibility is lost [33].

We demonstrate that the wrench feasible workspace (WFW)
boundary for a planar CDPR can be directly estimated using γ̂.
Its components are described with the transpositions from (30),
the Hessian represented as H = ∂W, the normals are obtained
from wrench matrix QR factorization, i.e nT = QR(W) [18],
while gradient is with respect to end effector position. All the
geometric components for computing γ̂ can be subsequently
derived. The approach is validated with a 4 cable-CDPR with
tmin = 1N, tmax = 25N and desired forces in the range of
±10N in x and y.

To calculate WFW, γ̂, with varying values of λ, and γ
are evaluated across the workspace. The resulting boundaries
(γ̂ → 0) are seen in Fig. 4(a) while Table II shows the estima-
tion’s percentage accuracy when varying λ. For instance, using

TABLE II: Ratio of estimated boundary, κ̂ = Estimated WFW
Actual WFW

Sigmoid Slope λ
4-cables 2 5 10 20 30 50
κ̂ 0.1277 0.8509 0.9821 0.99913 0.9999 1.0

λ = 30, γ̂ identifies 99% of the WFW, while maintaining a
relatively smooth surface as show in pink in Fig.4(b).

Moreover, we implement a naive gradient descent optimiza-
tion. We initialize the CDPR’s position at three different con-
figurations as shown in Fig. 4(b), 4(c). The CDPR converges
to the maximum of γ̂, for λ = 30. When the CDPR is close
to the WFW boundary, γ̂ displays high frequency changes yet
the gradient is still sufficiently smooth to guide the system to
the maximum value.

V. CONCLUSION

This paper introduces a new performance index and its’ ana-
lytical gradient. The index is based on the hyperplane shifting
method with neural-network based activation functions. We
show, using serial and parallel systems, how the index ac-
curately yet conservatively approximates the capacity margin
while smoothing discontinuities due to vertex/facet changes.
The gradient enables the application to inverse kinematics,
trajectory optimization, gradient descent based methods and
can be used as a visual indicator during on-line operation.
However, the proposed method has some limitations. First,
each constraint or degree-of-freedom adds a hyperplane thus
increasing the computational burden during gradient calcu-
lation. Secondly, the sigmoid parameter, λ must be tuned
to balance gradient smoothness with fidelity to the capacity
margin. Future work will investigate on-line selection of λ
during the optimization process. Furthermore, we will examine
the introduction of obstacle-avoidance constraints within the
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Fig. 4: (a) WFW for feasible wrench set as γ̂ → 0 , with tmin = 1N & tmax = 25N and a desired force of [−10N, 10N] in
x and y at E, (b) CCM distribution across the workspace and first-order gradient descent method with analytical gradient γ̂
with different initial positions in the workspace, (c) Gradient descent convergence for the three starting positions.

polytopes and the use of the gradient to determine optimal
robot geometry during design phase.
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