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Comprehensive Gradient Computation Framework of
PCS Model for Soft Robot Simulation

Taiki Ishigaki , Graduate Student Member, IEEE, Ko Ayusawa , and Ko Yamamoto , Member, IEEE

Abstract—Dynamic simulation of soft and flexible bodies is im-
portant for the motion planning and control of soft robot systems.
This study presents a fast real-time simulation of the piecewise
constant strain (PCS) model proposed in soft robotics research to
calculate the dynamics of a beam or rod structure. We extend the
theory of comprehensive motion transformation matrix (CMTM)
to the PCS model, which allows us to systematically calculate the
gradients in the equations of motion. Using the dynamic gradient,
we perform a dynamic simulation of the PCS model via implicit
integration. Compared to explicit integration, implicit integration
allows us to use a larger time-step width for the integration without
a flexible deformation divergence, which decreases the computa-
tional time. We present several examples of dynamic simulations,
including a relatively rigid material such as carbon-fiber-reinforced
plastics used in a leaf-spring-type sports prosthesis.

Index Terms—Modeling, control, and learning for soft robots,
dynamics, simulation and animation.

I. INTRODUCTION

HUMAN body softness plays an important role in adap-
tive and dynamic motion control. Hand softness allows

the adaptive grasping of unknown shapes. The flexibility of
muscles and tendons can facilitate dynamic motions such as
running and jumping. A soft robot made of flexible materials
is a representative example of such functionality. Many studies
have investigated the design of soft robots, and the modeling and
control of their flexible and continuous deformations.

The finite element method [1] is often used for general-
purpose deformation calculations of flexible objects. While
for designing the soft robot hand or arm [2], various rod or
beam models proposed [3], [4], [5]. Renda et al. [5] proposed
a piecewise constant strain (PCS) model that discretizes the
continuous Cosserat rod model [4] of a rod or beam structure into
a finite number of segments and assumes a constant strain in each
segment. The motion computation of the rigid-body link system
was extended to calculate the PCS model dynamics. Further-
more, Renda et al. [6] proposed a hybrid model that integrates
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PCS and rigid multilink models. Ishigaki and Yamamoto [7]
proposed a hybrid link system with a floating base link that
considers the contact forces with the environment and achieved a
forward dynamics simulation of a humanoid robot with a flexible
structure in its legs. Using the hybrid link system, the motion
analysis of an athlete with a leaf-spring-type prosthesis leg is
performed [8], [9]. It is also expected to be applied to research
on the handling of deformable linear objects such as cables,
which are widely used in the medical or industrial fields with
rigid link robots [10].

One of the challenges in simulating the dynamics of a soft
and flexible object is the trade-off between the stability and
computational cost of numerical calculations [11]. Particularly
in numerical integration, a smaller time-step width stabilizes
the calculation; however, it increases the computation time.
Although a larger time step-width can save computational time,
the numerical integration is often unstable. This trade-off be-
comes more critical when simulating the flexible deformation
of a relatively rigid, lightweight material which causes the large
acceleration by a small change of position. For example, the main
material of a leaf-spring prosthesis leg is CFRP, whose density
and Young’s modulus are 1.81 × 103 kg/m3 and 61.35 GPa,
respectively. Therefore, a large acceleration is generated during
dynamic deformation, which makes the numerical integration
unstable with a small time-step width. An implicit integration
method is used to ensure numerical stability with a large time
step. In contrast to the explicit method, implicit integration is
based on the backward difference approximation of velocity and
acceleration, in which we need to solve a nonlinear algebraic
equation with velocity and acceleration as unknown values.
This equation is usually solved using numerical approaches
such as the Newton-Raphson method, which computes dynamic
gradient vectors that are partial derivatives of the quantities in
the equations of motion by generalized coordinates, velocity, or
acceleration.

Computation algorithms for kinematic gradients have tradi-
tionally been investigated in robotics as the computation of the
Jacobian matrix [12]. In rigid link systems, the importance of
dynamic gradients is increasing because of their applications
in motion optimization, model predictive control and, rein-
forcement learning. Systematic algorithms for dynamic gradi-
ents were proposed in several studies [13], [14]. Ayusawa and
Yoshida [13] proposed a comprehensive motion transformation
matrix (CMTM), which is a Lie group of coordinate transforma-
tions of displacement, velocity, and acceleration. However, the
computation of dynamic gradients becomes complicated during
flexible deformation because the inertia matrix of a flexible
object is not constant during motion.

In this study, the kinematics of the PCS model are refor-
mulated using a spatial transformation matrix, and the CMTM
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Fig. 1. Schematic view of PCS model. A continuum rod is divided into a
finite number of segments. The configuration curve of the rod is expressed by
the spatial transformation matrix A(s) at s.

framework is extended to the PCS model by deriving a matrix
that maps the strain vector of the PCS model to the tangent vector
of the CMTM. Finally, the analytical gradients of the kinematics
and dynamics of the PCS model are derived. Using a dynamic
gradient, we developed a method to simulate the dynamics of a
PCS model through implicit integration. We demonstrated fast
dynamic simulations assuming silicone rubber and CFRP as the
materials. In particular, by assuming silicone rubber, we show
that it is possible to achieve real-time or faster simulations.

In Section II, the flexible deformation of the PCS model
is redefined using a spatial transformation matrix, and the
kinematics and dynamics of the PCS model are explained. In
Section III, the implicit integral method for forward dynamics
calculations using the Newmark-β method is presented. In Sec-
tion IV, we extend the CMTM to the PCS model, and proposed
a gradient calculation method for kinematics and dynamics. In
Section V, the forward dynamic simulations of the PCS model
are presented. The letter ends with a conclusive section and an
accompanying appendix.

II. PIECEWISE CONSTANT STRAIN (PCS) MODEL

A. Kinematics of PCS Model

The central axis coordinate s ∈ R along the axis passing
through the center of the rod or beam structure is defined,
as shown in Fig. 1. Continuous deformation along s can be
represented by a spatial transformation matrix A(s, t) defined
as

A(s, t) :=

[
R(s, t) O

[p(s, t)×]R(s, t) R(s, t)

]
(1)

where O denotes the zero matrix, and R(s, t) ∈ SO(3) and
p(s, t) ∈ R3 denote the orientation and position at s and time t,
respectively. Hereafter, the simple notation A(s) is used and t
is omitted when the meaning is clear. A(s) is defined as the as
configuration curve.

Spatial transformation matrix A is an adjoint representation
of the homogeneous transformation matrix. Set of A as a Lie
group that satisfies the following properties:

1) Let Ai and iAi+1 denote the transformation from the
world frame to a local frame {i}, and the transformation
from {i} to another frame {i+ 1}. Thus, the following
chain rule is satisfied:

Ai+1 = Ai
iAi+1 (2)

2) Tangent vector δα ∈ R6 can be defined as

[(δα)•] := A−1δA. (3)

where for any x1,x2 ∈ R3 and x = [xT
1 x

T
2 ]

T , [x•] is
defined as follows:

[x•] :=
[
[x1×] O

[x2×] [x1×]

]
. (4)

In the Cosserat Rod theory [15], [16], strain is defined as the
deformation of infinitesimal solids. Given a configuration curve
A(s), the strain vector ξ(s) ∈ R6 is defined as follows:

[ξ(s)•] := A−1(s)
∂A(s)

∂s
(5)

Note that the strain vector is defined w.r.t. the local frame.
In the PCS model, the configuration curve is divided into finite

segments, as illustrated in Fig. 1. We label index i as a segment
at s ∈ [si, si+1] and call it Segment i. Subsequently, the strain
in each segment was assumed to be constant for s:

ξi := ξ(s) (s ∈ [si, si+1]). (6)

Multiplying both sides of (5) byA(s) yields the following first-
order linear differential equation forA(s) with respect to s.

∂A(s)

∂s
= A(s) [ξi•] (s ∈ [si, si+1]). (7)

Given an initial value of A at s = si, we obtain the solution to
(7) as follows:

A(s) = Ai
iA(s) (s ∈ [si, si+1]) (8)

Ai := A(si),
iA(s) := exp {(s− si) [ξi•]} (9)

where iA(s) represents the transformation from the starting
point si of Segement i to the point s. The matrix exponential of
iA(s) has a closed form and can be calculated without numerical
method [5].

Substituting s = si+1 into (8) yields the chain rule (2), which
represents the transformation from parent segment i into child
segment i+ 1. By recursively applying (2) and (8), we can
compute the configuration curve for a given value of ξi (i =
1, . . . , n).

B. Differential Kinematics of PCS Model

Replacing s in (5) with t yields the definition of spatial
velocity η:

[η•] := A−1Ȧ (10)

where ∗̇ is the time derivative of physical quantity ∗. In a manner
similar to strain ξ, the spatial velocity is also defined w.r.t. the
local frame, often used in robotics algorithms [17].

Given the time differentiation of the strain ξ̇i and velocity
η(si), the velocity η(s) at s ∈ [si, si+1] can be computed as

η(s) = iA(s)−1ηi +
iC(s)ξ̇i, ηi := η(si) (11)

where iC(s) is defined as

iC(s) :=

∫ s

si

iA(x)−1dx. (12)

Note that iC(s) can be analytically calculated.
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Fig. 2. Schematic view of the relationship between the strain velocity ξ̇ and
the velocity η.

Fig. 2 shows the physical meaning of (11) and the comparison
with the case of a rigid-body link system. In the PCS model, ηi

is transformed into the velocity at s by iA−1(s). Subsequently,
ξ̇i is transformed into the velocity at s by iC(s). In the case of a
rigid-body link system consisting of rotational joints, as shown
on the left side of Fig. 2, the transformation from parent link i
into child link i+ 1 is represented as

ηi+1 = iA−1
i+1ηi +Biθ̇i (13)

where θi is the joint angle and Bi is a constant matrix defined
according to the joint type. Compared with the PCS model, a
rigid-body link system has a discrete deformation as the joint
angle, and its mapping to the spatial velocity is easily obtained
as a simple matrixBi in (13). In the PCS model, the continuous
deformation represented by strain is mapped by iC(s), which
is the spatial integration of the spatial transformation matrix.

By differentiating both sides of (11) and arranging the terms,
we obtain the acceleration vector η̇(s) at s ∈ [si, si+1] as fol-
lows:

η̇(s) = iA−1(s)η̇i +
iC(s)ξ̈i

+
([(

iA−1(s)ηi

)
•
]
iC(s) + iĊ(s)

)
ξ̇i (14)

To derive the above equation, we use the following relationship:

iȦ
−1
(s) = −

[(
iC(s)ξ̇

)
•
]
iA(s)−1. (15)

In a previous study [5] iĊ(s)ξ̇i was assumed to be zero and
ignored in (14). However, it does not always hold that iĊ(s)ξ̇i
usually has a non-zero value. iĊ(s)ξ̇i = 0 only when the vectors
ξ̇i and ξi are parallel. Therefore, we consider iĊ(s)ξ̇i in (14).

C. Dynamics of PCS Model

The equation of motion of the PCS model is obtained by
integrating that of an infinitesimal solid in Cosserat rod theory,
which can be expressed as

M(s)η̇(s)− [η(s)•]
T M(s)η(s) = F(s) (16)

where M(s) ∈ R6×6 and F(s) ∈ R6 denote the screw inertia
matrix and force vector [5], respectively.

In the PCS model, the equation of motion for Segment i at
s = si consists of the following two equations:

1) Equation on the internal force between segments.∫ si+1

si

iA(s)−TF(s)ds = f i − iA−T
i+1f i+1 (17)

where f i is the force applied to Segment i from the parent
i− 1. Segment i also receives −f i+1 from child i+ 1.

2) Equations on the strain and stress.∫ si+1

si

iC(s)TF(s)ds = τ i − iCT
i+1f i+1 (18)

where τ i denotes the general force of the PCS model for
Segment i.

Equations (17) and (18) are obtained from the spatial integra-
tion of (16) along s by multiplying it by iA(s)−T and iC(s)T

as the dual mapping of the velocity, respectively.
Furthermore, (17) and (18) are combined into[
Mη Mηξ

MT
ηξ M ξ

] [
η̇i

ξ̈i

]
+

[
bη
bξ

]
=

[
f i

τ i

]
−
[
iA−T

i+1
iCT

i+1

]
f i+1. (19)

See Appendix A for the definition ofM ∗ and b∗.
Equation (19) can be rewritten for all segments as Lan-

grange’s equation. The general coordinates q and general forces
τ are defined by combining all the strain vectors ξi and the
corresponding force vectors τ i as follows:

q :=
[
ξT1 · · · ξTn

]T
, τ :=
[
τT
1 · · · τT

n

]T
. (20)

We can utilize the recursive formula given by (19) to compute
the force f i acting on each segment from the child-segment side
and subsequently derive Lagrange’s equation of motion for all
segments

M(q)q̈ + b(q, q̇) = τ (21)

where M(q) and b(q, q̇) denote the inertia matrix and bias
terms, respectively. τ includes the actuated force τ act from such
as cable actuators and the internal force τ int from the flexible
material’s viscoelasticity as follows [5]:

τ = τ act + τ int (22)

τ int is expressed as

τ int =K(q0 − q)−Dq̇ (23)

whereK andD are the stiffness and viscosity matrices, respec-
tively. In this study, we focus on flexible objects with passive
viscoelasticity, namely, we assume τ act = 0.

III. FORWARD DYNAMICS CALCULATION USING THE IMPLICIT

METHOD

In previous studies [5], [7], explicit integral methods have
been used for numerical time integration in a dynamic PCS
model simulation. Explicit methods using forward differences
tend to be unstable in numerical calculations. However, im-
plicit methods using backward differences are less divergent
but require solving algebraic equations consisting of backward
difference equations and equations of motion. In this section, we
explain the Newmark-β method, which is an implicit method,
and demonstrate that the gradients of the general force are
required.
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The Newmark-β method uses the rate of change in accelera-
tion Δq̈ and the following backward difference equation:⎧⎪⎨
⎪⎩
q̈k+1 = q̈k +Δq̈k+1
q̇k+1 = q̇k +Δtq̈k + γΔtΔq̈k+1

qk+1 = qk +Δtq̇k +
1

2
Δt2q̈k +Δt2βΔq̈k+1

(24)

where Δt is the time step width of the simulation, and β and γ
are the parameters. In this study, we use the average acceleration
method (β = 1/4 and γ = 1/2), which leads to unconditional
stability.

The difference between the left and right sides of (22) is
defined as follows:

h(q, q̇, q̈) := τ − (τ act + τ int)

=M(q)q̈ + b(q, q̇)− (K(q0 − q)−Dq̇) (25)

The Newmark-β method determines Δq̈k+1 that satisfies

h(Δq̈k+1) = 0, (26)

which we obtain by substituting (24) into (25) as follows: The
nonlinear (26) can be solved using the Newton-Raphson method
with the following iterations:

Δq̈�+1
k = Δq̈�k − J−1h(Δq̈�k) (27)

where � denotes the iteration steps for the Newton-Raphson
method and k is the time step.

The Jacobian matrix J can be calculated as:

J =
∂h

∂x

∣∣∣∣
x=Δq̈l

=
∂h

∂q̈
+Δtγ

∂h

∂q̇
+Δt2β

∂h

∂q
(28)

In the above equation, ∂h
∂q̈ , ∂h

∂q̇ , and ∂h
∂q are calculated as

∂h

∂q̈
=

∂τ

∂q̈
,

∂h

∂q̇
=

∂τ

∂q̇
+D,

∂h

∂q
=

∂τ

∂q
+K. (29)

D, andK are easily obtained. While ∂τ
∂q̈ is equal toM according

to (21), ∂τ
∂q and ∂τ

∂q̇ have not been investigated for the PCS model.
In the next section, we propose a comprehensive calculation
framework for dynamic gradients.

IV. COMPREHENSIVE MOTION TRANSFORMATION MATRIX OF

PCS MODEL

In this section, the CMTM [13] is reviewed, and its framework
is extended to the PCS model. Based on this extension, we
propose gradient computation techniques for the kinematics and
dynamics of PCS models.

A. Comprehensive Motion Transformation Matrix [13]

The CMTM is defined as

X :=

⎡
⎣ A O O

A[η•] A O
1
2A([η̇•] + [η•]2) A[η•] A

⎤
⎦ . (30)

This 18-dimensional square matrix includes the position/attitude
A, velocity η, and acceleration η̇. The set of CMTM is also a
Lie group and has properties similar to the spatial transformation
matrixA given by (2) and (3).

Fig. 3. Schematics of calculation path from joint variable or strain variable
δχi to CMTM tangent vector δiνi+1 on the rigid-body link system and the
PCS model.

1) Let Xi and iXi+1 denote the transformation from the
world frame to a local frame {i} and from {i} to another
frame {i+ 1}. Thus, the following chain rule is satisfied:

Xi+1 =Xi
iXi+1. (31)

2) The tangent vector δν is defined as

[(δν)•] :=X−1δX (32)

where δν ∈ R18 and [(δν)•] are defined as follows:

δν := [δαT δβT δγT ]T , (33){
δβ := δη + [(δα)•]η
δγ := 1

2 (δη̇ + [(δα)•]η̇ + [(δβ)•]η)
, (34)

[(δν)•] :=

[
[(δα)•] O O
[(δβ)•] [(δα)•] O
[(δγ)•] [(δβ)•] [(δα)•]

]
. (35)

The sum of the tangent vectors δν can be expressed as

δνi+1 = i+1Xiδνi + δiνi+1. (36)

The CMTM combines multiple and complicated transforma-
tions of position/orientation, velocity, and acceleration into a
single (36), providing a simple expression.

This is illustrated in Fig. 3. The tangent vector δν can be
mapped to another space δx, which is defined as

δx :=
[
δαT δηT δη̇T

]T
. (37)

Compared with δν, δx has an intuitive physical meaning, re-
placing δβ and δγ with the spatial velocity and acceleration,
respectively. The transformation of δx into δν is expressed as:

δν = Sδx (38)

S :=

⎡
⎢⎣

E O O
− [η•] E O

−1

2

(
[η̇•]− [η•]

2
)

−1

2
[η•]

1

2
E

⎤
⎥⎦ (39)

where E is the identity matrix.
In the case of a rigid-body link system, δx stems from a joint

variation, represented by the following vector:

δχi :=
[
δθTi δψT

i δψ̇
T

i

]T
. (40)

where δθi, δψi, and δψ̇i are the displacement, velocity, and
acceleration of Joint i, respectively. The transformation of δχ



5994 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 6, JUNE 2024

into δx is expressed as follows:

δixi+1 = iBi+1δχi,
iBi+1 :=

[
Bi O O
O Bi O
O O Bi

]
(41)

where δixi+1 is the displacement of Link i+ 1 with respect
to the parent link i, and iBi+1 is a constant matrix determined
by the type of joint. Based on the CMTM theory, Ayusawa and
Yoshida [13] proposed a unified calculation method for gradient
vectors in both kinematics and dynamics of a rigid-body link
system.

B. Strain Variation Space PCS Model and CMTM

To extend the CMTM framework to the PCS model, we pro-
pose a new transformation matrix C instead of B as illustrated in
Fig. 3. For the PCS model, we redefine δχ as the following vector
combining the strain δξ, its velocity δξ̇, and its acceleration δξ̈:

δχi :=
[
δξTi δξ̇

T

i δξ̈
T

i

]T
. (42)

One of the main contributions of this study is the derivation of
the following transformation formula for the PCS model:

δixi+1 = iCi+1δχi, (43)

iCi+1 :=⎡
⎢⎣

iCi+1 O O
∂iCi+1

∂ξi
ξ̇i

iCi+1 O
∂iĊi+1

∂ξi
ξ̇i +

∂iCi+1

∂ξi
ξ̈i

∂iĊi+1

∂ξ̇i

ξ̇i +
iĊi+1

iCi+1

⎤
⎥⎦ (44)

where C depends on ξ, ξ̇, and ξ̈. WhereasB in a rigid-link system
is a constant block diagonal matrix, C is a lower-triangular
matrix. The remainder of this subsection describes the derivation
of matrix C.

From (8), (11), and (14), the relationship between parent and
child segments can be summarized as follows:

iAi+1 = exp ((si+1 − si) [ξi•]) , (45)

iηi+1 = iCi+1ξ̇i, (46)

iη̇i+1 = iĊi+1ξ̇i +
iCi+1ξ̈i. (47)

Then, δiαi+1, δiηi+1, and δiη̇i+1, which are the elements of
δixi+1, can be computed as

δiαi+1 = iCi+1δξi, (48)

δiηi+1 =

(
∂iCi+1

∂ξi
ξ̇i

)
δξi +

iCi+1δξ̇i, (49)

δiη̇i+1 =

(
∂iĊi+1

∂ξi
ξ̇i +

∂iCi+1

∂ξi
ξ̈i

)
δξi

+

(
∂iĊi+1

∂ξ̇i
ξ̇i +

iĊi+1

)
δξ̇i +

iCi+1δξ̈i. (50)

Given that δA =
∑

k
∂A
∂ξk

δξk where ξ = [ξ1 · · · ξ6]
T , δA can be

calculated using the following equation:

δA = A [(C(s)δξ) •] . (51)

Equation (48) can be derived by substituting (51) into the def-
inition of α in (3). Furthermore, to derive (49) and (50), using
the variants of the relationships of (46) and (47), the variants of
iCi+1 for an arbitrary vector x ∈ R6 are computed as follows:

δCx =
∑
k

(
∂C

∂ξk
x

)
δξk. (52)

We can compute the variants of iĊi+1 similar to (52).

C. Kinematics Gradient Computation of PCS Model

Using the CMTM framework, we computed the gradient of
the kinematic quantities of the PCS model. Using the (36) and
(38), δxj can be calculated as follows:

From (36), the tangent vector of the CMTM δνj at the starting
point of Segment j can be calculated as the linear sum of the
relative vector δiνi+1 of each segment as follows:

δνj =
∑
i<j

iX−1
j δiνi+1. (53)

By converting δν into δx using (38), we can express (53) as

δxj = S
−1
j

∑
i<j

iX−1
j

iSi+1δ
ixi+1. (54)

Assuming χ = [χT
1 · · ·χT

n ]
T , from (54) and (43), the Jacobian

matrix J j , mapping δχ to δxj , can be computed as

δxj = J jδχ =
∑
i<j

J (j,i)δχi, (55)

J (j,i) :=

{
S−1

j
jXi+1

iSi+1
iCi+1 (i < j)

O (i ≥ j)
. (56)

The block matrix J (j,i) is related to the Segment i within J j .
The Jacobian matrix can be defined with respect to vector δx

at the starting point of each segment. The Jacobian matrix J(s)
at point s (sj < s < sj+1), which maps the variation δχ onto
δx(s), can be calculated as follows:

δx(s) = J(s)δχ =
∑
i<=j

J i(s)δχi, (57)

J i(s) :=

⎧⎨
⎩
S(s)−1iX(s)−1iSi+1

iCi+1 (i < j)
iC(s) (i = j)
O (i > j)

. (58)

iC(s) denotes the matrix that holds δix(s) = iC(s)δχi. The
position, attitude, velocity, and acceleration variants at any point
s can be calculated using the Jacobian matrix.

D. Dynamic Gradient Computation of PCS Model

From the Newton-Euler (17) and (18), we propose a method
for calculatingQj and F j that satisfies the following equations
with respect to force f and the general force τ :

δf j = Qjδχ, δτ j = F jδχ. (59)

By considering the variations in (17) and (18), δf i and δτ i can
then be calculated. For transformation matrix Y (= A−1,C),
δf i and δτ i can be expressed as follows:

δf i = δhi(A
−1), δτ i = δhi(C) (60)
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Fig. 4. Schematics of matrix elements of F which is the Jacobian matrix of
general force τ on the PCS model, relationship F , and partial differentiation of
general force τ .

δhi(Y ) :=

∫ si+1

si

δiY (s)TF(s) + iY (s)TδF(s)ds

+ δiY T
i+1f i+1 +

iY T
i+1δf i+1

=N i(Y )δχ+ iY T
i+1δf i+1. (61)

δF(s) is calculated as follows:

δF(s) =H(s)δx(s),

H(s) := [ O L(s) M(s) ] ∈ R6×18,

L(s) := −
[(M(s)η(s)

)
•̂
]
−
[
η(s)•
]T

M(s) ∈ R6×6 (62)

where [•̂] satisfies [η1•]Tη2 = [η2•̂]η1. From (57) and (62), we
defineN i as follows usingH and J :

N i(Y ) :=

∫ si+1

si

iY (s)TH(s)J(s)ds

+ T

(∫ si+1

si

∂iY (s)T

∂ξi
F(s)ds+

∂iY T
i+1

∂ξi
f i+1

)
(63)

where T = [E O O] ∈ R6×18.
Consequently, from (61) we obtain Qj and F j have the

following relationship:

Qj =N j(A
−1) + jA−T

j+1Qj+1, (64)

F j =N j(C) + jCT
j+1Qj+1. (65)

From the above, from (64) and (65),Qj andF j can be calculated
usingQn+1 = O when we assume that the number of segments
is n.

The mapping matrix from δχ to δτ is defined as F =
[FT

1 · · ·FT
n ]

T. ∂τ
∂q , ∂τ

∂q̇ , and ∂τ
∂q̈ can be obtained from the el-

ement of F as shown in Fig. 4, and implicit integration can be
performed by using them for (28).

V. VERIFICATION USING FORWARD DYNAMICS SIMULATIONS

A. Setting up Numerical Experiments

We performed forward dynamic simulations using implicit
integration with the proposed dynamic gradient calculation
method for the PCS model and verified its effectiveness. Fur-
thermore, simulations using an explicit integral (Euler integral)
were performed to compare the computation times.

TABLE I
MATERIAL PARAMETERS SET IN SIMULATIONS

The following simulations used a computer with an AMD
Ryzen 9 5950× 16 core 32 threads CPU and 128 GB of memory.
Silicone rubber and CFRP were assumed as the materials, and
the parameter sets are listed in Table I.

B. Verification Assuming Silicone Rubber

The flexible deformation of a cantilever beam owing to gravity
was simulated, as shown in Fig. 5. A silicone rubber material is
assumed, with a constant cross-sectional area, a total length of
0.9 m, and three segments.

Simulations were performed for the following four conditions
to compare and verify the explicit and implicit integrals:

E1 : explicit integration, time-step width is as small as possi-
ble Δt = 4.0 × 10−6 s,

E2 : explicit integration, time-step width is as large as possible
Δt = 4.0 × 10−4 s to the extent that the computation does
not diverge,

I1 : implicit integration, time-step width is as large as possible
Δt = 4.0 × 10−3 s, and the threshold for the Newton-
Raphson method is ε = 0.001,

I2 : implicit integration, the same time-step width as condi-
tion I1, and ε = 0.1.

Compared to conditions E2, I1 and I2 can increase the time-
step width by 10, indicating that the numerical stability of the
implicit integral is higher than that of the explicit integration.

The snapshots of the simulation results for the implicit integral
are presented in Fig. 5. It is possible to simulate deformations
and bending in the direction of gravity that is applied vertically
downwards. The time variation of the strain in the first segment
on the root side with the largest change during the simulation
is shown in Fig. 6. The upper part of Fig. 6 shows a graph
of the linear strain, and the lower part shows a graph of the
angular strain. The bending deformation is particularly large
around the x-axis in the short-side direction, where bending is
more likely to occur. The results for all methods were simulated
without significant differences. In the explicit integration, when
Δt = 4.0 × 10−3 s, which is same as in I1 and I2, the simulation
diverges as it begins.

A comparison of the computation time required for a 10 s
simulation is shown in Fig. 7. The explicit integral involves
multi-core programming with parallel recursive inverse dynamic
calculations in the unit vector method performed. The com-
putation time for condition E1 was about 790 s, whereas for
condition E2 the computation time was about 7.9 s. Furthermore,
the computation time was about 5.6 s for condition I1 and about
2.6 s for condition I2.

We implemented an adaptive method that modulates the
time-step width depending on whether the iterative computation
converges. In the explicit integration, the equations of motion
are linear with respect to the generalized acceleration, which
does not require any iteration. Therefore, we implemented an
adaptive method only in the implicit integration and performed
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Fig. 5. Snapshots of forward dynamics simulation of the silicone rod with the PCS model which has three segments.

Fig. 6. The time plot of linear (top) and angular (bottom) strain of the root 1st
segment, comparing explicit method (E1, E2) and implicit method (I1, I2).

Fig. 7. Comparing the computation time between explicit method (E1, E2),
implicit method (I1, I2) and adaptive time step width (I-A).

simulations by adaptively varying the time-step width in the
range Δt ∈ [0.004 s, 0.064 s] (Condition: I-A). As shown in
Fig. 7, the computation time was about 1.4 s.

Note that a numerical differentiation is sometimes used for
calculating a gradient in a simulation of an FEM or rigid-body
link system although its accuracy is usually worse than that of
analytical differentiation. We also tested a simulation of the PCS
model by the implicit integration using numerical differentia-
tion; however, the simulation did not converge, which implies
that analytical gradient calculations are important.

C. Verification Assuming CFRP

The PCS model of the leaf-spring-shaped CFRP prosthesis
(655 g) used in [8], [9] was validated for the simulation by im-
plicit integration. As shown in Fig. 10, the number of segments
is set to six, assuming a model with the prosthesis tip fixed to
the ground. The initial strain was applied +0.01 for the linear
strain component and +1.0 for the angular strain component,
and the simulations were performed until convergence to the
unloaded shape was achieved. The model assumes a material
with light mass and high stiffness. In the explicit integration, the

Fig. 8. The time plot of linear (top) and angler (bottom) strain of the root 1st
segment, comparing the different time-step width (condition C1, C2, C3).

Fig. 9. Comparing the RMS of the general acceleration in the 1st step of
the CFRP prosthesis leg’s simulation between explicit method (same time-step
width as E1) and implicit method (C1, C2, C3).

general acceleration in the first step of the simulation is large
as shown in Fig. 9 and the simulation diverges as it begins with
Δt = 4.0 × 10−6 s, similar to E1.

Simulations were performed for the following three condi-
tions to compare and verify the differences in time-step width:

C1 : implicit integration, time-step width is as large as
possible, Δt = 1.0 × 10−3 s, and the threshold for the
Newton-Raphson method is ε = 0.001.

C2 : implicit integration, time-step width is Δt = 1.0 ×
10−4 s, and the threshold is same as C1.

C3 : implicit integration, time-step width is Δt = 1.0 ×
10−5 s, and the threshold is same as C1.

The snapshot of the forward dynamics simulation results
under condition C1 is shown in Fig. 10. Under condition C1,
the computation time for the 10 s simulation was 60 s. Under
conditions C1-3, a graph of the change in the strain of the first
segment fixed to the ground during the simulation is shown in
Fig. 8. The upper part of the Fig. 8 is a graph of the linear strain,
and the lower part is a graph of the angular strain. In particular,
it deformed and oscillated significantly around the y-axis in the
direction of the short side of the bendable cross-section. The



ISHIGAKI et al.: COMPREHENSIVE GRADIENT COMPUTATION FRAMEWORK OF PCS MODEL FOR SOFT ROBOT SIMULATION 5997

Fig. 10. Snapshot of the forward dynamics simulation of the prosthesis leg
made from CFRP, which is a six-segment PCS model.

results remained nearly the same regardless of the difference in
the time-step width for conditions C1-3.

VI. CONCLUSION

This study extends the CMTM framework to the PCS model
and proposes a method for calculating its dynamic gradients.
Furthermore, a gradient calculation method was used to simulate
the PCS model using implicit integration.

1) We newly derived the transformation matrix with strain,
which is the continuous deformation of the PCS model,
and applied the CMTM framework to the PCS model by
replacing the transformation matrix to comprehensively
handle the strain velocities and accelerations.

2) A method is proposed to compute the kinematics and dy-
namics gradient of the PCS model. An implicit integration
method with the Newmark-β method was used to compute
the forward dynamics of the PCS model.

3) Numerical simulations were performed to compare the
implicit integral with the explicit integral. For a flexible
object such as silicone rubber, the implicit integral can
compute 10 s physical phenomenon in about 2.6 s, which
is a fast dynamics simulation. In the case of highly stiff
materials such as CFRP, explicit integration resulted in di-
vergent calculations, whereas implicit integration allowed
simulations to be performed.

The fast dynamic simulation attained in this study will be
a fundamental technology for soft robot development. The dy-
namic gradient calculation method is expected to be applied not
only to implicit integration but also to optimization problems
such as: model predictive control and motion planning. Con-
sidering the contact force from the environment, in future work,
we will develop a method to calculate the forward dynamics and
contact force simultaneously.

APPENDIX A
NEWTON-EULER EQUATIONS OF MOTION ON PCS MODEL

For the transformation matrices Y ,Z(= A−1,C), the bias
term b∗ and the inertia matrixM ∗ of (19) are defined as

bη = b(A−1), bξ = b(C) (66)

Mη :=M(A−1,A−1),Mηξ :=M(A−1,C),

Mξ :=M(C,C) (67)

b(Y ) :=

(∫ si+1

si

iY (s)TM(s)
(
iȦ(s)−1 + iĊ(s)

)
ds

)
ξ̇i

−
(∫ si+1

si

iY (s)T [η(s)•]
T M(s)η(s))ds

)
(68)

M(Y ,Z) :=

∫ si+1

si

iY (s)TM(s)iZ(s)ds (69)
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