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Abstract—Feature-based geo-localization relies on associating
features extracted from aerial imagery with those detected by the
vehicle’s sensors. This requires that the type of landmarks must be
observable from both sources. This lack of variety of feature types
generates poor representations that lead to outliers and deviations
produced by ambiguities and lack of detections, respectively. To
mitigate these drawbacks, in this letter, we present a dynamically
weighted factor graph model for the vehicle’s trajectory estimation.
The weight adjustment in this implementation depends on infor-
mation quantification in the detections performed using a LiDAR
sensor. Also, a prior (GNSS-based) error estimation is included
in the model. Then, when the representation becomes ambiguous
or sparse, the weights are dynamically adjusted to rely on the
corrected prior trajectory, mitigating outliers and deviations in
this way. We compare our method against state-of-the-art geo-
localization ones in a challenging and ambiguous environment,
where we also cause detection losses. We demonstrate mitigation of
the mentioned drawbacks where the other methods fail.

Index Terms—Geo-localization, localization, cross-view, factor-
graph, autonomous vehicle navigation.

I. INTRODUCTION

UTONOMOUS navigation is a significant research topic

because it can automate complex tasks using mobile
robots, Unmanned Ground Vehicles (UGV), or self-driving
cars. Navigating through an environment autonomously relies
strongly on the localization module. The more extended ap-
proach for this purpose is Simultaneous Localization And Map-
ping (SLAM) [1], where the vehicle navigates building a model
of the environment (the map) while simultaneously using it for
self-localization. Alternatively, to simplify the localization, the
mapping process could be avoided using an environment repre-
sentation previously created by dedicated mapping vehicles [2].
However, creating a map is usually expensive, especially for
oversized areas. Moreover, it requires several loop closures for
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consistency, but despite this, a mapping process often accumu-
lates minor errors that lead to global inconsistencies.

Over the last few years, the so-called geo-localization or
geo-referencing has increased in importance in the literature. For
the localization, this approach uses an environment representa-
tion obtained from aerial imagery. This avoids the expensive
mapping process and the need for loop closures and provides
implicit global consistency. We can distinguish two different
strategies to perform geo-localization: end-to-end learned [3]
and handcrafted-feature-based [4].

The end-to-end learned strategy uses the raw aerial image as
an environmental representation while perceiving it with local
sensors such as LiDAR [5], RADAR [3], or cameras [6]. Then,
it uses end-to-end learned models to extract dense features from
both data sources to infer the vehicle’s pose in the geo-referenced
aerial image. In [7], [8], [9], the authors use a wide aerial image
as a representation and infer the pose by crossing the sensor’s
information directly extracting the dense features from the whole
image. In contrast, in [5], [10], [11], the authors presented a
pipeline that gets a crop around the prior pose to perform the
end-to-end strategy.

The handcrafted-feature-based geo-localization uses aerial
imagery to extract handcrafted sparse features, while the same
type of features should be detected from the sensors’ data.
Then, after data association, the vehicle’s pose is estimated.
This strategy implies a requirement: the type of feature used
must be observable from both aerial and onboard vehicle sensors.
In[12], [13], [14], [15], [16], building walls are used as features,
while in [4], [17], [18], the authors choose lane marking as
landmarks that satisfy the observability requirement. In other
works [19], [20], [21], the authors match the vehicle’s trajectory
with the lanes map, which is commonly named in the literature
as map matching [22]. However, we prefer to categorize it as a
handcrafted where the feature is the trajectory. The handcrafted-
feature-based strategy allows the measure of information in the
detections before the pose inference. For example, in [4], the au-
thors estimate prior confidence in the data and use it to self-tune
the data association method depending on that confidence. For
this work, we introduce the ground boundaries as a new feature
type observable from both sources.

The mentioned observability requirement carries fewer fea-
tures, leading to a sparse representation. This issue and the
geo-referenced nature of the problem generate some drawbacks
in the handcrafted-feature-based strategy: (i) A sparse map
implies that some areas are ambiguous for the data association
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Proposed factor graph: Each factor represents the difference between the observations and the model predictions. Section II explains the formalization

of the (weighted) factors to obtain the residuals. The empty circles represent the variables that should be estimated by factor residual minimization. Finally, we
denote by squares the elements that produce exteroceptive observations, i.e., GPS satellites and landmarks read from the map.

in the front direction of navigation, which can produce a con-
siderable number of outliers. (ii) The poor variety of features
introduces the risk of lack of detection in some navigation
areas. (iii) Geo-localization needs a geo-referenced prior, such
as GNSS (Global Navigation Satellite Systems). Those systems
are usually precise but inaccurate, introducing offsets that vary
smoothly through time and space, especially when there is a
multipath problem [23]. In a previous work [4], we addressed the
drawback (i). But with this approach, if we find a situation of type
(ii), the localization converges to a prior trajectory that usually
has an undesired offset, as we mentioned in (iii). Notably, the
cited handcrafted-feature-based geo-localization works usually
don’t pay special attention to avoid these drawbacks, so we
consider it interesting to focus our research here.

This letter presents a handcrafted-feature-based geo-
localization that mitigates the exposed drawbacks through a dy-
namically weighted factor graph implementation in the vehicle’s
trajectory estimation. The weight adjustment in this model de-
pends on information quantification in the detections performed
using a LiDAR sensor. Furthermore, a prior (GNSS-based) error
estimation is included in the model to avoid the drawback (iii).
In this way, if, for example, we drive through an area ambiguous
for data association, the weight is adjusted to trust more on the
corrected prior trajectory, mitigating the drawback (i). In the
case of the lack of detections (ii), again, the system will rely
more on corrected prior.

In summary, our contributions are the following:

e A weighted factor graph that dynamically adjusts its
weights depending on the information quantified from the
detections. That produces a mitigation of the drawbacks
(1), (i1), and (iii) previously mentioned.

® An information quantification strategy developed upon a
previous one [4], [24] that quantifies the information based
on the associated map points instead of the raw detections.
This quantification is the primary measure to adjust factor
weights.

® A prior (GNSS-based) error estimation included in the
model. With this corrected prior, we can hold the local-
ization for low informative detections.

II. WEIGHTED FACTOR-GRAPH

In this section, we formalize the proposed factor-graph model
(Fig. 1), where each factor is dynamically weighted depending

on the information in the data (Section III-A). In this way,
the more confident residuals will contribute mainly to the loss
function in the optimization process, giving less importance to
those who can generate unwanted minimums, for example, when
outliers occur or when there is a lack of landmarks.

The factors explained in Sections II-A, II-B, and II-C are
the most commonly implemented and the ones that gener-
ate the residuals to estimate the trajectory state variable X =
(x1,...,Xn), where each pose is x; = (R, t;), t; € R? is the
translation, and R; € SO(2) is the rotation matrix.

In contrast, in this work, we propose an additional factor
explained in Section II-D that generates the residuals to estimate
the error e = (e, e,/) in the prior signal. The estimation of this
variable allows corrections to the GPS observations, thus con-
tributing to maintaining localization in outlier and lack regimes
and avoiding undesired GPS errors in the loss function.

It is worth noting that this section explains the high-level
formalization of the model (the back-end). In contrast, in the next
section (Section III-A), we present the low-level (the front-end)
with more details, e.g., data association implementation, type of
landmark, detections, etc.

A. Odometry Factor

We assume we have an odometry system estimated from the
LiDAR, cameras, IMU, and/or encoders. Then, given the relative
transformations from consecutive frames ¢ and ¢/ = ¢ — 1 from
the odometry trajectory X = (X1, ..., %), and the poses in the
estimated X, we can define the odometry factors as follows:

R 2
fP=w! HR;F (ti' - ti) - ti,i'”; +

K2

R/R; — R

As we can see in (1), each norm is weighed by wy. The value of
that weight is dynamically obtained in each iteration depending
on the quantification of the data information explained in Sec-
tion III. When the data is considered poorly informative, this
weight will acquire strength. The subscript F' in the second term
indicates the Frobenius norm.

B. Prior Factor

For geo-localization, it is essential to have a geo-referenced
prior localization based on GNSS, which, in our case, is
GPS. Such systems usually provide position information t? =
(xg , y? ) as j-th observation. Given the time stamp availability,
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it is easy to obtain the association between GPS j-th observation
and i-th odometry estimation. Then, we define the prior residuals
as:

17 = e = (¢ -9, @
where € is the estimated error that corrects the GPS observation,
and the weight w;’ is calculated similarly to wy (Section III). Note
that the bar in € indicates that, in this case, e is considered an
observation, not a variable. With odometry and prior residuals,
obtaining a so-called prior trajectory is possible. This trajectory
provides satisfactory results in differential terms. But, due to the
inaccuracy problems of GPS systems, the path usually has an
offset that varies smoothly over time and space. We aim to correct
this with the e estimation. However, to estimate e, it is necessary
to use a geo-referenced map to associate its information with
local detections, obtaining a trusted localization, as explained in
the following subsection. After fine e estimation, it is reasonable
that when the data is considered poorly informative, w;’ and wy
will acquire strength, and the final estimation will maintain their
localization trusting on that corrected prior trajectory.

C. Data Associations Factor

As mentioned above, we have a geo-referenced world’s rep-
resentation, defined as a set of landmark £. Then, for each
i-th frame in X, we observe the landmarks of the environment
using the vehicle’s sensors. From now on, we name these obser-
vations as detections D;. Using £ and D;, we must perform
a data association process, where its result is a set of pairs
((diy, Liy)s -+ -y (dig, Liy ). Given these associations, we can de-
fine the residuals between landmarks and detections as follows:

K
£= 0t ST Rd, + 65) — 1,12 3)
k=1

As shown in (3), the residual depends on the pose that transforms
the detection from the local sensor to the map coordinates frame.
In this case, in contrast to the odometry and prior residuals, the
weight w;' is strongest when the data is more informative.

D. Prior Error Factor

In Section II-B, we mentioned that the prior trajectory presents
variable offset produced by GPS inaccuracies. Then, when we
measure less informative data, and consequently, the prior path
strengthens the optimization, the final localization could carry
the mentioned inaccuracies. To avoid this effect, we estimate the
prior error e to correct the GPS observation in (2). The factor
for the error estimation is the following:

J'=j
e __ e
fi= 22

J=j-w

g e

GPS error varies smoothly over time, so we estimate that variable
using factors from limited past poses, e.g., from 7/ = j — w to
j' = j,being i’ the i-th position associated with j'. The notation
of t; means that is the position of the state estimated, but in this
case, it is used as observation instead of as a variable.
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E. Optimization

The sum of all exposed factors is the cost function. Thus, the
optimal state X*, e* is such that it minimizes the said cost:

N M
X*,e*:ar%(min Z(ff—kff)-kZ(ff-Fff) , ()
;€ i j

where M is the number of GPS observations, and N is the
number of odometry observations (that coincide with estima-
tions). The weights explained in this section directly affect the
cost function form, allowing us to avoid the problems exposed
in Section I: (i) when the data information is insufficient with
ambiguities risk, the system can prevent outliers by holding the
trajectory taking strength on the corrected prior trajectory. (ii)
the same occurs when we have a lack of detections. (iii) we
avoid little deviations in the final estimation when correcting
GPS inaccuracies.

The dynamic adjustment of these weights depends directly on
the information in the data. The following section describes the
information calculation and the consequent weight adjustment.

III. DYNAMIC WEIGHT ADJUSTMENT

While in the previous section, we focused our explanation
on the factor graph model, this section aims to expose the data
information quantification and the adjustment of the weights for
that model. In Section III-A, we describe how to obtain the data
information quantification. For that, we need to talk previously
about landmarks, detection obtention, and the data association
process. In section III-B, we specify how to adjust the weights
as a function of the data information.

A. Data Information Quantification

In geo-localization, the type of landmark chosen for localiza-
tion must be observable from aerial imagery and local sensors.
The literature usually includes lane markings, vertical structures
such as building walls, and even the vehicle’s trajectory. In this
work, we introduce another feature that satisfies the mentioned
requirement: ground boundaries. This type of landmark is suit-
able for roads, city streets, and pedestrian areas such as university
campuses.

In the following points, we describe how to obtain those detec-
tions D; from a LiDAR sensor, get the map as a set of landmarks
L, and quantify the information after the data association.

1) Detections: A LiDAR sensor usually provides a point
cloud with 3D environment information and the reflectivity
for each point. With this information, we mount a front-view
representation in RGB image format. In this image, the GB
channels contain reflectivity information, while in the R channel,
we include the range image. In Fig. 2(a), we show an example
of a LiDAR scan as a front-view representation.

Then, we use the Convolutional Neural Network (CNN)
Unet++ [25] with backbone resnet18 [26] for ground boundary
detections. To train the model, we generated our own dataset
of 825 images and labeled them by hand, obtaining the ground
truth masks (Fig. 2(b)). We divided our dataset into 80% for
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a) Front-view from LiDAR

b) Front-view mask for trainin

¢) Top-view from aerial image
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Fig.2. Example of D; and £;: (a) Front-view from LiDAR information where
the red line marks the ground boundaries (D;). (b) Front-view mask extracted
from (a). (c) Top-view from the aerial image where the red line represents the
exact boundaries shown in (a) and (b) (£;).

training and 20% for testing with non-overlapping. Regard-
ing generalization, the mentioned dataset was recorded in the
Scientific Park of the University of Alicante, and we observed
satisfactory results on the university campus, which is a different
environment with more vegetation and a different pavement. In
contrast, we needed to label new images in our experiments
in KITTI, where the environment is totally different. After
training, during the detection, each u-th pixel with value 1 has its
correspondence as a 3D point projected in 2D, being a detection
d;, € D;, where d;, = (zf |y ).

In a previous work [4], we used the polylines that describe
detections to quantify the information using the angle between
adjacent segments in the polyline. In this case, we observe that
the boundaries in detections D; are not arranged sequentially. We
could process the data to obtain the polylines, which implies an
undesired complex process in computational time terms. Thus,
we opted to quantify the data using the structuration of the
landmarks £ associated with detections instead of directly using
detections.

2) Landmarks: The landmarks £ that form the map could
also be detected with neural networks. Still, we use a handcrafted
map generated by applications such as OpenStreetMaps [27]
to avoid post-processing. This implies that the map comprises
a polyline set arranged in a friendly way to quantify the data
using differential angles between adjacent segments in the poly-
lines [24]. In Fig. 2(c), we show labeled ground boundaries
in an aerial image. These boundaries are the same labeled in
front-view representations (Fig. 2(a), (b)).

Before ¢-th data association, we have detections set D;; then
we must crop £ around x;, obtaining £,. The v-th landmark 1, €
Liisdefinedasl;, = (z! ,y! ;) where o, is the differential
angle between adjacent polyline segments.

The generalization of the complete localization method depends on that
detection module but is independent of the contribution of this work. Roughly
speaking, the detection module is like a black box in our approach. If we require
more generalization, we would need to research a more sophisticated black box,
which is out of the scope of this letter.

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 6, JUNE 2024

Quantifying the information using £; is unsuitable because
it could contain landmarks not observed by the sensors, adding
undesired information to quantification. In the next point, we
describe quantifying the information after the data association
process.

3) Raw Quantification From Data Association: Given D;
and L;, we perform the data association process. In this work,
we use an ICP ({terative Closest Point) due to its efficient imple-
mentation in PCL (Point Cloud Library). First, we co-register
D; with L;, obtaining a new transformed set D;. Finally, we
find the closest point in £; below a certain distance threshold
for each d € D;. This process generates a set of associated
pairs ((d;,1;,), .-, (dig, i) used in (3). Then, to quantify
the information of the data rawly, we sum the values of the delta
angle in the associated landmarks as:

K
Si= ) Q. (6)
k=1

This raw quantification is used to adjust the weights, as explained
in the next section.

It is worth noting that this quantification based on polyline
map representation is suitable for the rest of the feature types
used in the literature, i.e., lane markings, building walls, or
trajectories.

B. Weights as a Function of Data Information

As shown in (6), the raw information quantification is an
accumulative value, where the minimum is sz’”" =0, and its
maximum depends on the environment, where our experiments
observe a maximum ;" ~ 60. To obtain the s]"** value in a
different area, we must drive only the part with more landmark
density and calculate the maximum s value. This result is in-
tractable to weight the factor graph as we proposed in Section II.
For this reason, to adjust the data association weight, we use a
sigmoid function to restrict the quantification in a range [0; 1]:

1

T lte 6o ™

wi (i) = wj(si)
As we can see in (7), given j and ¢ synchronization, we can
adjust the prior error weight w$(s;) as that w(s;). The form
of the sigmoid depends on the function ®,(s;), and we propose
two different definitions compared in the evaluation section.
First, as an option (a), if we consider the range of information
quantification as s; = [0; s7***] and if we take into account that
a sigmoid function changes around zero in the range of [—6; 6],
we can displace the zero in s; so that ®;(s;) remains as:

K
B (s) =Y g, — 4@, ®)
k=1

where A(®) is a configurable parameter. In Fig. 3, we show an
example of this sigmoid configuration, where the pink dotted line
marks the value of A(*). This configuration provides a function
that we can see as a smoothed step function where the parameter
1(®) tunes how restrictive the system is against information in
the data.
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Fig.3. Example of <I>§a) (s;) and <I>,(Lb) (s;) application in a sigmoid function.
The dotted lines indicate the values for (*) and 1(®),

Second, as an option (b), we propose a smoothest function.
In this case, we transform the sigmoid range [—6; 6], where its
size is h, to an information quantification range [0; A(*)], where
1) is close to s74%:

®) ho& h
;" (s1) = 7 > i, - ok )
k=1

In Fig. 3, we show an example of this second option, where the
red dotted line marks the value of 1(?).

Finally, we define the expressions to adjust the prior trajectory
weights. First, for the odometry weight as:

wi(si) = (K +1) (2 — wi(si)) - (10)
And second, its variant for the prior as:
K; +1)(2 —wi(s;

CRET

where K; is the number of associations, this first term scales
the prior trajectory weights to provide the same strength as the
associations’ residuals. We can see in (10) that the second term
provides strength when the data information is poor. In (11),
cr;”’y is the variance in x, y plane for the GPS observations. Thus,
noisily observations reduce the strength of the weight. The +1
regularizations in the three terms are to avoid zeros.

IV. EVALUATION

This article argues that our contributions mitigate some un-
desired effects in geo-localization approaches. To demonstrate
it, we focus our evaluation on that way. Before that, we evaluate
whole trajectories in a general way, comparing different config-
urations of our method and three state-of-the-art handcrafted-
feature-based methods (Section IV-B). Due to our approach
being in this category, we consider it as the best baseline for com-
parison. From there, we discuss the mitigation of the mentioned
problems: (i) Section IV-C shows how our approach mitigates
the outliers produced by ambiguities. (ii) Section IV-D evaluates
the mitigation of lack of detections. (iii) Section IV-E discusses
how our GPS error estimation can improve the results in a whole
trajectory. Finally, we provide a comparison in KITTI for two
methods end-to-end learned.

A. Setup

The evaluation was performed in the University of Alicante
(UA) Scientific Park (Fig. 4). This pedestrian area is where we
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Fig. 4. Aerial image of the University of Alicante Scientific Park, where the
evaluation was performed through circuits in Fig. 5.

Landmarks

e Circuit C4 _
e Circuit C3
or +  Circuit C2
¢ Circuit C1
Nl

-250 -200 -150 -100 -50 0 50 100
y (m)

Fig. 5. The ground truth of the four circuits drove around the UA Scientific
Park. The landmarks were obtained from the aerial image in Fig. 4.

drove through the four circuits shown in Fig. 5: C1, C2, C3,
and C4. These circuits present some areas where the data is
ambiguous for the data association being areas with outliers risk,
especially C2, and C3. These parts are then adequate to evaluate
(i). Moreover, to assess the effect (ii), we repeat two trajectories
but eliminate the detections in some navigation parts. We name
these repetitions C1’ and C4’. Then, we consider that we have
six paths for evaluation.

Regarding the mentioned ambiguity risk, we observe dif-
ferent challenge levels in these circuits. C1 has less risk due
to passing areas with more corners, as we can see in Fig. 5.
C4 presents some straight regions, but others are informative.
Finally, we consider C2 and C3 the more challenging because
passes through large straight areas, especially C2.

We drove these circuits using our own developed UGV
platform BLUE (roBot for Localization in Unstructured
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residuals by prior factors. We obtain a whole ground truth trajectory by optimizing this model in offline mode.

TABLE I
STATE-OF-THE-ARTS METHODS COMPARED FOR THE EVALUATION
Methods Data source Map source Feature type Model used Evaluated in  GPS
Frosi etal. [12] LiDAR OpenStreetMap Buildings Factor graph KITTI No
Own implementation [12] LiDAR OpenStreetMap  Ground boundaries  Factor graph Own Yes
Cho etal. [13] LiDAR OpenStreetMap Buildings None KITTI No
Own implementation [13] LiDAR OpenStreetMap  Ground boundaries Pose graph Own Yes
Muioz-Banon et al. [4] LiDAR and Cameras  OpenStreetMap Lane markings Factor graph Their Own Yes
Own implementation [4] LiDAR OpenStreetMap  Ground boundaries  Factor graph Own Yes
Ours LiDAR OpenStreetMap ~ Ground boundaries ~ Factor graph KITTI/Own Yes
TABLE II
‘WHOLE TRAJECTORIES EVALUATION BY ABSOLUTE TRAJECTORY ERROR (ATE) IN TRANSLATION AND ROTATION

Ours Ours Ours Ours Muioz-Banon Frosi Cho

Session ATE o) +e d@.e d®r+e " .e Prior etal. [4] etal. [12]  etal [13]

Cl trans. (m) 0.147 0.493 0.165 0.552 2.032 0.098 0.280 0.416

rot. (deg) 1.138 1.415 1.144 1.372 1.592 1.002 1.358 1.453

Cc2 trans. (m) 0.225 1.102 0.272 1.167 1.790 0.312 8.967 -
rot. (deg) 0.876 1.053 0.858 1.140 0.916 0.989 4.896 -

C3 trans. (m) 0.113 0.904 0.184 0.933 1.211 0.152 0.949 1.244

rot. (deg) 0.789 0.935 0.829 0.894 0.734 0.887 1.107 1.766

C4 trans. (m) 0.096 0.604 0.107 0.689 1.304 0.113 0.748 0.690

rot. (deg) 0.644 0.725 0.653 0.744 0.764 0.892 0.885 0.856

Ccr trans. (m) 0.230 0.726 0.255 0.806 - 0.671 0.798 0.757

rot. (deg) 1.033 1.772 1.202 1.679 - 1.283 1.750 1.913

c4 trans. (m) 0.113 0.994 0.288 0.774 - 0.774 1.257 1.115

rot. (deg) 0.895 1.140 0.937 1.137 - 1.104 0.996 1.093

Environments) [23], [28], [29], which mounts a LiDAR Ouster
0OS1-128 for environment perception.

To obtain ground truth, we manually align the detections for
some trajectory frames with the map, producing, in this way,
some ground truth poses. We name these corrected poses as
ground truth keyframes. Then, as we have low-bias LiDAR
odometry [30], we use it to interpolate the ground truth poses to
whole trajectories. We perform this interpolation by optimizing
the entire circuit using the odometry factors defined in (1) and
the prior factors described in (2), but in the last case, using the
ground truth positions. In Fig. 6, we show the graph model for
the ground truth generation.

In Table I, we show the specifications of the state-of-the-art
methods used for comparison. It is worth noting that, for a
fair comparison, we implemented in C++ the methods cited
as described in their letters but adapted to our implementation.
e.g., by using GPS and ground boundary features. For [12], we
included the GPS factor in their own factor graph model. In
the case of [13], we generated a pose graph including the poses
calculated using the descriptor presented in [13], the odometry,
and the GPS factors. This GPS augmentation doesn’t contradict

the contributions of the papers because in [12], the authors
comment that GPS is an “optional” signal in their method, while
in [13], the authors don’t aim to replace GPS; they seek to replace
LiDAR maps. Table I specifies the differences indicating our
implementation. We use the Absolute Trajectory Error (ATE)
metric for these comparisons.

B. Whole Trajectories Evaluation

Table II shows the results for the whole trajectory evalua-
tion. The first four columns are the combinations of different
configurations of our approach by combining the two proposed
® functions with including or not the prior error estimation e.
We also show the prior trajectory and the three state-of-the-art
methods compared results. The blue-marked values mean the
best outcome for each circuit.

With the combination of our approach, we observe that the
®(@) + e implementation produces slightly better results than
®®) 4+ e. In those cases, we mitigate the effect (i) even in the
more challenging circuits C2 and C3. In both cases, we see
that the error in C1” and C4’ is held, mitigating the effect (ii).
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Fig.7. Acomparison of ATE evolution per frame for each compared method,
where we evaluate the behavior for fop: outlier mitigation and for bottom:
mitigation of detection losses.

When we eliminate e estimation, the errors increase due to an
ambiguous part of the circuit converging to a non-corrected prior
trajectory.

Regarding the method Mufoz-Baifién et al. [4], we can see
that the effect (i) is mitigated for the circuits C1 to C4. However,
when detections are lost, the method converges to non-corrected
prior, increasing the error by the effect of drawback (ii).

Methods Frosi et al. [12] and Cho et al. [13] cannot mitigate
either (i) and (ii), and the errors become too large in the most
challenging circuits C2 and C3. Cho et al. [13] did not final-
ize the most challenging circuit, C2, because it became lost.
Method Frosi et al. [12] can complete that circuit but gets lost
in some parts. Even when GPS augments [12], [13], they can be
lost because, without weight adjustment, the LiDAR has more
observations and produces more residuals in the optimization
process. For the same reason, the ambiguity effect can produce
results that overcome the prior error.

Looking into the results shown in Table II, we can infer how
problems (i) and (ii) affect each method, but in the following
section, we depict some concrete examples.

The Unet++ is a high-speed network, and we process images
with low resolution (OS1-128 LiDAR resolution, 128x2048).
Then, the experiments were performed in real-time, where our
loop spent 57 ms for the whole process, less than the 100 ms
required for real-time, which is the period of the LiDAR sensor.
Muiioz-Bafion et al. and Frosi et al. spent around 90 ms, while
Cho etal. occupied 170 ms, which involves processing 1 of each
two scans for real-time implementation. The experiments have
been performed on an 17-7700HQ CPU with 16 GB of RAM in
C++. The network was implemented in PyTorch using a GPU
GTX 1050 Ti.

C. Outlier Mitigation

To evaluate outlier mitigation in more detail, we crop a tra-
jectory through an area with outlier risk, i.e., a place where the
wy has values close to zero. Then we evaluate the error against
the ground truth per each frame for the compared methods.
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InFig. 7 (fop), we can see the results of that process, where we
show the value of w{ in blue. When this value is near zero, the
data is non-informative, and there is an outlier risk. The methods
Frosi et al. [12], and Cho et al. [13] increase their errors, while
Muiioz-Bafién et al. [4] and our proposed approach both mitigate
the drawback ().

D. Mitigation of Detection Losses

As mentioned in the setup section, we caused a lack of
detections in parts of circuits C1 and C4, being then these circuits
as C1” and C4’. Then, to look into the trajectories in detail to
evaluate the effect (ii) mitigation, as in the previous section,
we crop a path through an area where we stopped the detection
process. Finally, we evaluate the error against the ground truth
per each frame for the compared methods.

In Fig. 7 (bottom), we can see the results of that process,
stopping the detections between the frames 150 and 350 approx.
The prior trajectory error is shown in blue. We can see how
when the detections are blocked, the errors in all compared
methods become the same value as the prior error. In contrast, our
approach can maintain stable error by mitigating the drawback

(i1).

E. Effects of GPS Error Estimation Influences

As a drawback (iii), we argue that inaccuracies in the GNSS-
based prior trajectory introduce errors in the final estimation
through the prior factor (2). Evaluating how e estimation can
improve the final pose inference in areas where there is no
lack and no ambiguities is complicated because in our approach
when there is no e estimation, the ATE increases because of
ambiguities areas. Plot areas with no risk do not provide enough
information. As a possible way to get some clue, we propose
looking into circuit C1 results because it is the one where less
ambiguities risk. In this case, we can see that our method is worst
when e is not estimated.

F. Comparison With End-to-End Learned Methods

In the previous sections, we evaluate the mitigation of the
typical drawbacks led by handcrafted-feature-based methods.
However, evaluating our approach compared with end-fo-end
learned techniques is interesting. In this way, apart from demon-
strating the mitigation of the discussed weaknesses, we show that
our method is state-of-the-art for all geo-localization strategies.
It is worth noting that the [5], [10] approaches don’t use GPS,
and we don’t augment it because in their methods, as in most
end-to-end learned, the authors present their strategies as GPS
replacements.

We implemented our approach in the KITTI Odometry
Benchmark using the provided odometry and LiDAR informa-
tion (range and reflectivity). We labelled the road boundaries
for 938 images from the different Odometry Benchmark scenes.
Then, we divided our dataset into 80% for training and 20% for
testing with non-overlapping, obtaining 72% of the IoU metric
as individual frame performance. Table III shows the result for
sequences 00, 07, 09, and 10. We chose the sequences to have
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TABLE III
WHOLE TRAJECTORIES EVALUATION (ATE) IN KITTI

Method Sec. 00  Sec. 07 Sec. 09  Sec. 10
Fervers etal. [10] (m) - 0.85 - 0.96
Li etal. [5] (m) - 0.44 1.16 0.93
Ours (@) + e (m) 0.35 0.47 0.22 0.31

diverse environments and roads. The empty values indicate that
the author’s letter doesn’t provide results for such a sequence.

V. CONCLUSION

This letter presented a geo-localization approach based on
a weighted factor graph that dynamically adjusts its values
depending on the information measured in the data. Moreover,
the GNSS-based prior error estimation is included in the model.
This strategy mitigates typical drawbacks in the handcrafted-
feature-based geo-localization approaches: (i) The outlier raised
from ambiguous representation. (ii) The deviations produced for
sparse representations. (iii) The errors introduced by the GNSS-
based prior. We demonstrate those mitigations experimentally
by improving recent state-of-the-art methods in this way.
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