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SRL-VIC: A Variable Stiffness-Based Safe
Reinforcement Learning for Contact-Rich

Robotic Tasks
Heng Zhang , Gokhan Solak , Gustavo J. G. Lahr , and Arash Ajoudani , Member, IEEE

Abstract—Reinforcement learning (RL) has emerged as a
promising paradigm in complex and continuous robotic tasks, how-
ever, safe exploration has been one of the main challenges, especially
in contact-rich manipulation tasks in unstructured environments.
Focusing on this issue, we propose SRL-VIC: a model-free safe
RL framework combined with a variable impedance controller
(VIC). Specifically, safety critic and recovery policy networks are
pre-trained where safety critic evaluates the safety of the next action
using a risk value before it is executed and the recovery policy
suggests a corrective action if the risk value is high. Furthermore,
the policies are updated online where the task policy not only
achieves the task but also modulates the stiffness parameters to
keep a safe and compliant profile. A set of experiments in contact-
rich maze tasks demonstrate that our framework outperforms the
baselines (without the recovery mechanism and without the VIC),
yielding a good trade-off between efficient task accomplishment
and safety guarantee. We show our policy trained on simulation
can be deployed on a physical robot without fine-tuning, achieving
successful task completion with robustness and generalization.

Index Terms—Compliance and impedance control, reinforce-
ment learning (RL), robotics and automation in construction.

I. INTRODUCTION

EXPLORING unstructured environments is a key skill for
future robotics, where the robots will be employed in un-

known and potentially hostile surroundings. The inherent phys-
ical interactions in such scenarios pose risks to robots, humans,
and the environment. These risks are increased in the context
of automated learning and exploration, e.g., in RL. Indeed,
ensuring the safety of RL in tasks involving rich contact remains
an ongoing challenge, especially in unstructured environments.
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Fig. 1. Maze exploration is an unstructured contact-rich task that has practical
applications such as cable-lying in walls. It also has similarities to search
missions in dark and narrow environments. The agent does not have access
to vision, thus it should navigate using only the contact information.

We study the problem of safe RL on a maze exploration
scenario as an illustrative example of contact-rich tasks. This
scenario is inspired by the common construction task of in-
stalling electricity cables within walls, as depicted in Fig. 1.
Traditionally, these tasks are done by workers and are time-
consuming and labor-intensive. These characteristics indicate
high potential for robotic automation, but raise several chal-
lenges: 1) The environment is unknown to the robot; 2) Visual
perception may be difficult to deploy, thus physical contact is
essential; 3) Frequent contact with the environment causes safety
issues. To this end, we abstracted the cable-lying task into a robot
exploration task since all the slots in the wall are composed of
two basic shapes (turns and straight sections) as shown in Fig. 1.
Then, we created an experimental setup that includes a 7-DoF
robot arm and a maze with obstacles as shown in Fig. 1.

In tasks involving rich contact, the robot must engage in con-
tinuous interaction with the environment, presenting a notable
safety risk that could result in damage to either the robot itself
or objects in its surroundings. Impedance control is widely used
to alleviate such hazards during physical robot interaction [1].
Moreover, variable impedance control (VIC) methods enable
adapting impedance parameters to the changing conditions of
the task or the surrounding environment [2], [3]. The robot can
trade between compliance and accuracy to maximize task perfor-
mance while staying safe. Nevertheless, determining the adjust-
ment of these parameters in VIC, particularly in unstructured
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environments with dynamic obstacles, remains a challenging
question.

Learning-based approaches became a powerful way to ad-
dress this challenge, with a wide variety of methods for tuning
impedance parameters [2]. In previous works, such parameters
were learned from human (or expert) demonstrations using
Dynamic movement primitives (DMPs) [4], inverse reinforce-
ment learning (IRL) [5] and skill priors [6]; however, providing
demonstrations in advance is relatively time-consuming and
labor-intensive. Also, it can be impractical to provide expert
demonstrations in some tasks where the environment is unstruc-
tured or potentially hostile.

In summarizing the current state-of-the-art research on
contact-rich tasks, two notable approaches emerge: 1) Some
studies employ VIC to ensure safe performance while utiliz-
ing RL for learning impedance parameters [6], [7]; 2) Other
works leverage the predictive capabilities of neural networks
to anticipate the safety value of future actions, allowing for
informed decisions on whether to pursue a safer course of action
in advance [8], [9]. Each of these ideas has its own advantage:
the former is to adjust the behaviour of the robot reactively
based on the observed contact forces, while the latter is to
proactively select a safer robot behaviour by predicting the safety
of future actions, therefore avoiding actions that would generate
dangerous amounts of contact force. They both improve the
safety of robots when performing contact-rich tasks to some
extent.

Compared with other previous work, in this letter, we take a
step towards combining the advantages of an RL-based VIC
approach with the advantages of using a predictive safe RL
approach. We introduce a new safe-RL framework incorpo-
rating VIC for contact-rich tasks. Following the recovery RL
(RRL) method [8], during the pre-training phase, we train a
Safety-Critic network using procedurally collected offline data,
which can predict a risk value based on the current state and the
next action. Meanwhile, we pre-train a recovery policy network,
which can sample a safe action if the risk value exceeds the safety
threshold. In the online training phase, a task policy is trained
with the goal of maximizing the reward. Unlike previous works,
we do not use expert demonstrations to accelerate task policy
training, given that the environment is unknown to the robot.

We compare the proposed framework with scenarios where
VIC is absent and where a recovery mechanism is not imple-
mented. The results of our simulation experiments indicate that
the combination of VIC and recovery mechanism improves the
safety and efficiency of the solution.

To summarize, the main contributions of our work are listed
as follows:

1) We present a safe RL framework with VIC for contact-rich
tasks without prior knowledge of the environment. Prior
to action execution, the safety critic predicts the safety
of the action. The recovery policy is activated for risky
situations. During the action execution, the contact force
is regulated with the help of VIC to enhance safety.

2) We developed a contact-rich maze exploration task in
simulations, and empirically demonstrated the proposed
framework outperforms baselines.

3) We demonstrate that our policy trained on simulation
can be deployed on a physical robot without fine-tuning,
successfully achieving the tasks even with different type
of obstacles, maze sizes and shapes, and flange sizes.

II. RELATED WORK

A. Contact-Rich Robotic Tasks

The solutions for contact-rich tasks have undergone a shift
from contact modeling analysis [10] to learning-based ap-
proaches [11], [12]. However, safety issues have always been
an inescapable aspect in such contact-rich tasks.

B. Variable Impedance Control for Contact-Rich Tasks

Implementing VIC enables a robot to exhibit a certain degree
of compliance, contributing to the achievement of safe behavior
in contact-rich tasks. However, it is a challenge to pre-define the
impedance parameters according to different tasks or different
stages of the task. To solve this problem, Yang et al. [13] utilized
muscle surface electromyography (sEMG) signals to extract
the demonstrator’s variable stiffness which were passed to the
robot. In this type of method, however, specialized equipment
is required. Lee et al. [14] proposed a stiffness modulation
method that achieved safe and robust performance in a door
opening task, while it focused on stiffness in joint space. A
self-turning impedance was proposed in [3], which ensures
compliant contact and low contact forces based on two planning
strategies. However, the direction of motion of the robot will
not change unless large contact forces are generated, which
means that the actual trajectory executed by the robot may not
be optimal with respect to energy and time. Furthermore, some
scholars [6], [15], [16] learn different impedance parameters
from collected expert demonstration trajectories. However, it is
difficult to demonstrate trajectories for tasks like ours, i.e., blind
maze exploration. Moreover, some works address it by utilizing
the impedance properties of the human body. Yang et al. [13],
[17] transferred the stiffness profile from the upper limb of the
human to a humanoid dual-arm robot for contact-rich tasks.

Therefore, these methods of obtaining variable impedance
parameters either need demonstrations or require special devices
or are specific to a single task.

C. Safe RL for Contact-Rich Tasks

RL-based works focus on contact-rich tasks can be divided
into two groups depending on when contact safety is increased.
On the one hand, a safe controller with variable stiffness can
be learned via RL. Specifically, Martin-Martin et al. [7] com-
pared the effect of different action spaces in RL with variable
impedance control in end-effector space for contact-rich tasks,
such as surface-wiping and door-opening. Some work [4], [5],
[6] leveraged demonstrations to learn variable impedance pa-
rameters as part of the action space. On the other hand, a safe
action or policy can be learned with RL to significantly enhance
safety during the training stage. For instance, MoPA-RL [18]
augmented the action space with long-horizon planning to im-
prove safety. Safety critic network can be trained that generate a
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Fig. 2. Proposed framework: we combine the recovery-based safe RL ap-
proach [8] with VIC to solve the contact-rich maze exploration task. We first use
an automated procedure to collect the offline data and pre-train our safety critic
and recovery policy. Then, we train all learning components using online data.
The risk value εrisk is used to activate either the task or recovery policy. The
action at is chosen by the activated component, and it is fed to the VIC. Our
action includes a relative position change and desired stiffness vector {Kx,Ky}.

risk value to help task policy sample a conservative or relatively
safe action, works such as RRL [8] and CSC [19].

However, in contrast to these, our proposed framework com-
bines the strengths of both. We improve safety in terms of both
impedance parameters in the controller and safety prediction
during training. Furthermore, unlike most of the existing meth-
ods, we do not use expert demonstrations for task learning.
Our method uses a scripted procedure to demonstrate only the
concept of collision constraints which is a more immediate and
simpler concept compared to a long-term task, hence easier to
program.

III. APPROACH

We introduce the details of our approach in this section. In
Section III-A, the fundamentals of impedance control in task
space are presented, which is our downstream controller. Then,
we describe the proposed RRL-based VIC in Section III-B. A
diagram of the proposed framework is shown in Fig. 2.

A. Impedance Control in Task Space

The robotic manipulator rigid body model in joint space may
be written as

M(q)q̈ +C(q, q̇)q̇ + g(q) = τ + τ ext, (1)

where q, q̇, q̈ ∈ R
n are the position, velocity, and acceleration

vectors in joint space, respectively, and n is the number of DoF.
M(q) ∈ R

n×n is the joint space inertia matrix, C(q, q̇) ∈ R
n

the Coriolis term, g(q) ∈ R
n the gravity term, and τ ∈ R

n

is the actuation torques. The external torques generated by
the interaction forces are given by τ ext = JT (q)F ext, being
JT (q) ∈ R

n×6 the Jacobian transpose matrix.
The actuation torques are chosen to compensate for the Corio-

lis and gravitational vectors, plus to deal with the external forces
risen by contact with the environment through an impedance
model in task space:

F ext = Dd ˙̃x+Kdx̃, (2)

where x̃ is the Cartesian pose error given by the difference
between the desired Cartesian pose xd ∈ R

6 and the actual pose
x ∈ R

6. Accordingly, ˙̃x is the velocity error between the desired
and actual end-effector’s velocity, ẋ, ẋd ∈ R

6, respectively. The
desired stiffness matrix Kd ∈ R

6×6 is a diagonal matrix with
variable terms asKd=diag{Kx,Ky,Kz, 0.15Kx, 0.15Ky, 0},
where the rotation elements for [Kx,Ky] are set as 0.15 times of
[Kx,Ky] inspired by [3] to reduce and simplify the parameters
tuning. We set the rotational z-axis stiffness to zero, to keep
it indifferent w.r.t. the end-effector roll. The desired Cartesian
damping matrixDd ∈ R

6×6 is also diagonal and its terms are de-

fined by the double diagonal rule, i.e., Dd
i (t) = 2ζ

√
Kd

i where
i represents the linear or rotational components in Task Space.
We use ζ=0.707 in our experiments. The multi-dimensional
stiffness can be represented with a stiffness ellipsoid having
different compliance in different dimensions [3].

B. Safe RL for Contact-Rich Tasks

We adopt the RRL framework [8] to actively predict safety
hazards and take corrective actions. The original RRL was not
specifically designed for contact-rich tasks. In [8] contact was
avoided, on the contrary, in our work continuous contact is
required but possibly unsafe. Thus, we introduce impedance
control in the task space to better handle the contact-rich aspect
of the problem. Specifically, we add the Cartesian impedance
parameters to the action space in RL.

As shown in Fig. 2, there are three components in our frame-
work: Firstly, similar to RRL, a safety critic network and recov-
ery policy are trained with the pre-collected offline data. Then,
our task policy was trained online with the maze exploration
experiments. The output of the task policy is given to the variable
impedance controller which controls the robot to achieve the
desired actions.

In this framework, the problem is defined as a constrained
Markov decision process (CMDP) problem [20]. A tuple
(S,A, R, P, γ, μ, C)denotes a CMDP, whereS is the state space,
A is the action space, R : S ×A → R is the reward function, P
is the state transition probability, γ ∈ (0, 1) is a reward discount
factor, μ is the starting state distribution and C = {(ci : S →
{0, 1}, χi ∈ R) | i ∈ Z} denote safety constraints that the agent
must satisfy. In our task, we set γ as 0.9 and we define the other
components as detailed below.
� State Space S . To make our framework more general to

contact-rich exploration tasks instead of this specific maze,
we differentiate the state space across different networks: it
is 6-dimensional vector for safety critic network and recov-
ery policy including 6 force/torque [Fx, Fy, Fz, Tx, Ty, Tz]
values measured from a F/T sensor. We do not give the
position as an input to the safety network, so that it does
not memorise the locations of the walls. While for task
policy, we add the position [Px, Py, Pz] of the end-effector,
obtaining a 9-dimensional vector as state space so that the
agent remembers the position when finding its way to the
goal.

� Action Space A. We combine 2 impedance parame-
ters [Kx,Ky] with 2 end-effector displacement values
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[ΔPx,ΔPy] which consist of 4-dimensional vector as ac-
tion space. Note that here the displacement values ΔP
are not absolute positions in the world coordinate but the
desired change w.r.t. the end-effector position. The sample
range of ΔP is [−0.03, 0.03]m and the impedance values
[Kx,Ky] are within the sample range of [300, 1000]N/m.
We project the stiffness values onto the ΔP vector com-
ponents as [K∗

x,K
∗
y] in the controller:

K∗
x = |Kx ·ΔPx/ ‖ΔP ‖ |+ |Ky · −ΔPy/ ‖ΔP ‖ |

K∗
y = |Kx ·ΔPy/ ‖ΔP ‖ |+ |Ky ·ΔPx/ ‖ΔP ‖ | (3)

� Reward Function R. We use a negative Euclidean dis-
tance between the current position Pcur of the end-effector
and the goal position Pgoal multiplied by a constant
cpos=100. We introduce a penalty for high-force collisions
rcol=−250 and a penalty for leaving from the entrance
rent=−500 to satisfy our task requirements. Also we add
a bonus for reaching the goal rgoal=1000 to increase the
speed of convergence.

� Safety Constraints C. The force constraint requires the
measured force magnitude to stay below a threshold.

1) Safety Critic and Recovery Policy: Based on [21], our
safety critic learn a critic function Qπ

risk:

Qπ
risk (st, at) = Eπ

[ ∞∑
t′=t

γt′−t
risk ct′ | st, at

]

= ct + (1− ct) γrisk Eπ [Q
π
risk (st+1, at+1) | st, at] (4)

where ct = 1 denotes constraint violation, and ct = 0 indicates
safety in state st. Qπ

risk is trained by minimizing a MSE loss
function:

Jrisk (st, at, st+1;φ) =
1

2

(
Q̂π

φ,risk (st, at)

−
(
ct + (1− ct) γrisk E

at+1∼π(·|st+1)

[
Q̂π

φ,risk (st+1, at+1)
]))2

(5)

Similar to [8], we use an off-policy DDPG [22] algorithm to
learn recovery policy πrec by performing gradient descent on
the safety critic network Q̂π

φ, risk (s, πrec(s)).
2) Pre-Training: By providing a set of offline data for the

agent, we expect our agent to learn the relationship of safety
with contact force and motion. It is possible to avoid catas-
trophic collisions caused by unexpected actions during online
training by learning the implicit relationship between the two in
advance. Details of the data collection procedure are described in
Section IV-B1. Unlike online training where the agent searches
for actions that maximise the reward, in this stage, we run
a scripted behavior to collect examples of collisions without
any reward. This approach reduces the problem complexity
by separating task learning and constraint learning which are
otherwise interlaced.

We do not pre-train the task policy, because this requires
recording complex expert demonstrations which are costly and
difficult to obtain for a blind maze exploration task.

We pre-train the safety critic network and recovery policy with
the offline data which are collected in simulation. Specifically,
We use 256 as batch size according to the number of hidden
units in the network and update the safety critic network and
recovery policy 10000 times in the pre-training stage.

3) Task Policy: The aim of the task policy is to finish the task
and obtain maximum rewards within the constraints of safety.
We train the task policy by the SAC algorithm [23], which is
based on the idea of maximum entropy. The main difference
from other RL algorithms is that SAC maximizes the entropy
while optimizing the policy for higher cumulative returns. For
our task, the benefit of introducing entropy into the learning
stage is the increased randomization. Therefore, the agent can
sufficiently explore the state space to avoid getting stuck in the
local optimum. Our task policy works in complementarity with
the recovery network described in III-B1. Action is selected as
follows depending on the risk value:

at =

{
aπtask
t Q(st,a

πtask
t ) ≤ εrisk

aπrec
t Q(st,a

πtask
t ) > εrisk

(6)

where aπtask
t ∼ πtask (· | st) and aπrec

t ∼ πrec (· | st). Different
from task policy, the recovery policy is trained to minimize the
Q̂π

φ, risk (st, at) so that it can provide a safe action aπrec
t with

small risk value i.e. Q(st,a
πrec
t ) < εrisk.

4) Online Training: All of the policy and safety critic net-
works are updated online, where task policyπtask is only trained
in the online RL stage while recovery policyπrec and safety critic
are also pre-trained with offline data.

In every single step of training, we update the replay
buffer with online data where each one is denoted as a tuple
[st, at, rt, st+1, done]. We set 500 as horizon for each episode,
in each transition, actions are sampled from the policies and are
executed continuously until one of the termination conditions
is met. The termination conditions are: violating a constraint,
leaving the maze from the entrance, achieving success, and
reaching the maximum step count. The networks are updated
online after collecting each observation.

IV. EVALUATION

In the following evaluation experiments, we aim to study
whether the proposed framework is: 1) safer; 2) more efficient,
in comparison to our baselines, which are standard RL with VIC,
and RRL with constant stiffness (K=300 and 1000 N/m). We
label the baselines in this order as Std_RL-VIC, SRL-K300,
SRL-K1000. In Std_RL-VIC, we use the same RL algorithm
without the recovery mechanism to highlight the added benefit
of our framework that combines VIC with RRL. The other
baselines SRL-K300 and SRL-K1000 are used to evaluate
the benefit of the VIC. Safety can be judged by the absence of
excessively high interaction forces, whereas efficiency can be
defined as attaining high task successes and reward with less
training.
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Fig. 3. Trajectories of the end-effector during different stages of training, in
top-down view1.

A. Experiment Setup

We evaluate the proposed framework on a maze exploration
task using the 7-DoF Franka Emika Panda arm in Mujoco
simulation environment as shown in Fig. 1. We use a peg-shaped
flange mounted on the end-effector of the robot with the diameter
of 30 mm and the length of 55 mm. The maze channel is 50 mm
in width 70.35 cm in length. Because there is a small space
for the robot to explore width-wise, we can treat it also as an
extended peg-in-hole task. The goal for the agent is to reach
from entrance to exit without constraint violations. We adhere
to safety level 1 [24], in which the agent will receive a penalty
when it violates the constraints, and the current training episode
will be terminated.

This problem combines two challenges of finding the way to
exit without vision, and staying safe by avoiding high contact
forces. It creates a dilemma as the contacts are absolutely neces-
sary to navigate while they are also risky. Furthermore, we add
movable obstacles in the maze that requires the robot to push
harder. Thus, resorting to a conservative policy cannot solve the
problem. The agent needs to learn both the safe behaviour and
the task achievement simultaneously.

We implement the obstacles as three heavy balls in simulation,
and a pile of bolts in real-world. We position the obstacles in the
middle of the maze.

We choose MuJoCo simulator (version 2.3.3) for its favor-
able multi-contact physics computation, suitable for contact-rich
tasks. However, this required us to split the maze mesh into
smaller convex components because non-convex objects are not
allowed in MuJoCo. We used V-HACD2 library to decompose
our maze into 128 convex primitive shapes and assembled them
into the same maze.

1The orange circle denotes goal point of the task, the cyan circles and yellow
arrows along the trajectory represent the stiffness ellipsoids and the motion
directions respectively.

2[Online]. Available: https://github.com/kmammou/v-hacd

The safe recovery RL part of our work is implemented based
on the RRL codebase3. We follow the same hyperparameter
procedure, except for: 10 training updates per simulation step,
0.65 as γ_risk, 0.7 as ε_risk and 500 as the maximum number
of actions for each episode. Another difference from RRL is
that we normalize the actions of the RL model and denormalize
them before applying them in the robot controller, for faster
convergence.

B. Simulation Experiments

We first collect offline data to pre-train the safety critic and
the recovery policy. Then, we train all approaches online and
compare their performances.

1) Offline Data Collection: In order to teach the notion of
risk, we generate random states and actions that are likely to
cause constraint violation. The robot moves to one of the six
predefined points inside the maze, then moves in a random
direction, which is likely to collide with the maze walls. The
number of transitions are split equally between each point. In
order to make the collected data more diverse, we add noise to
the coordinates of each point, so that we have many different
starting positions. Then, we sample a move direction as an
angle between 0◦ and 360◦ and a move size in the action range.
Lastly, the robot is commanded to move in that direction and
the transition is stored as a tuple (st, at, ct, st+1, done). Offline
data for pretraining are given 40018 transitions of data, 185 of
these transitions contain constraint-violating states.

2) Online Training: We train each setup online for 3 runs
with 1500 episodes in each run. In each episode, the robot
needs to move to the start point and then begin exploring the
maze, until it meets termination conditions. We train the policy
using 1 chunk of 20 cores and one GPU (NVIDIA Tesla V100
16 Gb) from the cluster Franklin High Performance Computing
(HPC)4. The average training time for 3 runs of each experiment
SRL-VIC,Std_RL-VIC,SRL-K1000,SRL-K300 is 14.47,
7.32, 9.08, 68.28 hours respectively. The time gets shorter when
episodes terminate early by constraint violation or task success.

Fig. 3 shows the evolution of the robot’s behaviour with
increasing episodes of online learning. In the beginning, the
agent fails because it violates the constraints while interacting
with the obstacles. The agent learns to complete the task in later
episodes. The stiffness ellipsoids indicate that the agent learns
to adapt the stiffness to different conditions such as obstacle or
wall contact. We observe that the trajectory becomes smoother
and the robot finishes the task faster with further training.

3) Results: We compare the proposed framework with base-
lines in four different perspectives: ratio of successes/violations,
reward, cumulative task successes, cumulative violations.
Specifically, cumulative task successes indicate the effective-
ness of task completion; while cumulative violations show the
number of constraint violations that indicates the safety; ratio of
successes/violations show the trade-off between task completion
and safety guarantee. The results of the simulation training are

3[Online]. Available: https://github.com/abalakrishna123/recovery-rl
4We gratefully acknowledge the Data Science and Computation Facility and

its Support Team at Fondazione Istituto Italiano di Tecnologia.

https://github.com/kmammou/v-hacd
https://github.com/abalakrishna123/recovery-rl
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Fig. 4. Learning curves for maze exploration. Our framework (SRL-VIC)
outperforms others, particularly in terms of ratio of successes/violation and
cumulative violations, i.e., our framework is safer than others. Furthermore, it
learns faster, achieving success at an earlier stage. The large deviation area in the
ratio of successes/violations comes from the division operation; the cumulative
successes and violations do not exhibit large variation.

Fig. 5. Different behaviours when encountering obstacles at training episode
1000. Top (SRL-K300): The robot cannot move forward and fails due to low
stiffness. Bottom (SRL-VIC): VIC approach switches to high stiffness when
there are some obstacles on the way. The method learns to safely push the
obstacles without exceeding the force threshold.

presented in Fig. 4. In terms of safety, our method achieves min-
imal cumulative violations apart from SRL-K300. Although
SRL-K300 has the minimum cumulative violations among
all setups, it gets stuck in the obstacle area and cannot move
forward. Thus, our method has an overwhelming advantage in
the ratio of successes/violations (Fig. 4). We also tested the
final learned model of SRL-VIC 100 times in simulation and
observed that it was successful in all cases without any violation.

Our method achieves the best results also in means of task
successes (Fig. 4). Although Std_RL-VIC performed fairly
well in means of reward and cumulative task successes, our
framework improves it further. The difference is even stronger
in the success/violation ratio results. Meanwhile, our method
significantly outperforms the other recovery-based methods
(SRL-K300 andSRL-K1000).SRL-K300 cannot obtain high
performance because it is not stiff enough to deal with obstacles.
Fig. 5 shows the advantage of our method over SRL-K300
when encountering obstacles. Please note the increased size of
the stiffness ellipsoids when the robot makes contact with the
obstacles.

Fig. 6. Relation between the risk value and state/action values in the offline
test. Top: The relationship of the risk εrisk to stiffness ‖K‖ and desired
move ‖ΔP ‖ values. Bottom: Plot of εrisk and contact force ‖F ‖. The force
magnitude is scaled down by 1/100.

Regarding speed, SRL-VIC has to take relatively conser-
vative actions in unsafe situations. Therefore, it achieved the
task in slightly longer times compared to SRL-K1000 and
Std_RL-VIC, but it was still faster than K300.

The results strongly demonstrate that our method provides a
good trade-off between safety and task performance by combin-
ing the benefits of VIC and SRL. The fact that Std_RL-VIC
is the second-best method, performing better than the other
baselines of SRL with constant stiffness values, confirms the
importance of VIC in dealing with contact-rich tasks. The
VIC allows switching between the low-stiffness behaviour and
high-stiffness behaviour under different conditions to use the
advantage of both. We also observe that it stays stiffer along
the motion direction while it stays more compliant laterally.
However, the proposed method improves the performance even
further as the safety critic provides a predictive mechanism to
avoid dangerous situations before getting too close. It decreases
the violations, thus allows the task policy to explore more states
without failing. Additionally, the recovery policy takes the robot
away from the risky state, making it harder to get stuck.

4) Safety Critic Behaviour: In order to understand the be-
haviour of our safety critic network, we visualise the relationship
between the predicted risk value and the state/action values. The
robot was commanded to repetitively apply a random action 200
times; starting on a random point (with 0.5 cm deviation), and
moving in random direction (in [0◦, 360◦]) with random move
size and stiffness. We recorded the risk value produced for each
of these cases and plotted them in Fig. 6.

As seen in the figure, higher ΔP and K values are correlated
with higher εrisk. This matches the human intuition that stronger
actions are riskier. We also see that the model is sensitive to the
contact force, as the the spikes in F are aligned with the spikes
in εrisk. However, it does not merely follow the force, as there is
a more complex relationship between the state/action values and
risk. These outcomes confirm that the system acts reasonably.
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Fig. 7. (a) Maze shape-1, without obstacles. The yellow overlay shows the original maze from the simulation. (b) The robot meets the pile of bolts halfway.
(c) The obstacles create congestion at the curve. (d) The SRL-VIC policy overcomes the obstacles by increasing the stiffness. (e, f) The complex task scenario
with small wall segments at new positions. (g) Maze shape-2. (h) Maze shape-3, failed at red X marker.

C. Real-World Experiments

We trained the policy in Mujoco for the contact-rich maze-
exploration task and deployed it on a physical 7-DOF Franka
robot arm without any fine-tuning. In the setup, we use Robot
Operating System (ROS) where RL policy is a separate ROS
node communicating with the physical robot.

Our policy succeeded in 4 out of 5 trials at first. In the failed
case, the robot got stuck at a turning point. It was not highly
robust to the real-world environment because our policy was
trained with the observations in simulation. This is because of
the physical dynamics differences and the imprecision of the F/T
sensing in simulation. For this reason, we retrained the policy
by adding Ornstein-Uhlenbeck(OU) noise in state observations.
OU noise is a type of correlated noise often used in RL for
continuous control tasks which helps the agent explore more
systematically than purely random noise. The OU process is
defined by a differential equation and has a mean-reverting
property, which can be useful for stabilizing exploration. The
success rate increased to 6/6 after retraining. Fig. 7 shows the
deployment on a physical robot. We put bolts of different size
as dynamic obstacles (50 M6 × 30 for small obstacles, 100
M6 × 8 and 50 M6 × 30 for mixed obstacles). A video of the
experiments is available at https://youtu.be/ksWXR3vByoQ.

Results: The SRL-VIC policy transfers successfully from
simulation to real world. The transfer success was increased
by the addition of state randomization in the simulation train-
ing. Apart from the physical dynamics and sensing differences
between the simulation and the real world, there were also
task-level differences, namely, the shape of the maze and the
character of the obstacles.

In the real-world experiments, we tested the generalization
capability of our safety model by changing the position of
the maze curves and placing wall segments at new positions
as shown in Fig. 7. The maze length varied between simula-
tion (70.35 cm) and the real-world (84.62 cm). Additionally,
the nature of the obstacles differed from those present in the
simulation. The learned policy successfully completed most of
these cases, suggesting that the safety mechanism generalizes to
different wall positions. The agent can also complete the Maze
shape-1 when tested by changing the flange diameter (1, 2, 3
and 4 cm). Our task policy is trained on a single maze shape;

Fig. 8. Trajectories of the end-effector during executing task in the real world.
(a–c) Maze shape-1 (Fig. 7(a)): (a) no obstacle, (b) small obstacles, (c) mixed
obstacles. (d, e) Complex task scenario with discrete walls, (f) Maze shape-2
(Fig. 7(g)).

thus, it could not generalize to the case shown in Fig. 7(h). It
still did not violate a constraint, but it could not find the exit.
Dealing with more diverse shapes of mazes requires training
with more diverse shapes as well, however, we do not focus on
task generalization in this work.

The end-effector trajectories in real-robot experiments are
shown in Fig. 8. The policy adapts the stiffness values effectively
by becoming stiff in the goal direction and staying compliant
laterally. It also employs distinct strategies for encounters with
walls at curves and collisions with movable obstacles. For the
latter, it adopts a larger, rounded stiffness ellipse to facilitate
pushing through in all directions.

We also plot the measured force (Fy), stiffness Ky and move
size (ΔPx) values w.r.t. y-position in Fig. 9, as y is the main
axis towards the goal. The stiffness adaptation policy becomes
more evident in these plots, comparing the no obstacle case to
the others. The 2nd and 3rd cases have larger stiffness in the

https://youtu.be/ksWXR3vByoQ
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Fig. 9. Force (Fy), move size (ΔPx), and stiffness (Ky) values during the
real-robot experiments plotted against the y- position. The pink highlight shows
the approximate placement of obstacles.

obstacle area as they observe higher force, while the 1st case
increases stiffness only at the curves, while touching the wall.
Another difference is seen in the ΔPx action, as the 2nd and
3rd cases move laterally to open the way through the obstacles,
while the 1st maintains its x-position.

V. CONCLUSION AND FUTURE WORK

We presented a framework that integrates the strengths of a
safe RL method with VIC. This combination addresses the dual
challenges of ensuring safety and maintaining continuous physi-
cal contact. Experiments in contact-rich maze tasks demonstrate
that our framework achieved a good trade-off between task
accomplishment and collision-based safety, and outperformed
Std_RL-VIC. The inclusion of the VIC adds increased adapt-
ability, creating a better trade-off between safety and success in
comparison to the constant impedance approaches. The trained
model can transfer to real-world, and also the safety model
can generalize to different obstacles and wall positions. In the
future, we will evaluate our framework in more generalized task
scenarios and introduce model-based RL into our framework to
improve the safety and robustness of our proposed framework
in unknown environments.
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