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Abstract—Successful deployment of mobile robots in unstruc-
tured domains requires an understanding of the environment and
terrain to avoid hazardous areas, getting stuck, and colliding with
obstacles. Traversability estimation–which predicts where in the
environment a robot can travel–is one prominent approach that
tackles this problem. Existing geometric methods may ignore im-
portant semantic considerations, while semantic segmentation ap-
proaches involve a tedious labeling process. Recent self-supervised
methods reduce labeling tedium, but require additional data or
models and tend to struggle to explicitly label untraversable areas.
To address these limitations, we introduce a weakly-supervised
method for relative traversability estimation. Our method involves
manually annotating the relative traversability of a small number of
point pairs, which significantly reduces labeling effort compared to
traditional segmentation-based methods and avoids the limitations
of self-supervised methods. We further improve the performance
of our method through a novel cross-image labeling strategy and
loss function. We demonstrate the viability and performance of
our method through deployment on a mobile robot in outdoor
environments.

Index Terms—Field robots, deep learning for visual perception,
vision-based navigation.

I. INTRODUCTION

W ITH the rapidly expanding use of mobile robots in areas
like agriculture [1] and delivery [2], it is critical that

such robots are able to effectively understand their environ-
ments in order to navigate and successfully complete their tasks.
Traversability estimation, which involves determining where in
the environment a robot can travel, is one common method for
solving this problem in unstructured environments [3]. Due to

Manuscript received 23 January 2024; accepted 14 April 2024. Date of
publication 1 May 2024; date of current version 8 May 2024. This letter was rec-
ommended for publication by Associate Editor R. Boutteau and Editor P. Vasseur
upon evaluation of the reviewers’ comments. This work was supported in part
by National Robotics Initiative 2.0 under Grant NIFA#2021-67021-33449, in
part by AIFARMS through the Agriculture and Food Research Initiative (AFRI)
under Grant 2020-67021-32799 Project Accession Number 1024178 from the
USDA/NIFA, and in part by the UIUC’s Center for Autonomous Construction
in Manufacturing at Scale. (Corresponding author: Andre Schreiber.)

The authors are with the Coordinated Science Laboratory, University of
Illinois at Urbana- Champaign, Champaign, IL 61820 USA (e-mail: andrems2
@illinois.edu; av7@illinois.edu; peterdu2@illinois.edu; mvalve2@illinois.edu;
girishc@illinois.edu; krdc@illinois.edu).

Code is available at: https://github.com/andreschreiber/W-RIZZ.
This letter has supplementary downloadable material available at

https://doi.org/10.1109/LRA.2024.3396095, provided by the authors.
Digital Object Identifier 10.1109/LRA.2024.3396095

Fig. 1. Our proposed framework trains a model for traversability estimation
using sparse pairwise labels of relative traversability. The camera images are
from the dataset introduced by Gasparino et al. [4]. In the traversability map,
warmer colors indicate higher anticipated ease of traversal.

advances in computer vision and visual perception systems in
recent years, vision-based methods for traversability estimation
have shown significant promise [4], [5], [6], [7], [8].

Vision-based methods for environmental understanding and
traversability estimation can typically be classified into strongly-
supervised methods based on semantic segmentation and self-
supervised methods. Strongly-supervised semantic segmenta-
tion approaches [8], [9], [10], [11], [12], [13] involve using a
semantic segmentation model to segment the environment into
classes relevant to navigation and traversability. However, these
methods suffer from a tedious and expensive manual labeling
process as training images are densely annotated by a human
labeler. Self-supervised approaches avoid this labeling burden
by annotating data automatically [4], [5], [6], [7], but typically
involve additional assumptions, data, or models. In addition,
these self-supervised approaches generally require that the robot
experience conditions of interest to label them, which creates
difficulty in explicitly labeling untraversable conditions in a safe
manner [6], [7].

Motivated by the limitations of these existing approaches, we
propose a weakly-supervised framework for visual traversability
estimation, termed Weak-Relative Inference of haZard Zones
(W-RIZZ). We draw inspiration from work in relative depth
estimation [14], [15], [16] and intrinsic decomposition [15],
[17], and propose annotating sparse pairs of points with relative
traversability labels (as shown in Fig. 1). The sparse labeling
greatly reduces the tedium seen in strongly-supervised methods,
while enabling easy explicit labeling of untraversable regions
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and not requiring robot experience during training. Our method
can also provide continuous predictions of traversability (rather
than discrete classes [8]), and does not require the additional
assumptions, data, or models needed in self-supervised meth-
ods [4], [5], [6], [7].

We summarize our contributions as follows:
1) We introduce a weakly-supervised framework for training

traversability estimation neural networks that employs
sparse pairwise labels of relative traversability.

2) We propose a new loss for training traversability estima-
tion models and a novel cross-image pairwise labeling
scheme that improves consistency of traversability pre-
dictions across different images and environments.

3) We deploy our approach on a robot and demonstrate that
our model outperforms a state-of-the-art self-supervised
method for visual traversability prediction, showing
greater generalization capability and improved navigation
success rate while only using a small number of annotated
pixels per image.

II. RELATED WORKS

Numerous potential approaches to mobile robot navigation
and traversability estimation have been proposed and are rele-
vant to the work presented in this letter.

A. Geometric and Semantic Approaches to Navigation

A classical approach to mobile robot navigation involves the
creation of an environmental map using sensors like LiDAR,
localizing the robot in the map using SLAM, and planning an
obstacle-free path through the map [18], [19]. However, only
considering geometry in navigation can be problematic since
it fails to consider non-rigid and traversable obstacles like tall
grass and may ignore characteristics like the bumpiness of a
traversed surface.

These limitations can be partially resolved by integrating se-
mantic information about the environment. For example, Valada
et al. [9] introduce a robust segmentation architecture that uses a
convoluted mixture of deep experts model. Maturana et al. [11]
utilize geometric and semantic information, where environment
semantics are predicted using a neural network and semantic
classes are assigned navigation costs.

Several datasets exist for semantic segmentation in outdoor
unstructured environments. For example, the Robot Unstruc-
tured Ground Driving (RUGD) dataset [12] and Freiburg Forest
dataset [10] provide images that are densely labeled with seman-
tic classes relevant for outdoor navigation. The CaT: CAVS [8]
dataset features images collected from an off-road car, and di-
rectly labels regions as traversable by a specific vehicle platform.
However, these datasets only contain a few hundred [10] to a few
thousand [8], [12] images, which is significantly smaller than
traditional datasets for segmentation in computer vision [20].

Methods based on semantic segmentation can be appealing as
they can provide more fine-grained understanding than purely
geometric approaches. Moreover, numerous architectures for
semantic segmentation exist (e.g., PSPNet [21]) and can be
implemented for the task of semantic segmentation in unstruc-
tured environments. However, densely labeling datasets for seg-
mentation is tedious, making it difficult to apply this method
in a new domain. In addition, choosing an appropriate set of
semantic classes may be challenging and can vary for different
applications. It may also be difficult to map these semantic

classes into costs that can be used for control and motion plan-
ning [22]. Segmenting images directly for traversability can also
be problematic, as traversability segmentation labels typically
represent only binary indications of traversability and may only
apply to a specific robotic platform [8]. Finally, each of these
forms of semantic segmentation fails to consider the possibility
of traversability characteristics varying within semantic classes.

B. Self-Supervised Navigation and Traversability

To overcome the limitations of geometric and segmentation
approaches to mobile robot navigation, much recent work has
focused on developing self-supervised methods for navigation
and traversability estimation. BADGR [23] collects and labels
off-policy data using a simple navigation policy, and trains an
action-conditioned neural network to predict navigation events.
However, BADGR requires a large dataset to perform well, as
it learns both the navigation characteristics of the environment
and dynamics of the robot.

Other methods [4], [24] overcome this limitation by directly
incorporating a dynamics model. For example, WayFAST [4]
uses the kinodynamic model of a skid-steer robot to mea-
sure traction coefficients. These traction coefficients are then
projected into camera images and used to train a traversabil-
ity prediction neural network. For quadrupeds, Wellhausen et
al. [5] propose projecting footholds into images and retroactively
assign labels using proprioceptive measurements. Similarly,
Castro et al. [22] combine proprioceptive sensing of terrain
interactions with exteroceptive sensor data to learn costmaps
for off-road driving. Other proposed methods involve labeling
traversed paths as traversable and training a classifier on such
paths [6], or training an autoencoder only on traversed regions
and using reconstruction error as a proxy for traversability [7].

These self-supervised methods are appealing by eliminating
the burden of manual labeling through self-supervision. How-
ever, such methods are typically only weakly-supervised (they
do not label all training image pixels) and can be difficult to apply
on existing image-only datasets as they often require additional
data sources. The need for the robot to experience conditions
to label them also creates difficulty in labeling non-traversable
areas, since subjecting the robot to such conditions may not
be possible or can lead to damage. As a result, these methods
may assume unfamiliar regions as non-traversable [7] and are
often biased towards a positive and unlabeled (PU) [6], [25] data
regime.

C. Weakly-Supervised Learning

Learning with sparse labels (weakly-supervised learning) is
also heavily related to our proposed method. Various works have
proposed methods for reducing the labeling burden in semantic
segmentation with approaches using image-level labels [26] or
using annotations such as points [27] or squiggles [28]. For
mobile robot navigation in particular, Gao et al. [29] introduce
a contrastive learning approach for traversability estimation,
and Schreiber [30] presents a method for weakly-supervised
traversability segmentation using point annotation. Methods
have also been introduced for boosting the accuracy of weakly-
supervised models [31], [32] and have successfully been applied
in field robotics [5], [30].

Beyond semantic segmentation, weakly-supervised learning
has been utilized with pairwise labels for tasks like intrinsic
image decomposition [15], [17] and depth estimation [14], [15],
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[16]. In these methods, relative annotations for pairs of points are
provided and are used with ranking-based losses to produce con-
tinuous outputs (in contrast to the discrete class outputs seen in
segmentation). We draw inspiration from such pairwise labeling
schemes and adapt this idea to weakly-supervised traversability
prediction.

III. METHOD

We propose a framework (W-RIZZ) for weakly-supervised
relative traversability estimation. The proposed framework in-
volves manually labeling a small number of point pairs in each
training image, where one point in a pair is labeled as more,
less, or equally traversable as compared with the other point
in the pair. By using sparse annotations, the labeling burden
compared to a strongly-supervised approach is greatly reduced,
with the time to annotate an image in W-RIZZ taking seconds
rather than minutes. The use of sparse manual annotations
(rather than self-supervision) means that our method does not
require any additional data, models, or assumptions and can
be used on existing image-only datasets. Finally, the lack of
self-supervision in W-RIZZ means that untraversable regions
can be labeled explicitly without risking damage to the robot or
its environment.

A. Data Annotation

Inspired by relative annotation strategies for tasks like depth
estimation [14], [15], [16] and intrinsic decomposition [15],
[17], we label images using a small number of pairwise an-
notations of sparse points. Specifically, given an image to be
annotated, a labeler is prompted with a pair of points and
asked to indicate which point in the pair is more traversable
(or if the points are equally traversable). The locations of the
points in a pair are selected randomly in order to capture the
natural traversability statistics of images in the dataset and since
random sampling has been shown to be particularly effective in
weakly-supervised semantic segmentation [27].

If relative traversability labels are only provided for pairs
where both pixels belong to the same image, the scale of
the traversability predictions across different images may
vary. This can lead to inconsistent predictions and may re-
quire tweaks to the controller that uses the traversability pre-
dictions. Thus, unlike the relative pairwise labeling strate-
gies described in other works (which only label relationships
within the same image) [14], [15], [16], [17], we propose
to also label pairs where each point belongs to a different
image.

For each image in a dataset, we label the relative traversability
of one pair of pixels within the image (an “intra-image” label),
and we also provide a “cross-image” label (where one pixel
belongs to the image and the other pixel in the pair belongs
to a different image). The pairings for cross-image labels are
chosen randomly, and one cross-image label is provided per
image. The annotation strategy leads to 3 pairwise labels for
every 2 images (1 intra-image pair label for each image and 1
cross-image pair label). For intra-image labels, we limit selected
pixels for an annotation pair to be at least 5% of min(W,H) apart
(where W and H are the width and height of the image) to avoid
labeling pairs where the pixels represent nearly the same loca-
tion. Fig. 2 illustrates this labeling strategy on example images
from the dataset introduced by Gasparino et al. [4]. Labeling the

Fig. 2. Illustration of our annotation strategy on the WayFAST dataset [4],
showing intra-image labeling (top) and cross-image labeling (bottom). Yellow
crosshairs indicate both points in a pair are equally traversable, while the blue
point is more traversable in pairs with blue and red crosshairs.

16558 images from this dataset with our annotation method took
approximately 3 standard working days and produced 24837
pairwise annotations.

B. Loss Function

We train a model in our proposed framework using ordinal
annotations of relative traversability. While various works de-
scribe methods for learning vision tasks using relative relation-
ships [14], [15], [16], [17], the method of Chen et al. [14] is
most similar to our desired application, presenting a ranking loss
specifically for end-to-end training of depth estimation neural
networks using sparse pairwise annotations. The loss introduced
by Chen et al. [14] can be described as follows:

LDIW(pa, pb, t) =

{
ln(1 + exp(−t(pb − pa))) t �= 0

(pb − pa)
2 t = 0

(1)

where pa is the prediction value of the first point in the pair
(point a), pb is the prediction value of the second point in the
pair (point b), and t ∈ {−1, 0, 1} is the ordinal annotation of the
point pair (with t = 0 being an equality relation, t = 1 meaning
pb should be greater than pa, and t = −1 meaning pb should be
less than pa).

In the case of inequality labels (t �= 0), theLDIW loss features a
term reminiscent of the log-loss, which pushes prediction values
in inequality pairs to be infinitely far apart. For our task of relative
traversability prediction, we found that this leads to traversability
predictions mostly at the edges of the prediction range, which is
unattractive as it degrades the predictions to binary (go/no-go)
traversability prediction.

Later work in relative depth and surface normal estimation
also describes this problem of the loss encouraging predictions
in inequality pairs to be infinitely far apart [16], and proposes
a modified loss (LSNOW) that clamps the difference pb − pa in
the original LDIW loss to remedy the issue. We instead propose
to introduce a new loss (LRIZZ) based on a squared hinge loss.
Our use of the squared hinge loss allows for squared penalty for
both inequality and equality relations, while also resolving the
issue of producing mostly extreme predictions as the hinge loss
is zero once predictions are sufficiently correct. We have found
that this loss provides improved performance over both LDIW
and LSNOW. Our LRIZZ loss is calculated as follows:

LRIZZ(pa, pb, t) =

{
max{0, L− t(pb − pa)}2 t �= 0

(pb − pa)
2 t = 0

(2)
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where pa, pb, and t are defined as before, and L is a margin
hyperparameter.

C. Training and Network Architecture

We train a model in our framework using our proposed LRIZZ
loss. However, like other work in weakly-supervised learning for
field robotics [5], [30], we use mean teacher [32] to improve the
performance of our model when trained with sparse annotations.
We maintain a teacher network and a student network that share
the same architecture, where the teacher network weights are an
exponential moving average of the student network weights. The
final loss used for training a model with W-RIZZ is a weighted
sum of an accuracy-based loss (LRIZZ) and a mean teacher
consistency loss (mean squared error). The accuracy-based loss
is computed with the student network predictions and is used to
learn the relative traversability score, while the consistency loss
penalizes differences between the teacher and student network
predictions.

Our method is agnostic to the network architecture that is
used. Any architecture for per-pixel regression tasks can be
used within the W-RIZZ framework, and different models can
be selected to balance accuracy and inference speed. For the
experiments in this letter, we adopt a modified version of the
TravNet architecture introduced by Gasparino et al. [4]. We only
use RGB camera images as input and we keep the same encoder
(based on ResNet-18 [33]). We modify the TravNet decoder
by replacing the transpose convolutional layers with standard
3× 3 convolution layers that are followed by nearest-neighbor
interpolation, and as our final layer we use a 1× 1 convolutional
layer with a sigmoid activation to yield a traversability score
between 0 and 1 for each pixel. The network can be viewed as a
function fθ : RH×W×3 �→ [0, 1]H×W . We modified the decoder
to reduce checkerboarding artifacts seen in the predictions of the
original TravNet.

In training, we apply data augmentations in the form of color
jitter, random horizontal flipping, and random cropping. As
described by Wellhausen et al. [5], geometric augmentations
(cropping and flipping) are applied in the same way to the inputs
for the teacher and student network, while color jitter is sampled
independently for the teacher and student.

IV. EXPERIMENTAL RESULTS

We validate our method using the WayFAST dataset [4]. The
dataset contains 16558 images across a variety of conditions,
such as snow, tall grass, forest-like terrain, and semi-urban
areas. We label the dataset with 24837 annotations of relative
traversability (3 pairwise annotations for every 2 images) for a
total of 49674 labeled pixels for the dataset.

For our ablation studies, we split the dataset into a training
and validation split, with 13248 training images and 3310 vali-
dation images. In all of our experiments, we use a resolution of
H ×W = 240× 424 for the inputs and outputs of our network.
Our dataset contains more equality ordinal labels than inequality
labels, and we oversample inequality labels to achieve a more
balanced number of labels. For all offline results, we use a
computer with an RTX 3080 GPU and neural network inference
takes 3 ms per image.

TABLE I
RESULTS FOR DIFFERENT VARIANTS OF W-RIZZ

A. Quantitative Results

We measure the quantitative performance of our model using
Human Disagreement Rate (HDR), which is an adaptation of
the Weighted Human Disagreement Rate (WHDR) metric given
by Zoran et al. [15]:

HDRτ (p, t) =

∑N
i 1(Lτ (pi,a, pi,b) �= ti)

N
(3)

where p ∈ [0, 1]N×2 is the set of neural network predictions at
the labeled points, t ∈ {−1, 0, 1}N is the set of ground-truth
ordinal labels, and N is the total number of labels. Lτ maps
prediction pairs to ordinal labels according to threshold τ and is
defined as follows:

Lτ (pa, pb) =

⎧⎨
⎩
1, pb − pa > τ

0, |pb − pa| ≤ τ

−1, pb − pa < −τ

(4)

We analyze the following model variants: a model with no
pretraining on RUGD [12] and no mean teacher [32] (INIT);
a model using mean teacher but with no pretraining on RUGD
(MT); and a model using mean teacher and that is pretrained
on RUGD (MT+PT). For pretraining, we train our network for
multi-class segmentation on RUGD and use the weights of all
but the last layer to initialize our W-RIZZ model. We test the
MT+PT model with ourLRIZZ loss, as well asLDIW [14],LSNOW
[16], and LRIZZ-L1 (a variant of our loss that does not square
the hinge loss and that uses absolute error for equality pairs).
Any hyperparameters for losses are chosen via grid search (all
experiments use a value of L = 0.5 for LRIZZ). In addition
to the W-RIZZ variants, we analyze the performance of the
self-supervised WayFAST [4], which is trained on the publicly
available labels in the WayFAST dataset with the same network
architecture used by W-RIZZ (which uses only RGB camera
data and is pretrained on RUGD).

We show quantitative results on the validation set for HDRτ

(overall human disagreement rate), HDR=
τ (human disagree-

ment rate on pairs labeled as equality), and HDR �=
τ (human

disagreement rate on pairs labeled as inequality) for our selected
variants at a threshold of τ = 0.25 in Table I. In Table II,
we provide results for WayFAST and the MT+PT variant of
W-RIZZ (with several different losses) at different values of the
disagreement threshold τ .

In Table I, we see that the MT+PT model withLRIZZ performs
best on HDR0.25 and HDR=

0.25 (and performs second best on
HDR�=

0.25, showing only slightly higher error than the INIT
model). Such a result demonstrates that using our LRIZZ loss
along with mean teacher [32] and pretraining on RUGD [12]
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TABLE II
RESULTS FOR MULTIPLE DISAGREEMENT THRESHOLDS

TABLE III
INTRA- VS. CROSS-IMAGE LABELING

yields the best results. However, the MT model (which is not
pretrained on RUGD) performs only slightly worse than the
MT+PT model, indicating that pretraining using existing seg-
mentation datasets is beneficial if possible but is not required
for our approach to be successful.

The results in Tables I and II show that our LRIZZ loss outper-
forms the other losses across nearly all metrics. Only for HDR0.5

(which involves a high threshold for equality) does LRIZZ not
perform best of all losses, and only LDIW performs better on this
metric. Moreover, LDIW shows relatively similar error across
equality thresholds, which suggests that it mostly produces
predictions at the extremes of the prediction range (i.e., highly
traversable or untraversable). In Tables I and II, our method
also shows significantly better HDR than the self-supervised
WayFAST [4] (which is trained with over 3000× more la-
beled pixels), likely due to the added label noise introduced
via self-supervised labeling. However, we do acknowledge that
WayFAST is not specifically trained for optimizing human dis-
agreement, so lower performance is somewhat expected.

We analyze the effect of the cross-image labeling in Table III.
For this experiment, we train models using mean teacher, pre-
training on RUGD, and LRIZZ loss. We provide results when
training using only intra-image labels (Intra) and when training
using cross-image and intra-image labels (Intra+Cross). To
ensure fair comparison, we train the two variants using the
same number of annotations (so each method uses 2 labels for
every 2 images). The results in Table III demonstrate that using
cross-image and intra-image labels outperforms using solely
intra-image labels both on overall HDR0.25 and on HDR�=

0.25. On
the other hand, we see that using only intra-image labels leads
to slightly improved error on HDR=

0.25 (although both labeling
schemes show relatively low error on this metric). Nonetheless,
the better overall HDR0.25 indicates that using cross-image and
intra-image labels is beneficial by significantly boosting the
accuracy on pairs where the ground-truth ordinal relationship
is inequality. Moreover, the use of cross-image and intra-image
labels is beneficial as it produces more consistently calibrated
traversability predictions (since predictions are optimized across
images, not just within a given image).

As labeling efficiency is a critical motivation behind our work,
in Fig. 3 we analyze the effect of the number of annotated training
images on the validation set HDR. For this analysis, we use
the MT+PT model with LRIZZ loss (where each training image

Fig. 3. Validation set HDRτ at various thresholds as a function of the number
of annotated training images.

has 3 annotated pixels). The results in Fig. 3 demonstrate that
increasing the number of annotated images greatly improves
HDR when the number of annotated images is small. As the
size of the training dataset grows, the effect of adding more
annotated images decreases. For example, training on 5000 or
10000 images shows similar HDR to training on the entire 13248
training images, indicating that labeling the entire dataset is not
crucial for high performance. However, this behavior will likely
vary for different datasets (e.g., datasets with low complexity
or low image variation may require fewer annotations for high
performance compared to more complex datasets).

B. Qualitative Results

We visualize several validation set images predicted using
W-RIZZ (using the MT+PT variant with LRIZZ loss) in Fig. 4.
The results shown in Fig. 4 demonstrate that W-RIZZ provides
accurate relative traversability predictions. Our method also
captures nuanced notions of traversability due to its relative
labeling, like the smooth concrete being more traversable than
bumpy grass in Fig. 4(a) and Fig. 4(f). Despite using only three
annotated pixels per training image, W-RIZZ can also capture
small obstacles like the metal post in Fig. 4(d) and the legs of
the table in Fig. 4(e).

In Fig. 5, we show predictions when using only intra-image
labeling and when using cross-image and intra-image labeling.
For these predictions, we followed the same training procedure
as used for the results in Table III. The results in Fig. 5 demon-
strate that using cross-image labeling significantly improves
prediction consistency. For example, if only intra-image labeling
is used, the snow mound in Fig. 5(c) has approximately the
same traversability score as the smooth concrete in Fig. 5(a),
and the untraversable tree in Fig. 5(b) has approximately the
same traversability score as the traversable grass in Fig. 5(a).
However, when cross-image labeling is incorporated, the result-
ing traversability predictions are significantly more consistent.

In Fig. 6 we provide predictions on sample images from the
WayFAST dataset [4] when trained using WayFAST and W-
RIZZ, where we train WayFAST as described in Section IV-A.
While our method uses a strategy of weakly-supervised manual
labeling (with only 3 pixels per image labeled), WayFAST labels
traction coefficients in a self-supervised manner and produces
many more annotated pixels per image. Although W-RIZZ
requires human annotation, our annotation strategy is efficient
and takes only seconds per image. Our method also does not
require any data beyond images, whereas WayFAST assumes
a kinodynamic model and requires additional data/models to
predict traction coefficients. Finally, WayFAST requires a robot
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Fig. 4. Example inference visualizations from our validation split of the WayFAST dataset [4]. The input color images are shown in the top row, and the
corresponding traversability predictions are shown in the bottom row. The traversability score ranges from 0 to 1 for each image, with a higher traversability score
indicating that a region is more easily traversed.

Fig. 5. Predictions on images from the WayFAST dataset [4], showing color
images (top), as well as predictions from a model trained without cross-image
labeling (middle) and with cross-image labeling (bottom).

Fig. 6. Example predictions on images from the WayFAST dataset [4], show-
ing color images (top), predictions from WayFAST (middle), and predictions
from W-RIZZ (bottom).

to experience traction conditions to label them, which makes it
difficult to safely label untraversable zones.

The results provided in Fig. 6 highlight important distinctions
between the predictions from WayFAST and W-RIZZ. For ex-
ample, W-RIZZ predicts higher traversability for concrete than
grass (which is beneficial as smooth concrete is likely a more ap-
pealing surface to traverse than bumpy grass if all else is equal),
while WayFAST fails to make a distinction between the two sur-
faces. In addition, the difficulty of labeling untraversable areas
with the self-supervised strategy leads to erroneous traversabil-
ity predictions in Fig. 6(b)–(e). For example, WayFAST fails to
capture the distant obstacle in Fig. 6(b), the right leg of the metal
table in Fig. 6(c), and the concrete pillar in Fig. 6(e). WayFAST
also produces odd, overly-cautious predictions regarding the tree
in Fig. 6(d). By comparison, W-RIZZ produces significantly
more accurate predictions for obstacles.

TABLE IV
W-RIZZ VS. STRONGLY-SUPERVISED SEGMENTATION ON RUGD

C. Comparison to Strongly-Supervised Segmentation

We additionally compare our sparse annotation method to
strongly-supervised segmentation on the RUGD dataset [12].
This dataset consists of images which are labeled for semantic
segmentation using 25 classes (if the void class is included)
relevant to outdoor navigation in unstructured environments, and
we divide its semantic annotations into 4 traversability tiers:
tier 3 (concrete and asphalt), tier 2 (dirt, sand, grass, gravel,
mulch, and rock-bed), tier 1 (water and bush), and tier 0 (all other
classes), where low tiers correspond to lower traversability. We
use these tiers to create automatic annotations for W-RIZZ (with
3 annotated pixels per image) which we use to train our model.
We use automated annotations to ensure consistent comparison
to the strongly-supervised labeling. As over 90% of the pixels
in the top half of training set images correspond to sky or tree,
we bias our sampling such that 90% of samples must be in
the bottom half of the image (with the remaining 10% being
unrestricted) to provide more informative labels. We train the
MT W-RIZZ model (i.e., we do not pretrain on RUGD) using the
sparse automatically-generated annotations, and compare our
method to a strongly-supervised model using the same network
architecture (where the last layer is modified to produce 25-class
segmentation outputs).

We provide results for our method and the strongly-supervised
approach on the RUGD test set in Table IV. We compute
our metrics assuming 4-class segmentation of the traversabil-
ity tiers described earlier, and report mean intersection-over-
union (mIOU ) and mean pixel-wise accuracy (mAcc), where
the means are computed over the 4 classes. We also provide
frequency-weighted metrics where the mean is weighted by the
relative frequency of each class (fw -mIOU and fw -mAcc).
To convert the traversability scores from W-RIZZ to dis-
crete traversability tiers, we compute the cutoff that differen-
tiates tier N from tier N − 1 (N ∈ {3, 2, 1}) as cutoffN =
(μN−σN )+(μN−1+σN−1)

2 , where μN and σN are the mean and
standard deviation of the W-RIZZ traversability scores for tier
N on the training set. The segmentation model produces 25-class
outputs, and we remap these to the 4 traversability tiers for our
metric calculations.
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The results in Table IV highlight that our sparse annota-
tion strategy shows reasonably high performance despite using
very few labeled pixels in training. Even though only three
annotated pixels are provided for each training image, W-RIZZ
shows results within 4% of the strongly-supervised segmenta-
tion approach for each metric, despite the strongly-supervised
model being trained with significantly more annotations (as the
strongly-supervised segmentation model is trained using images
where every pixel is labeled).

D. Real-World Experiments

We further analyze our method by conducting real-world
experiments on a TerraSentia robot (a skid-steer robot devel-
oped by EarthSense Inc.). For these experiments, we utilize
the traversability predictions from W-RIZZ with a non-linear
model predictive controller (NMPC) described by Gasparino et
al. [4]. The neural network inference and controller are run on the
robot’s onboard computer (Jetson AGX Orin) at15Hz.While we
use the controller introduced by Gasparino et al. [4] for these
experiments, W-RIZZ is agnostic to the control strategy and
can be used with other controllers that consume traversability
prediction images.

We compare our approach against the following baselines:
1) LiDAR: an obstacle-avoiding approach based on purely

geometric information acquired by a 2D LiDAR unit.
2) WayFAST [4]: an RGB-only variant of a state-of-the-art

self-supervised visual traversability prediction method.
3) WayFAST* [4]: an enhanced version of WayFAST trained

on a different dataset and using the RGB-D WayFAST
network architecture.

The W-RIZZ and WayFAST models are trained with the same
neural network architecture (which uses only RGB images) on
the full dataset from Gasparino et al. [4]. We train W-RIZZ using
our relative traversability labels, and we train WayFAST using
the labels from the WayFAST dataset.

The robot used for our experiments had a camera setup that
differed slightly from that of the original WayFAST dataset
(the WayFAST dataset has a different camera that is angled
more towards the ground). While this did not cause issues with
W-RIZZ, it led to poor performance of the original WayFAST
model. Thus, we provide results with WayFAST*, which is
trained on a new dataset that more closely matches the camera
setup of the robot used for the experiments and that uses the
RGB-D network architecture from WayFAST (which utilizes
RGB and depth images). The W-RIZZ model used in these
experiments is only trained on the original WayFAST dataset
and does not use a depth camera.

We perform our navigation experiments in a grove of trees
where a robot must navigate approximately 20m between obsta-
cles to reach a goal; the setup of the experiment is shown in Fig. 7.
We perform 5 navigation trials for each method, and the results
are shown in Table V. All methods took approximately the same
time to reach the goal (if the goal was reached). Videos from the
experiments and for a longer navigation task are provided as
supplemental material.

The results from Table V demonstrate that both the LiDAR
baseline and W-RIZZ are able to successfully navigate the
course in all attempts. The WayFAST model (trained on the
same data as W-RIZZ) crashed into a tree in every navigation
attempt. These results suggest greater generalization capability

Fig. 7. Navigation experiment setup, showing the TerraSentia robot (left), as
well as a sample camera image from the robot (top right) and the associated
traversability prediction from W-RIZZ (bottom right).

TABLE V
ROBOT NAVIGATION EXPERIMENTAL RESULTS

with W-RIZZ when compared to WayFAST. The results for Way-
FAST* show improved performance compared to WayFAST,
demonstrating that incorporating depth and retraining on a new
dataset help to overcome the domain shift. However, even when
given such training advantages over W-RIZZ, WayFAST* still
showed lower navigation success rate than W-RIZZ (in one of
its navigation attempts WayFAST* failed to avoid an obstacle,
crashing into a tree).

While both W-RIZZ and LiDAR show 100% success rate
in our experiments, we note the difference in the perception
method of RGB camera versus 2D LiDAR. The 2D LiDAR
has a greater field of view and produces simpler measurement
data that only provide a purely geometric view of the environ-
ment, which can fail for traversable obstacles like tall grass and
cannot capture features like smoothness of terrain. The richer
vision-based sensing modality used by W-RIZZ can capture
such nuances as shown in Section IV-B. The 2D LiDAR can
also display measurement limitations, as obstacles above or
below the measurement plane of the LiDAR unit cannot be
detected.

V. CONCLUSION

We have introduced a novel method of relative traversability
estimation that uses a small number of sparsely annotated point
pairs which are labeled with annotations of relative traversabil-
ity. We enhance the performance of our method by introducing a
new loss for relative traversability estimation and a novel cross-
image labeling scheme. We have validated our approach through
offline evaluation in various settings (including snow, tall grass,
forests, and semi-urban areas) and through deployment on an
actual mobile robot platform.

Although our method does not depend on the robotic plat-
form that is used, it shows the limitation of requiring rela-
beling of data if a robot’s capabilities change significantly.
In addition, while our method still requires manual effort
for labeling, the sparse relative annotation scheme is simple,
does not need extensive training, and demands significantly
less effort than labeling for strongly-supervised segmentation
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(while maintaining high accuracy). Our use of manual rela-
tive traversability labels also circumvents the need to define
semantic classes and does not assume constant traversabil-
ity characteristics within semantic classes (in contrast to se-
mantic segmentation approaches), allowing for direct predic-
tion of a continuous traversability score while not requiring
robot experience or the data, models, or assumptions needed
in self-supervised approaches. Our framework can be used
with any neural network for dense prediction tasks and is
compatible with techniques like pretraining to further improve
results.

Our online experiments demonstrate that our method can out-
perform a state-of-the-art self-supervised approach and shows
greater robustness to domain shifts like varying camera angles.
Possible future work includes incorporating additional methods
for weakly-supervised learning (e.g., pseudo-labeling) and com-
bining our method with foundation models to improve accuracy
and generalization performance.
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