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AI-CPG: Adaptive Imitated Central Pattern
Generators for Bipedal Locomotion Learned
Through Reinforced Reflex Neural Networks

Guanda Li , Auke Ijspeert , and Mitsuhiro Hayashibe

Abstract—Humans have many redundancies in their bodies and
can make effective use of them to adapt to changes in the envi-
ronment while walking. They can also vary their walking speed
in a wide range. Human-like walking in simulation or by robots
can be achieved through imitation learning. However, the walking
speed is typically limited to a scale similar to the examples used for
imitation. Achieving efficient and adaptable locomotion controllers
for a wide range from walking to running is quite challenging.
We propose a novel approach named adaptive imitated central
pattern generators (AI-CPG) that combines central pattern gener-
ators (CPGs) and deep reinforcement learning (DRL) to enhance
humanoid locomotion. Our method involves training a CPG-like
controller through imitation learning, generating rhythmic feed-
forward activity patterns. DRL is not used for CPG parameter
tuning; instead, it is applied in forming a reflex neural network,
which can adjust feedforward patterns based on sensory feedback,
enabling the stable body balancing to adapt to environmental or
target velocity changes. Experiments with a 28-degree-of-freedom
humanoid in a simulated environment demonstrated that our ap-
proach outperformed existing methods in terms of adaptability,
balancing ability, and energy efficiency even for uneven surfaces.
This study contributes to develop versatile humanoid locomotions
in diverse environments.

Index Terms—Bioinspired robot learning, legged robots,
machine learning for robot control.

I. INTRODUCTION

HUMANOID robots have been a topic of interest for re-
searchers because of their potential to revolutionize var-

ious fields, such as healthcare, industry, and entertainment [1].
These robots are designed to mimic human behavior, movement,
and communication, making them more approachable and re-
latable to humans [2]. Humanoid robots can walk on both legs
similar to humans, in a feature known as bipedal locomotion.
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Therefore the humanoid robots can navigate and interact with
environments designed for humans, making them more versatile
and useful for various applications [3], [4].

Despite the potential advantages of humanoid robots with
bipedal locomotion, adaptively controlling humanoid robots
is challenging because of their complex dynamics and overly
redundant degrees of freedom (DoFs) [4]. One of the current
issues that should be addressed is related to the gait coordi-
nation of humanoid robots, which can significantly affect their
overall performance. Some existing humanoid robots, including
advanced models like Atlas from Boston Dynamics, have made
significant progress, yet there is still room for improvement to
enhance their adaptability to complex and unknown environ-
ments. Furthermore, current humanoid robots often struggle to
adapt to changes in their surroundings, which makes them less
efficient and effective [5], [6]. To overcome these challenges, the
gait of humanoid robots should be improved with a focus on en-
hancing energy efficiency, increasing flexibility, and improving
adaptability to complex environments through learning.

Deep reinforcement learning (DRL), a machine learning al-
gorithm has gained significant attention in recent years owing
to its potential to solve complex problems in various fields,
including robotics [7], [8]. DRL involves training an agent to
learn the optimal behavior through trial-and-error interactions
with its environment, using a reward signal to guide its actions.
In robotics, DRL has been used to improve the performance
of various tasks, such as grasping [9], locomotion [10], espe-
cially on the quadrupedal robots [11], [12]. However, one of
the current obstacles in applying DRL to humanoid robots is
the large dimensional space that should be explored and the
imbalance of biped locomotion. This makes it challenging to
learn a desirable gait directly because there are significantly
many possible combinations of movements to consider and
many lead to falls. Currently, the application of DRL in hu-
manoid locomotion necessitates intricate reward functions and
high computational costs [13], or a reduction in the robot’s
DoFs [14]. Therefore, new methods and techniques to address
this challenge and enable DRL to effectively control humanoids
by managing high dimensionality, are desirable.

Inspired by neuroscience, central pattern generators (CPGs)
are another promising approach for improving legged robots
locomotion [15]. CPGs are neural circuits located in the spinal
cord that generate rhythmic patterns of muscle activity, such
as those used during walking and running [16]. Using CPGs,
robots can achieve more natural and stable movements, similar to
those of living organisms [17], [18], [19]. The CPG mechanism
involves a network of interconnected neurons that generate
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Fig. 1. (a) Schematic of the central pattern generator mechanism in human locomotion. CPG is designed to combine motor rhythm with sensory feedback to
achieve a bipedal gait. (b) The control framework of our study comprises feedforward and feedback controllers. The feedforward controller is the generative shaping
network output of the joint angles θ of the robot, while the PD controller calculates the output torque τg based on the input target angles θ. The feedback controller
consists of a reflex neural network trained by DRL, which takes environmental information as the input and outputs the joint torque τr . (c) Humanoid model in
the simulation environment with DoFs distribution.

oscillatory signals that are transmitted to the muscles respon-
sible for movement. In animals, the reflex circuit usually works
together with CPGs as a feedback control [20]. Computational
models were used to investigate the merging of CPGs with
sensory feedback [21], [22], [23]. However, the question of how
to effectively integrate and apply them to humanoid locomotion
control remains unresolved [20], since CPGs can potentially
constrain the control space and help decrease dimensionality but
to be adaptive and flexible for different environments, it should
be well supported by reflex networks.

Our study aims to enhance learning-based algorithms for
humanoid locomotion using CPGs with a sensory feedback
mechanism. We trained a CPG controller using imitation learn-
ing and then trained a reflex neural network using DRL. Unlike
other algorithms that use reinforcement learning for imitation
purposes [24], [25], our training objective was not only to make
the agent behave similarly to the collected human motion data;
we used imitation learning to train a CPG-like controller to form
feedforward control. The CPG-like controller was designed to
generate rhythmic patterns of joint torques, similar to those gen-
erated by CPGs in living organisms. We use imitation learning
for training pattern formation of CPG to avoid the complex
calculations and tuning required by other nonlinear functions,
such as Hopf and Matsuoka Oscillators [26]. The reflex neural
network was then trained with DRL to adjust the movements
generated by the CPG-like network based on sensory feedback,
allowing the robot to adapt to changes in the environment. Re-
garding the combination of CPG and RL, CPG-RL was recently
proposed for learning and modulating oscillator parameters of
CPG [18]. In this research, reinforcement learning is used for
forming a reflex neural network to support CPG rather than
forming CPG itself.

The contribution of this study is that we propose a new
learning-based control framework for the locomotion task of
a legged system inspired by CPG with a reinforced reflex neural
circuit mechanism, without reducing the robot’s DoFs. Our
method employs a CPG as a feedforward controller, which is
trained by imitation learning, and another reflex neural network
as a feedback controller, which is trained using DRL. Then
we verify the performance of the proposed framework, which
can adapt to environmental changes, and demonstrate its per-
formance through a comparative study with existing learning
methods. Our approach is based on bio-inspired mechanisms,
which help us better understand the potential mechanisms of

human locomotion and develop more sophisticated and versatile
humanoid robots with improved locomotion capabilities in a
variety of environments.

II. METHOD

A. CPG-Learning

Our control framework, adaptive imitated CPG (AI-CPG),
consists of rhythm generator G, which defines the rhythm of
motor activities; pattern formation layer S, which shapes the
rhythmic timing signals to the target joint angles of the robot;
PD controller, which outputs the motor commands based on the
error between current joint angles and target joint angles; and
reflex neural network controller R based on sensory feedback,
as shown in Fig. 1(b).

During the process of controlling the robot locomotion, the
speed command in Fig. 1(b) modulates the robot’s speed by
altering the frequency of G and S. This corresponds to a similar
mechanism in Fig. 1(a), where the brain adjusts the human motor
pattern by descending modulation to the spinal network. Pre-
vious research has shown how descending modulation adjusts
the activity of the CPG [23], collaborates with a sensory-driven
model [27], [28], and facilitates walk-run transitions [29].G and
S served as feedforward CPG controllers that reduce the dimen-
sionality of the action space of the robot using prior knowledge.
Contrarily, R serves as a feedback controller responsible for
maintaining the balance of the robot and adapting to the given
physical environment.

1) CPG Controller: The rhythm generator G is defined by

G(Tk) = sin(2πfTk), (1)

Tk = [tk, tk+1, tk+2, · · · , tk+i]. (2)

The input of G is a set of sine wave phase oscillators starting
from different timesteps. i is the number of phase oscillators
and f is the adjustable frequency. The output of G is called the
fundamental timing signal w and is the input to S. The output
θt of S(w) is the target angles of the robot joints.

As shown in Fig. 2(a) and (b), We trained S through imitation
learning using human motion data from the CMU motion capture
database [30], which consisted of a set of gait data both for
walking and running. We used Fast Fourier Transform (FFT) to
obtain the motion frequencies fw and fr for the two sets of data.
Based on the motion frequencies and G, we calculated the input
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Fig. 2. Training approach of a pattern formation layer. (a) Dataset for training generative shaping network with fixed-length segments of sine signals as input
features and motion data obtained from human subjects as the corresponding output labels. The frequency of the sine signals was calculated using FFT from the
real motion data. The generative model was trained using supervised learning. (b) Generating different motion data by varying the input sine signal frequency from
the generative shaping network within six seconds. Owing to the periodicity of the input sine signal, the generated motion data exhibited basic rhythmic activity
patterns similar to the neural signals outputted by the CPG. fw and fr are the frequencies of the real human walking and running data.

features used for training. After mapping the input features to the
real motion data in the time series, we obtained a training dataset
that was used to train S by supervised learning. By varying the
frequency f of the input sine wave signal to S(t, f), we could
generate the joint angles and torques of the humanoid robot
corresponding to different movement speeds.

In our study, S was a multilayer perceptron (MLP) with an
input layer of size 50 (the same as the value of i in (2)), a hidden
layer of size [128, 128], and an output layer of size 28. The
activation function is ReLU. Using a PD controller, we obtained
the joint torque τg of the robot from the target joint angles θt(t)
and actual joint angles θ(t).

e(t) = θt(t)− θ(t), (3)

τg(t) = Kpe(t) +Kd
d

dt
e(t), (4)

where for the three joints on the torso Kp is 750, and for the
remaining joints Kp is 250. Kd for all joints is 1.

2) Reflex Neural Network: The reflex neural network
controller was trained using proximal policy optimization
(PPO) [31]. During the training process, S produced rhythmic
control signals to the robot. We used 8,192 agents in parallel to
interact with the environment and collect data. Each agent was
assigned a different frequency f such that R could simultane-
ously learn how to keep the humanoid stable under the influence
of S at different motion frequencies.

After the training, changing the input frequency f in both
G(t, f) and R(t, f) enabled the humanoid to move at different
speeds and both for walking and running.

The reward function R for training R is

R = Rh − αRe +Ra +Rs +Rd + βRg. (5)

Rh is the height of the humanoid head, which helps the robot
learn to stand. Re is used to limit the energy consumption of R

with an α value of 0.5.

Re =
∑
J

|τj(t)ωj(t)|+ τ2j (t). (6)

If the robot falls, we set the total reward R to zero and reset the
environment. Contrarily, if the robot does not fall, it gets an ac-
cumulating survival rewardRa = 1 in each timestep.Rs is equal
to zglobal · zpelvis, which is used to optimize the orientation of
the pelvis and improve the robot’s balance. Rs equals 1 when
the pelvis’s z-axis is perpendicular to the ground, and Rs equals
0 when it is parallel to the ground. Rd is used to teach robots
to move in a target direction and is equivalent to the velocity of
the robot in the target direction. The higher the velocity towards
the target, the greater the reward Rd received by the robot. Note
that our reward function does not directly specify the movement
speed of the robot. The robot can move at different speeds is
only influenced by changes in the input frequency f . Rg is used
to reduce e(t) in (3), which is

e =

∣∣∣∣∣
∑
J

e(t)

∣∣∣∣∣ (7)

Rg =

{
1− e/b, e ≤ b
0, e > b

, (8)

where b is 2.5, and β is 5.0 in (5).
Compared with other studies that use DRL to train humanoid

robots [13], [14], our reward function does not include terms
related to tracking velocity and motion trajectory.
R is an MLP with an input layer of size 192 corresponding to

the size of the observation space. The observation space includes
the robot’s joint angles, angular velocities, foot pressures, spatial
orientation, target anglesθt(t), and output torquesτg of the CPG
controller. The output layer has a size of 28, which is the same
as the number of joints in the robot. The output of R is τr .
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The hidden layer sizes are [512, 256, 128], and the activation
function is ReLU. The joint torque τ applied to the robot is the
sum of τg and τr .

B. Simulation Method

The simulation software used in our study is Isaac Gym,
which stores all computational data as tensors in the graphics
processing unit (GPU), enabling the DRL algorithm to collect
data for training from thousands of actors through a parallel
training framework [32]. This approach takes full advantage
of the computing power of the GPU and eliminates the need
to transfer data from the central processing unit (CPU) to the
GPU during simulation and training, significantly improving the
training speed of DRL.

We used a humanoid robot with a height of 1.6 m and weight
of 48.9 kg, 28 DoFs, and 13 links throughout its body, as shown
in Fig. 1(c), for both of training and evaluating the performance
of the proposed approach. First, we compared our method with
other learning methods for controlling the humanoid gait. Sec-
ond, we performed a transition task from walking to running
and analyzed the changes in gait. Third, we trained and tested
the performance of the humanoid on uneven terrain, where the
robot has to adjust its gait to maintain postural balance.

C. Evaluation Index

The following indexes are used to evaluate the performance
of the humanoid robot after training:

1) Symmetry Index: Symmetric gait is considered normal
in human walking; therefore, we used the symmetry index to
determine the similarity of a robot’s gait with that of a human.
The symmetry index refers to the extent to which movement
patterns are similar between the left and right sides of the body
and is calculated by dividing the difference between the left and
right parameters by the sum of the left and right parameters. A
typical equation [33] used to calculate the symmetry index is

SI =
(XR −XL)

0.5 (XR +XL)
, (9)

where XR and XL could be the angles, angular velocities, or
torques of the joints produced by the left and right limbs. A
value of SI close to zero indicates a symmetric gait, whereas
far from zero indicates an asymmetric gait.

In our study, the equation used to calculate the symmetry
index is

SI =
1

T · J
T∑

t=0

∑
J

|XR(t, j))−XL(t, j)|
0.5 (XR(t, j) +XL(t, j))

, (10)

where T is the number of timesteps in one test trial, J is the
joint number of the robot, and XR(t, j) and XL(t, j) are the
joint angles of the limbs on the left and right sides of the robot,
respectively.

2) Froude Number: The Froude number (Fr) is a dimen-
sionless quantity used to determine whether a person is walking,
running, or performing other forms of locomotion [34]. Humans
tend to transition from walking to running atFr between 0.4 and
0.6, with individual variations depending on factors, such as age,
fitness level, and body proportion [35].
Fr is used to determine the gait pattern of the robot. When

the Froude number is closer to zero, the gait of the robot tends
to be more stable and suitable for slow movements. Conversely,

when the Froude number is large, the gait tends to be more
dynamic and unstable and is suitable for fast movement. When
the Froude number was approximately 0.5, the gait was in a
transitional state. Fr is expressed as

Fr =
v2

gL
, (11)

where v is the characteristic velocity, g is the gravitational
acceleration, and L is the characteristic length. In this study,
v is the average velocity of the center of mass of the robot on
the x-axis, g was 9.81 m/s2, and L is the total leg length of the
humanoid robot (0.855 m).

3) Average Velocity and Cost of Transport: We employed the
following equations to compute the average velocity v and cost
of transport (CoT) of the robot during movement:

CoT =
p

mgv
=

∑T
t=0

∑
J |τ(t, j)ω(t, j)|

mg
∑T

t=0 vt(t)
(12)

where vt represents the velocity of the robot’s CoM in the target
direction, τ is the torque of the robot’s joints, ω is the angular
velocity of the robot’s joints, T is the number of time steps, J is
the number of robot joints, m is the mass of the robot, and g is
9.81 m/s2.

4) Balance: We assessed the robot’s balance in motion by
measuring the offset between the pelvis (lower part of the trunk)
and the ground on the z-axis directional vectors. The equation
to calculate the balance index BI is

BI =
1

T

T∑
0

zglobal · zpelvis, (13)

where zglobal and zpelvis are the direction vectors of the ground
and robot torso on the z-axis, respectively. A value of BI close
to one indicates better balancing ability.

III. RESULTS

A. Comparison

To showcase the features of our new control framework, we
trained a humanoid agent to perform the task of moving along
a straight line at different speeds on flat ground. We used two
algorithms, PPO [31] and Adversarial Motion Priors (AMP) [25]
for comparison. PPO is one of the most commonly used DRL
methods in robotics. Its advantage is to handle high dimensional
and continuous state and action spaces with stable training
performance. AMP is a new algorithm for animation generation
and robot control that combines imitation learning, adversarial
learning, and DRL. It is an efficient method for imitating natural
and lifelike behaviors from real motion data without requiring
the artifical design of reward functions.

To ensure that the experimental conditions were as similar as
possible during training, the number of epochs for each of the
three algorithms was 3,000, with each epoch lasting for 1,000
iterations. The number of actors trained in parallel was 8,192
and the neural networks used were MLP with hidden layers of
sizes [512, 256, 128] for all three algorithms. The two sets of
real-motion data used to train the AMP were identical to those
used to train the AI-CPG.

The reward function of the PPO algorithm is similar to AI-
CPG. The only difference is we use Rt instead of Rg in the
reward function (see (5)). Rt is used to set the target velocity
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Fig. 3. Performance comparison of humanoid agents trained using AI-CPG, AMP, and PPO. (a) Cost of transport at different speeds. (b) Symmetry indices at
various speeds. (c) Number of the robot falls within one minute under random disturbances. Red lines indicate the results of AI-CPG, and blue and green dots
indicate the results of AMP and PPO. The red shaded area represents the standard deviation of the corresponding points; the blue and green shaded areas represent
the standard deviation of corresponding points on the x- and y-axises. (d) The variation in the flight phase ratio of AI-CPG result at different speeds. The black
dashed line indicates the points of gait transition. The stable walking gait ends at 2.0 m/s, and the stable running gait begins at 2.8 m/s. (e) and (f) Motion examples
of three algorithms at walking and running. The motion pattern results could be referred at the accompanying video of the letter.

for the humanoid robot. For the AMP algorithm, we do not
explicitly set a reward function. The style reward in AMP is
derived through an automatic learning process from a dataset of
reference motion clips. The observation space of AMP and PPO
is similar to that of AI-CPG but does not contain the information
in the CPG controller part of AI-CPG.

For the PPO algorithm, we set the target velocities in the
reward function to 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0 [m/s]. The
AMP algorithm learns two different speeds based on the walking
and running gaits of human motion data it uses. For AI-CPG,
the range of input frequency of the CPG generator is [0.8, 1.4]
for training and [0.7, 1.4] for testing. After every 100 training
epochs, the neural network was saved as a checkpoint. We
selected the checkpoints with the highest average velocity in
each round of training as the convergence results after training.
We trained each algorithm with five random seeds, and the
results are shown in Fig. 3.

By comparing the CoT at different average velocities in
Fig. 3(a), we can notice that the agent trained with the AI-CPG
could adjust its movement speed using only one neural network
controller even for a wide range of speeds. In addition, the
U-shaped CoT-velocity relationship in walking and the linear
CoT-v relationship in running is very similar to the actual human
case relationship [36]. However, the movement speed of the
robot trained using the PPO algorithm was limited to the design
of its reward function. The AMP algorithm focuses excessively
on making the robot’s movements similar to the real motion data,
which makes it hard to flexibly adjust the robot’s movement
speed. Additionally, compared to the AMP algorithm, the PPO
and AI-CPG algorithms optimized the energy efficiency of the
robot during movement by following the energy consideration
at the reward function.

In Fig. 3(b), we compared the symmetry index of the robot at
different speeds, and in Fig. 3(e) and (f), we visually display the
gait of the robot moving in the simulator. We found that because
the PPO algorithm did not reference any real motion data during
training, its gait symmetry was far worse (i.e. with higher values)

than that of the AMP and AI-CPG. These abnormal gaits limit
the application of the PPO method in real-world robots.

As shown in Fig. 3(c), we verified the robustness of the gait
controller by applying a certain high random disturbance force
from −200 N to 200 N for all axes to the torso of the trained
agent during gait. The external force was applied for a duration of
0.1 s for every second. The results are the averages of the last five
checkpoint test results for each random seed training. During the
60-second test, it was observed that for robots controlled by the
same algorithm, the low-speed motion state is more unstable
than the high-speed state. Moreover, the AI-CPG and AMP
experienced fewer instances of falls compared with the PPO over
most of the speed ranges. This suggests that the human-like gait,
which AMP and AI-CPG learn from human motion data, is more
robust against external disturbances compared to the abnormal
gait of PPO.

In Fig. 3(d), we use the “flight phase ratio” to determine the
agent’s gait. The flight phase refers to the phase in which both
feet are not in contact with the ground during one complete gait
cycle. The “flight phase ratio” indicates the proportion of time
during the gait cycles when it is in the flight phases. According
to the flight phase ratio, the moving speed controlled by AI-CPG
is divided into three periods by the black dashed line in Fig. 3(a)
and (d). The leftmost period represents the stable walking gait
without a flight phase. The middle range represents a transition
gait where the flight phase fluctuates. The rightmost period
represents the stable running gait, where the float phase ratio
is greater than zero and steadily increases with speed. The result
confirms that AI-CPG lets the neural network learn different
gaits including transitions up to running successfully.

Based on a comparison of the three methods above, we can
conclude that AI-CPG combines the advantages of imitation
learning and DRL. Through the shaping of the reward function,
DRL assists the robot in learning to maintain balance and
optimize energy efficiency. The human-like gait learned from
human motion data enables AI-CPG to better resist external
disturbances. Additionally, the feedforward control mechanism
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Fig. 4. Analysis of the transition process from walking to running gait in humanoid robot trained and controlled using the AI-CPG method. (a) Sinusoidal signals
with increasing frequency were used as inputs to the rhythm generator of the CPG controller. The x-axis represents the frequency increase over time and the y-axis
represents the amplitude of the input signal. The total duration was 30 seconds, and the rate of frequency increase was 0.023 Hz/s. (b) Correspondence between
robot center of mass velocity, Froude number, flight phase ratio, input frequency of AI-CPG, and motion time. The transition velocity was 2.05 m/s when the Froude
number was 0.5. The black dashed line indicates where the gait of the robot changes. When the frequency is less than 0.93 Hz, the robot has a stable walking gait,
and when the frequency is greater than 1.14 Hz, the robot has a stable running gait. (c) Transition schematic from walking to running gait. (d) Time diagram of
walking gait cycles from 2.0 to 5.0 s. (e) Time diagram of running gait cycles from 27.0 to 30.0 s.

in the CPG part of AI-CPG enables it to consistently handle a
wide range of moving speeds and different gaits.

B. Transition From Walking to Running

By adjusting the value of f at the checkpoint trained in
Section III-A, we achieved a smooth transition in the robot’s
gait from walking to running. The relationship between f and
time t is f(t) = 0.7 + 0.023t. As shown in Fig. 4(a), an increase
in f causes the input sine signal to gradually become denser in
the AI-CPG, leading to an adjustable dynamic gait. Meanwhile,
in Fig. 4(b), we observed the gait transition in the different stages
of the result. A time window of 60 time steps (1 s) is used to
calculate the flight phase ratio. When both t and f are small, the
robot moves slowly in a walking gait. The flight phase ratio, Fr,
and the gait diagram in Fig. 4(d) confirm this observation. As t
and f increased, the speed of the robot also increased, and the
flight phase ratio gradually increased and fluctuated, indicating
a transition gait of the robot. When the frequency is greater than
1.14 Hz, The robot transitioned to a stable running gait with
further increases in t and f , as shown in Fig. 4(e).

One advantage of the AI-CPG that can be observed from
this result is its ability to adjust the speed of the robot during
its movement simply with tonic input through f . This special
feature enables the humanoid to operate more efficiently and
effectively in real-world applications, making it a versatile and
flexible solution for various scenarios.

C. Locomotion on Uneven Terrain

We retrained and tested the locomotion task of the humanoid
on an uneven terrain using the PPO, AI-CPG, and AMP algo-
rithms with the same training parameters as those described in
Section III-A. The uneven terrain consisted of a triangular mesh
and exhibited a height variation range of 10 cm. Fig. 5(a) shows
the changes in the motion trajectory of the robot as the training

iterations increased at different target velocities. The results
indicate that PPO and AI-CPG were successful in controlling
the movement of the robot on uneven terrain, whereas AMP
failed to learn the task.

In the early stages of training, both the PPO and AI-CPG
had a disordered velocity vector (indicated by the dark-colored
arrow in the figure) that clustered around the origin, making
the agent unable to move effectively. As the number of training
iterations increased, the velocity vector gradually aligned with
the positive x-axis and shifted toward the right, indicating that
the agent learned to move in the desired direction. Conversely,
AMP’s trajectory and velocity vectors were always disorganized
and haphazard.

In Fig. 5(b), we compared the experimental results of PPO
and AI-CPG and found that AI-CPG outperformed PPO in terms
of the symmetry index, balance index, and cost of transport at
two different moving speeds. It is important to note that the
AI-CPG case is with the same neural network both for walking
and running, whereas PPO needs a different neural network for
walking and running, respectively. Furthermore, the standard
deviation of the AI-CPG results was smaller, indicating a more
stable learning process. Finally, transition from walking to run-
ning was tested on uneven terrain, which is quite challenging
task. Similar to the flat surface result described in Section III-B,
the AI-CPG could manage to implement a speed transition from
walking to running on uneven terrain, as shown in Fig. 6.

IV. DISCUSSION

In this study, we propose a learning framework that combines
a generative imitative neural network and a reinforced reflex
neural network controller to achieve stable, energy-efficient,
and natural control of humanoid bipedal locomotion. The pro-
posed framework can control the motion speed both for walking
and running, and the direction of the robot and can adapt to
different environments and terrains, as demonstrated by the
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Fig. 5. Training and testing results of humanoid locomotion task on uneven terrain. (a) Changes in the motion trajectory of the agent as the training epoch
progresses at walking speed (1.5 m/s) and running speed (3.0 m/s) for the three algorithms. The position of the arrow corresponds to the position of the robot, and
the direction and magnitude of the arrow represent the direction and magnitude of the velocity vector of the robot, respectively. The color bar represents the number
of epochs for which the robot was trained. Lighter arrows indicate an increased number of training epochs. (b) Bar chart used to compare the mean and standard
deviation of the velocity, symmetry index, balance index, and cost of transport of the PPO and AI-CPG methods for walking and running. (c)-(d) Agent moving
on uneven terrain using (c) walking gait and (d) running gait controlled by the same AI-CPG controller.

Fig. 6. Transition process from walking to running on uneven terrain. The
variation for the humanoid’s center of mass velocity and the Froude number.

successful locomotion of the humanoid under different gait
patterns and speeds. The generative neural network generated
periodic control signals based on real human motion data, mak-
ing humanoid locomotion more natural and intuitive. Moreover,
the reflex neural network could simultaneously learn to keep
the high DoFs humanoid stable under the influence of a gener-
ative neural network at different frequencies, which can finally
create Adaptive Imitated Central Pattern Generators, keeping
a good balance of human motion imitation and adaptive ca-
pabilities by reinforcing reflex networks. It demonstrated the
advantages of energy efficiency, postural balance coordination,
and natural symmetry indexes.

One limitation of our study is that we tested the framework
only in a simulated environment as a first-step evaluation. Fur-
ther testing with a real robot is necessary to evaluate the effec-
tiveness of the framework in the real world. Another limitation

is that we tested only the locomotion task in a straight direction.
It would be interesting to investigate the application of the
proposed framework to other motor tasks.

In this work, reflex neural network was formed by us-
ing DRL, however the model-based approach for parameter-
tuning reflex circuit is also an important research direction
for understanding its internal mechanism of adaptive gait
control [37].

V. CONCLUSION

Inspired by the roles of CPGs and reflex neural circuits
in controlling legged locomotion in human, we proposed a
novel control framework for humanoid locomotion based on
imitation learning and reinforced reflex networks. Our AI-CPG
control framework combines the advantages of feedforward and
feedback control and improves the utilization efficiency of real
motion data extending its speed variation. To evaluate the effec-
tiveness of our control framework, we compared our controller
with other learning-based controllers widely used for robot gait
control. The results demonstrate that our controller outperforms
other state-of-the-art deep reinforcement and imitation learning
controllers in terms of energy efficiency, balancing ability, and
adaptability for a wide range of moving speeds even on uneven
surface. Our controller has the benefits of flexible gait speed
adjustment during humanoid locomotion with only a single
training session and one neural network, which can complete
the gait transition from walking to running, at different speeds
and on uneven terrains.
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