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Abstract—Visual active tracking is a growing research topic in
robotics due to its key role in applications such as human assistance,
disaster recovery, and surveillance. In contrast to passive tracking,
active tracking approaches combine vision and control capabilities
to detect and actively track the target. Most of the work in this
area focuses on ground robots, while the very few contributions on
aerial platforms still pose important design constraints that limit
their applicability. To overcome these limitations, in this letter we
propose D-VAT, a novel end-to-end visual active tracking methodol-
ogy based on deep reinforcement learning that is tailored to micro
aerial vehicle platforms. The D-VAT agent computes the vehicle
thrust and angular velocity commands needed to track the target
by directly processing monocular camera measurements. We show
that the proposed approach allows for precise and collision-free
tracking operations, outperforming different state-of-the-art base-
lines on simulated environments which differ significantly from
those encountered during training. Moreover, we demonstrate a
smooth real-world transition to a quadrotor platform with mixed-
reality.

Index Terms—Aerial Systems: Applications, reinforcement
learning, visual tracking, visual servoing.

I. INTRODUCTION

M ICRO aerial vehicles (MAVs) are gaining increasing
interest thanks to their agility and low cost, which make

them suitable for a wide variety of robotic tasks, especially
those performed in cluttered or dangerous environments. Ap-
plications include transportation, exploration, surveillance, and
tracking [1]. In this paper, we focus on the visual active tracking
(VAT) task, which requires a tracker vehicle to maintain visual
contact with a dynamic target, as shown in Fig. 1. In contrast
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Fig. 1. Overview of the VAT task. The tracker MAV (blue) adjusts its position
and orientation so as to keep the target MAV (red) at the center of the camera FoV
and at a predefined distance. Our approach exploits an end-to-end DRL-based
VAT method that directly maps RGB images into thrust and angular velocity
commands that are fed to the tracker.

to passive tracking, where the pose of the camera is fixed,
active tracking approaches actively regulate the camera pose
by suitably controlling the vehicle, in order to keep the target
inside the camera field-of-view (FoV). The VAT problem is
far more challenging than passive tracking as it requires to
directly map high-dimensional image data into suitable control
actions. Previous research on this problem combined a dedicated
perception module (e.g., an object detector) with a separate
closed-loop control module for the vehicle motion [2], [3]. This
approach has two fundamental limitations: (i) the two modules
are designed separately and not jointly optimized; (ii) their
combination requires extra effort for tuning and implementa-
tion. A viable alternative to overcome these drawbacks is to
adopt end-to-end deep reinforcement learning (DRL), which has
already shown impressive results in many fields of robotics [4],
[5], [6]. Recently, this paradigm has been explored for VAT [7],
[8]. Most of the related works focus on ground robots and take
advantage of the physical characteristics of these platforms (i.e.,
low dimensionality of the configuration space and limited num-
ber of possible actions) to facilitate the design of VAT policies.
However, much less attention has been devoted to more complex
platforms such as MAVs, which require a more sophisticated
policy to be learned by the DRL agent. State-of-the-art (SotA)
works have addressed this issue by relying on some simplifying
assumptions, e.g., by ignoring the vehicle dynamics [9] or by
constraining the possible control actions to a predefined subset
of the action space [10]. Solutions based on these simplifications
are, in general, less robust and performing.
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In this paper, we aim to remove these assumptions and pro-
pose D-VAT, a novel end-to-end DRL-based continuous control
model for visual active tracking that is tailored to MAV systems.
D-VAT relies on a monocular setup, i.e., it requires only an
RGB image stream collected by an onboard camera to directly
compute the thrust and angular velocity commands needed to
track the target with high accuracy (see [11] for a justification of
such commands). To the best of our knowledge, this is the first
end-to-end approach that solves the VAT problem for MAVs
without severely constraining the motion of the target or the
tracker vehicle. We compare D-VAT to both model-based and
data-driven SotA strategies on photorealistic simulated environ-
ments considerably different from those employed during train-
ing, where it achieves a much better tracking performance than
these methods. Furthermore, we directly deploy D-VAT on a real
drone without any fine-tuning, by employing a Mixed-Reality
framework.

The rest of this work is organized as follows: Section II
contains literature review and details the paper contribution;
Section III provides the preliminary definitions; Section IV
formalizes the considered tracking problem; Section V describes
the experiments and discusses the results; Section VI draws the
conclusions and outlines future research directions.

II. RELATED WORK

In recent years, VAT has become a central research topic in
robotics. VAT applications consider either pan-tilt-zoom (PTZ)
vision sensors attached to a fixed base or cameras mounted on
robotic vehicles to meet the goal of keeping the tracked object
in sight. For instance, [12] presents a visual tracking solution
that enables a PTZ camera to track the behavior of a moving
person in surveillance applications. Along the same line, [13]
proposes a two layer architecture for real-time human motion
tracking. In the context of mobile robots, VAT takes advantage
of the control degrees of freedom of the vehicle to maintain the
visibility of the tracked object. Most of the related approaches
employ modular architectures that combine passive perception
and motion control components [2], [3]. In particular, [14]
couples the perception module with a low-level controller based
on DRL. The former computes semantic segmentation maps
from RGB images to obtain an intermediate representation that
facilitates the agent in controlling the vehicle. Despite the signif-
icant results achieved by modular approaches such as the above
ones, the combination of perception and control components
poses, in general, important challenges. First, the modules are
designed independently and not jointly optimized, reducing the
effectiveness of the overall pipeline. Secondly, their integration
is usually based on several tuning parameters whose optimal
values are non-trivial to determine. Moreover, a performance
drop in one module might cause the overall system to fail.

The aforementioned challenges can be addressed by leverag-
ing DRL techniques [6], [15], [16]. A vast literature is available
on DRL-based VAT approaches for ground vehicle systems. [17]
proposes an end-to-end deep neural network architecture to train
a DRL agent in simulated environments and takes advantage of
domain randomization in order to favor generalization to real-
world scenarios. [18] develops an asymmetric dueling training
procedure employing an adversarial target that stimulates the
development of an effective policy. In [8], the assumption of
having the target within the camera FoV at the beginning of
the maneuver is removed, so that the agent is able to explore

an unknown environment, find the target and track it. All these
approaches feature a discrete action space and therefore they
cannot explore the full performance envelope of the vehicle. In
fact, the resulting maneuvers are non-smooth and prone to losing
visual contact with the target. An end-to-end architecture that
exploits continuous actions is presented in [7].

Compared to ground robots, the design of learning-based
policies for MAVs is significantly more challenging. In [19], a
multi-layer perceptron is coupled with a low-level PID controller
in order to stabilize the MAV hovering configuration. This
method employs absolute position measurements provided by
motion capture system, and does not address the VAT problem.
A VAT solution is proposed in [20] to allow a MAV to fly and
track a moving object. In particular, the control system of the
MAV is designed to track ground targets by processing down-
looking images, which precludes the application of the method
to scenarios featuring front-looking cameras and flying targets.
[9] presents an active tracking module for MAVs equipped
with a pan-tilt camera that is able to track a person in various
complex scenes. Nonetheless, the MAV dynamics are not fully
exploited in the design of the control policy and the action
space is discrete, which poses a hard limit on the achievable
performance. A continuous action space is considered in [10],
where a RL-based policy is coupled with a low-level PID control
layer. However, the positioning of the MAV is constrained to a
plane and thus the tracker is not free to move in 3D. Very few
studies addressed the VAT problem for MAVs without relying
on restrictive assumptions on the motion of the target-tracker
pair. The recent work [21] tackles this problem by adopting an
image-based visual servoing approach that features a modular
design similar to those discussed at the beginning of this section.
Nevertheless, such a design leads to position and orientation
errors in the order of 1 m and 0.1 rd, respectively, and it requires
full attitude information.

A. Contribution

As highlighted by the previous literature review, an increasing
number of studies is focusing on VAT in the context of MAV
applications. Model-based techniques (see, e.g., [21]) present
design and integration issues that inherently limit their perfor-
mance and entail tracking errors that may limit their applicabil-
ity. On the other hand, existing learning-based approaches are
affected by different constraints: (i) the target lies on a plane [20];
(ii) the tracker is controlled by discrete actions [9]; (iii) the agent
is trained with continuous actions that are confined to a subset
of the tracker action space [10]. To overcome these limitations,
in this paper we provide the following contributions:
� We propose D-VAT, a novel end-to-end DRL continuous

control model for VAT applications involving MAVs.
� The proposed DRL policy directly maps RGB image data

into thrust and angular velocity commands, and does not
make restrictive assumptions on the trajectories of both the
tracker and the target.

� We show the benefits of D-VAT by comparing it against
different model-based and data-driven SotA approaches.
Our approach outperforms the baselines also in scenarios
that differ substantially from the training ones, and can be
deployed on a real platform, thus demonstrating remark-
able generalization capabilities.
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Fig. 2. Overview of the proposed D-VAT architecture. The A-DNN (highlighted in blue) processes a batch of collected RGB images and computes the body-rate
and thrust commands fed to the tracker MAV. The state of the tracker is updated according to the dynamic model (1) and the resulting pose is employed by the
graphics engine to render the next image. The C-DNN (colored in light green) is instead provided with privileged information (relative position, velocity and
acceleration) to facilitate the estimation of the action value function during training.

III. PRELIMINARY DEFINITIONS

The optimization of RL models requires a significant number
of interactions with the environment and this number becomes
massive when deep approximators come into play. In practice,
this excludes the possibility of using real MAVs to collect inter-
action episodes, both for efficiency and safety reasons. To over-
come this issue, highly photorealistic simulation frameworks can
be used to generate an unlimited amount of episodes and train
the DRL models without any physical risk to the vehicle. In this
work, we follow this practice and optimize our D-VAT model in
simulated environments. Before detailing the characteristics of
D-VAT and its training procedure, in this section we describe the
dynamic model which is integrated into the simulation engine
to generate realistic motions. In particular, we follow [22] and
consider a surrogate model in which the tracker is controlled by
thrust and angular velocity inputs. The model is given by:

p̈ =
f

m
R3 − g

Ṙ = R [ω]× (1)

In system (1), p and R are the tracker absolute position and
orientation, while m and g = [0 0 9.8]�ms−2 are the vehicle
mass and the gravity vector, respectively. Moreover, f and ω
indicate the collective thrust and the angular velocity inputs.
The notation [ω]× refers to the skew-symmetric representation
of vector ω = [ωx ωy ωz]

T . Since our DRL optimization frame-
work is discrete-time, we apply a zero-order-hold discretization
to system (1) and denote by z(k) the value taken by a signal
z(t) at the sampling instant t = kts, where ts the sampling time.
The motion of the target is modeled by a parameterized class of
trajectories denoted by pr(k), as detailed in Section IV-D. It
is important to highlight that D-VAT is trained in a model-free
manner and has no explicit information about the dynamics (1).
The simulation model is only used to generate realistic MAV
trajectories.

IV. APPROACH

A. Problem Formulation

The goal of VAT is to control the motion of a tracker agent
equipped with a vision sensor, so as to maintain the target
within the FoV of the camera and at a predefined distance.

In this paper, we assume that both the tracker and the target
are MAVs that are free to move in 3D. The vision sensor is
an RGB camera whose reference frame is coincident with the
tracker body-fixed frame. In particular, the optical axis is aligned
with the x-axis direction. At the beginning of the VAT task,
the target is located ahead of the tracker (within the camera
FoV), and starts moving along a time-varying trajectory. The
tracker employs only the image stream coming from its front
camera as a source of information and computes the thrust and
angular velocity commands needed to meet the control goal.
Similarly to other complex navigation and control tasks, VAT
can be tackled by formulating a suitable reinforcement learning
(RL) problem [23]. In particular, we treat the tracker as an RL
agent which repeatedly interacts with an environment over a
series of independent episodes. For each discrete timestep, the
agent receives an observation o(k), a reward r(k), and produces
an action u(k). The observation is given by the aforementioned
sequence of camera images, while the action is a continuous
command that specifies the thrust and the angular velocity of the
tracker MAV, i.e., u(k) = (f(k), ω(k)). The reward is defined
in Section IV-C).

B. Deep Reinforcement Learning Strategy

The proposed end-to-end VAT strategy relies on a monoc-
ular setup and requires only an RGB image stream collected
by the onboard camera to directly compute the MAV control
commands. RGB images are partial observations of the full MAV
state and are composed of a large number of pixels that form a
huge observation space. For this reason, it is not viable to train
the agent using classical RL algorithms, and more advanced
solutions based on Deep Neural Network (DNN) approximators
must be applied. In particular, we adopt the asymmetric actor-
critic formulation [8], [24]. According to this framework [23],
we design two different DNN architectures for the actor (A-
DNN) and for the critic (C-DNN). The former learns the optimal
policy u(k) = π(o(k)) with respect to the given task, while the
latter aims to evaluate such a policy during the training phase.
The asymmetric structure of this framework allows the critic
network to be fed with more privileged information than the
actor network, thus stimulating the development of an effective
policy evaluation. It is worth remarking that the A-DNN is the
only agent operating at inference time.
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The A-DNN is a convolutional neural network composed of
a ResNet18 [25] and three additional hidden layers, each one
characterized by 512 neurons and ReLU activations. In order to
learn temporal relations, the proposed A-DNN design processes
a sequence of H front-view camera images. This turned out
to play a key role in improving the tracking performance. The
image sequence is given by

o(k)=[I(k) I(k − 1) . . . I(k −H + 1)]
T
, (2)

where I(k) is the RGB frame acquired at the k-th time step.
Moreover, the A-DNN extracts 512 visual features from each im-
age through its convolutional block. Subsequently, the H × 512
features are concatenated and fed to the linear layers to compute
the action. The control actions are saturated to be consistent with
the physical characteristics of MAV actuators. In particular, a
tanh saturation is adopted to confine the action values computed
by the A-DNN within prescribed limits (see angular rate and
thrust limits in Table I).

The C-DNN design consists of a fully connected neural
network with three hidden layers, each one composed of 256
neurons and ReLU activations. The correct selection of the
inputs to the C-DNN is, in general, nontrivial. In this work,
we explored different possibilities and selected the input set
that we found to be the most informative without unnecessarily
increasing the network complexity. In particular, we define the
observation of the C-DNN as a vector oc(k) representing the
relative state as follows:

oc(k)=

[
y(k)
v(k)
a(k)

]
=

⎡
⎣R(k)T [pr(k)− p(k)]
R(k)T [ṗr(k)− ṗ(k)]
R(k)T [p̈r(k)− p̈(k)]

⎤
⎦ , (3)

where y(k), v(k) and a(k) denote respectively the position,
velocity and acceleration of the target relative to the tracker, ex-
pressed in the tracker body-fixed frame. The C-DNN output is a
scalar representing the estimated action-value Qπ(oc(k), u(k)).
The overall design is illustrated in Fig. 2.

C. Optimization

The A-DNN and the C-DNN are both trained by using the pop-
ular RL-based Soft Actor-Critic (SAC) framework [26], where
the reward signal r(k) is specifically designed to address the VAT
problem in MAVs scenarios, taking into account the distinctive
characteristics and requirements of the considered control task.
In particular, the main control objective is to align the target with
the center of the tracker camera FoV while keeping a predefined
distance between the two vehicles. To this purpose, the reward
is defined as:

re(k) = (rx(k) ry(k) rz(k))
β , (4)

where β > 0 is a suitable exponent and

rx = max(0, 1− |yx(k)− dr|),

ry = max

(
0, 1−

∣∣∣∣ 2

AFoV
arctan

(
yy(k)

yx(k)

)∣∣∣∣
)
,

rz = max

(
0, 1−

∣∣∣∣ 2

AFoV
arctan

(
yz(k)

yx(k)

)∣∣∣∣
)
. (5)

In (5), rx is maximal when the first entry of y(k) =
[yx(k) yy(k) yz(k)]

T matches the desired distance dr to the

Fig. 3. Examples of the training environment randomization. The tracker
(blue) and the target (red) MAVs are spawned in a large room with randomized
characteristics.

target (dr is specified along the x-axis of the body-fixed frame,
which is assumed coincident with the optical axis). Moreover,
ry and rz are functions that encourage the agent to keep the
target at the center of the image plane and thus away from the
camera FoV limits, being AFoV the FoV amplitude in radians.
The reward term re(k) in (4) is clipped in the interval [0, 1] to
favor the learning process, and it is maximal (re = 1) when the
VAT goal is achieved.

Two additional reward terms are included in the formulation
to optimize also the control effort and the MAV linear velocity.
In particular, we define a velocity penalty rv and a control effort
penalty ru as follows:

rv(k) =
‖v(k)‖

1 + ‖v(k)‖ , ru(k) =
‖u(k)‖

1 + ‖u(k)‖ . (6)

Collision avoidance constraints are taken into consideration by
penalizing the RL agent whenever ‖y(k)‖ < dm, where dm is
the minimum distance allowed.

The reward function is obtained by adding up all the above
contributions, which results in:

r(k) =

{
re(k)−kvrv(k)−kuru(k) ‖y(k)‖ > dm
−kc otherwise,

(7)

where kc is a large positive constant and kv > 0, ku > 0 are
weighting parameters that we carefully balance in order to
realize a high-performance control policy.

D. Training Environment

To build a simulated environment suitable for training the
DRL agent, we employ Unreal Engine 4 (UE),1 a popular graph-
ics engine that provides advanced photorealism capabilities.
Background patterns and objects in the simulated scene play
an important role since the agent’s first aim is to learn how to
effectively and reliably distinguish the target from the scenery.
To this aim, we choose a large furnished room (see Fig. 3) as
the environment used for optimization. Moreover, we exploit
domain randomization [27] to facilitate the development of the
robustness and generalization capabilities needed to directly
deploy the DRL agent in more complex photorealistic environ-
ments. Before the beginning of each training episode, the room
characteristics are randomly altered in light conditions, furni-
ture, and texture patterns, including those of walls and floors. As
soon as the room is randomized, the target is spawned in front
of the tracker, whose initial position is randomly set. The target
then starts moving along a sinusoidal trajectory parameterized

1[Online]. Available: https://www.unrealengine.com

[Online]. ignorespaces Available: ignorespaces https://www.unrealengine.com
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TABLE I
HYPERPARAMETERS AND SETTINGS

as follows:

pr(k) = pr(0) +

[
Ax sin(2πfxk + φx)
Ay sin(2πfyk + φy)
Az sin(2πfzk + φz)

]
−
[
Ax sin(φx)
Ay sin(φy)
Az sin(φz)

]
,

where (Ax, Ay , Az), (fx, fy , fz), (φx, φy, φz) are respectively
the amplitude, frequency, and phase, which are uniformly sam-
pled in the intervals specified in Table I to produce a different
trajectory for each episode.

We exploit parallel training to accelerate the optimization.
To this purpose, we instantiate multiple rooms as described
above, each with dedicated target-tracker pair and an indepen-
dent randomization sequence. The environments used to test our
approach are described in Section V-A.

V. EXPERIMENTS

In this section, we detail the implementation of our approach
and discuss the experimental campaign.

A. Experimental Setup

The A-DNN and C-DNN have been optimized by using
the Stable-Baselines3 [28] implementation of SAC, which we
customize to extend it to the asymmetric actor-critic formulation
of our approach. The networks have been optimized for approxi-
mately 18,000 episodes executed in 6 parallel environments, us-
ing the Adam optimizer with a learning rate of 0.0003, a discount
factor γ of 0.99, and a batch size of 64. Each training episode has
a maximum duration of 40 s, and the observation sequence length
for the A-DNN is set to H = 3. The other hyper-parameters
and settings are reported in Table I. The training process is
performed on a workstation equipped with 2 × NVIDIA RTX
2080Ti with 11 GB of VRAM, an Intel Core processor i7-9800X
(3.80 GHz × 16) and 64 GB of DDR4 RAM.

Our approach is tested on two environment classes: the first
one contains scenes similar to those used during the training
phase, although with different room shapes, objects disposition,
and textures (we refer to these scenes as Box Environments). The
second is, instead, aimed at testing the generalization capabilities
of D-VAT and has more complex and photo-realistic environ-
ments, i.e., an outdoor urban scenario (Urban), an outdoor park
environment (Park), and an indoor scene of an office building
(Office). These are depicted in Fig. 4 and are significantly
different from the ones used to train our model.

We run a total of 20 maneuver realizations for each test
environment. In each run, the tracker is spawned at a random

Fig. 4. Images from the photo-realistic environments employed to test the
generalization capabilities of D-VAT. From left to right: an urban setting (Urban),
a park environment (Park), and an office space (Office).

initial position, while the target is initially placed in front of
the tracker at the optimal distance. To assess the generalization
capabilities of our approach, we test also target trajectories that
differ from the training ones. In particular, we consider constant
setpoints and rectilinear trajectories with different shapes such
as ramp-like and cubic. In the following, the D-VAT agent is
compared to the SotA baselines described hereafter.

B. Baselines

Active Object Tracking (AOT) [17]. In this approach, the
agent is trained to track predefined target trajectories by using
discrete actions. To comply with the dynamic model (1), which
takes as input the collective thrust and angular velocity of the
MAV, we define the action set as follows: {+Δωx, −Δωx,
+Δωy , −Δωy , +Δωz , −Δωz , +Δf , −Δf , no_op }, where
the operator Δ indicates a fixed increment of thrust or angular
velocity and no_op prescribes a zero thrust or angular velocity
increment. The size of the Δ increments has been manually
tuned to meet the task specifications.

AD-VAT+ [18]. The model policy is learned during the ad-
versarial dueling against the target, which is itself an RL agent.
This approach employs the same discrete action space as the
AOT baseline.

C-VAT [7]. The model is optimized using a target that is ran-
domly spawned in the surrounding of the tracker. In particular, a
heuristic trajectory generator (HTG) is combined with a suitable
set of auxiliary losses in order to facilitate the convergence of the
training process. Herein, we implement the HTG with a Linear
Quadratic Gaussian (LQG) controller that exploits ground truth
pose information to control the tracker so as to achieve the VAT
goal. Moreover, the auxiliary losses in [7] have been extended
to a 3D environment.

SiamRPN++ PID. This modular baseline combines the ob-
ject tracker SiamRPN++ [29] with a standard MAV control ar-
chitecture featuring two Proportional-Integral-Derivative (PID)
feedback loops. In order to achieve the VAT goal, the outer
loop processes the bounding box information provided by
SiamRPN++ (i.e., position and size of the bounding box en-
closing the target) to compute roll, pitch, yaw, and thrust signals
that are are fed to the inner (attitude control) loop. The PID
parameters have been tuned using a trial and error approach on
relevant scenarios, so as to achieve a suitable trade-off between
reactivity to tracking errors and sensitivity to noise. The inner
loop needs attitude information and, in our tests, we provide
the ground-truth attitude angles returned by the simulator. This
baseline is favored with respect to D-VAT because it has access
to privileged information, i.e., the attitude of the MAV.

SiamRPN++ LQG. This modular baseline combines
SiamRPN++ with a model-based design that couples feedback
linearization and a linear control law (see, e.g., [30]). In partic-
ular, we adopt a Linear-Quadratic-Gaussian (LQG) design. The
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TABLE II
EXPERIMENTAL RESULTS COMPARING OUR APPROACH AGAINST THE BASELINE IN THE BOX ENVIRONMENTS (SIMILAR TO THOSE USED DURING TRAINING) AND

IN THE PHOTOREALISTIC SCENARIOS (URBAN, PARK AND OFFICE)

resulting policy uses the bounding box information to regulate
directly the thrust and angular velocity of the tracker so as to
meet the VAT objective. The LQG weights have been tuned
extensively to achieve a fair trade-off between performance
and robustness. This baseline requires attitude information (to
linearize the MAV dynamics by feedback) and hence it is favored
with respect to D-VAT.

C. Metrics

To evaluate the performance of D-VAT against that of the
baselines, we adapted the tracking metrics in [7], [8] to a 3D envi-
ronment. For convenience, the metrics are defined by expressing
the ground-truth position of the target relative to the tracker in a
spherical coordinate system, whose axes are aligned with those
of the tracker body-fixed frame. The spherical coordinates are
denoted by (ρ, θ, ϕ). The considered metrics are detailed below.

Distance Score: measures the ability of the tracker to maintain
the desired distance from the target, as follows

P̃ρ(k) =

⎧⎨
⎩max (0, 1− 2|ρ(k)− dr|) , if

|θ(k)| < AFoV
2

|ϕ(k)| < AFoV
2

0 otherwise

Elevation Score: measures the ability of the tracker to maintain
the target vertically aligned to the center of the FoV, as follows

P̃θ(k) =

⎧⎨
⎩max

(
0, 1− 2|θ(k)|

AFoV

)
, if

|ϕ(k)| < AFoV
2

|ρ(k)− dr| < 0.5
0 otherwise

Azimuth Score: measures the ability of the tracker to maintain
the target horizontally aligned to the center of the FoV, as follows

P̃ϕ(k) =

⎧⎨
⎩max

(
0, 1− 2|ϕ(k)|

AFoV

)
, if

|θ(k)| < AFoV
2

|ρ(k)− dr| < 0.5
0 otherwise

Total Score: it is the arithmetic mean of the above metrics, given
by P̃c(k) = (P̃ρ(k) + P̃θ(k) + P̃ϕ(k))/3.

Notice that if P̃ρ(k) = 1, then the tracker is at the desired dis-
tance from the target. Moreover, if P̃θ and P̃φ are both equal to 1,
then the target centroid is at the center of the FoV. Summarizing,
P̃c(k) = 1 when perfect visual tracking is achieved at step k.

The metrics are averaged with respect to the episode time and
across the 20 runs performed in each scenario, resulting inPm =

1
20Ne

∑20
i=1

∑Nc−1
k=0

(i)P̃m(k) , where m ∈ {ρ, θ, ϕ, c}, (i)P̃ in-
dicates that the performance is evaluated on the i-th run, and Nc

is the number of samples within the episode.

D. Comparison Results

The results of the experimental campaign are presented in
Tables II and III. Our first important finding is that D-VAT
outperforms all the baselines with respect to the performance
metrics, and it is able to track the target by producing low-
level control commands directly from RGB images. A visual
inspection of the experiments (see the supplementary videos for
qualitative results) shows that D-VAT is able to react promptly
and effectively to the target movements. Specifically, it (i) com-
putes fast maneuvers when the target approaches the boundary
of camera FoV to avoid losing it, and (ii) provides a smooth
control policy that is close to being optimal (i.e., the target is
almost always maintained at the center of the image plane and
at the desired distance).

The learning-based approaches AOT, AD-VAT+ and C-VAT
fail to converge to a suitable tracking policy. This could be
explained by considering the high complexity of the task. AOT
and AD-VAT+ are both strategies that rely on a discrete action
space. Thus, they generate non-smooth control policies that
struggle to maintain the target visibility and might even result in
unstable maneuvers that cause the target to disappear outside the
FoV. Even C-VAT, despite being designed to provide continuous
commands, fails to provide an efficient tracking policy. To
explain this result, it is important to notice that the dimension of
the MAV action space is doubled with respect to that of a planar
ground robot (which is the platform considered in the original
C-VAT work [7]). The increased complexity of the quadro-
tor dynamics make the model optimization more challenging
and, in the case of C-VAT, this entails a large performance
degradation.

The baselines that combine two separate modules, i.e., an
object detector and a controller (LQG or PID), are instead
able to achieve better results. Nonetheless, the overall tracking
performance is inferior to that of D-VAT. This can be attributed
to the modular nature of these baselines. As the two components
are designed independently, their coupling turns out to be inef-
ficient and can cause the overall system to fail. In practice, this
problem emerges since the controller, which has been designed
under the assumption that the relative position is accurately
known, is fed with position measurements extracted from the
bounding box information provided by the object detector. These
measurements, due to non-ideal image conditions or aggressive
target maneuvers, might violate the design assumptions. This
aspect becomes even more critical in realistic environments that
are characterized by a high density of distracting objects in the
background (e.g., the photorealistic scenarios Urban and Office
in Fig. 4). In this regard, it should be noted that the PID scheme,
thanks to its more adaptable design, is more robust to model
mismatch than the LQG counterpart.
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TABLE III
EXPERIMENTAL RESULTS OBTAINED FOR DIFFERENT PEAK VELOCITIES OF THE TARGET

Fig. 5. Mixed-Reality framework: the simulation engine renders the image and collects the RGB observation It of the tracker MAV. D-VAT then predicts the
control signal ut to follow the target drone. ut is directly employed to command the real drone. The new position of the real drone pt+1 is used to update the
position of the simulated tracker drone and collect the next RGB observation It+1.

On the other hand, thanks to the domain randomization strat-
egy we employ, D-VAT has learned a tracking policy that can
deal effectively with a wide range of scenarios and at the same
time achieve high performance. This holds even when the visual
conditions of the environment are very different from those
employed in the training phase. Moreover, to verify the visual
robustness of D-VAT against dynamic objects, we employ a
validation scenario featuring two moving items that occasionally
appear in the tracker FoV. One of them shares the same shape
as the target one but has a different color, while the other has a
different shape but the same color as the target MAV. As shown
in the attached video, the tracker agent is nearly unaffected by
the presence of dynamic distracting objects, which proves that
it did not overfit with respect to the object color or its shape
individually. This is even more remarkable if we consider that
no moving objects other than the target MAV are included in the
training phase.

To further study the comparison between D-VAT and the
modular baselines, we run additional experiments by varying the
maximum velocity of the target. We perform these experiments
on a simplified scene with low amount of texture and no objects.
In Table III, it can be seen that for low target velocities, the modu-
lar baselines and D-VAT achieve similar performance. However,
when the target performs faster and more aggressive trajectories,
the performance of both the modular baselines decreases, while
D-VAT tracking capabilities are almost unaffected. This suggests
that the proposed learning-based approach is more robust and re-
sponsive in challenging scenarios where the ability of traditional
control strategies may be limited.

E. DRL Controller Validation With Mixed-Reality

To assess the sim-to-real adaptation capabilities of D-VAT
we follow the strategy in [31] and design a Mixed Reality
framework. Specifically, we deploy the D-VAT model into a real
MAV platform and employ UE for rendering purposes only. At
each timestep the real tracking MAV and the simulator interact

as follows: first, the current pose of the real MAV is provided to
the simulator to update the position of its simulated counterpart.
Then, the UE renders the RGB camera frames and provides them
to D-VAT to compute the control commands. These are sent back
to the real platform that executes them (see Fig. 5).

To obtain the zero-shot transfer of the policy in the real world,
we train D-VAT with a more complex dynamic model, obtained
by augmenting system (1) with the angular velocity, the thrust
dynamics and the effect of air drag:⎡

⎢⎢⎣
p̈

Ṙ
ω̇

ḟ

⎤
⎥⎥⎦ =

⎡
⎢⎣

1
m (R3f + fdrag)− g

R [ω]×
J−1(kω(ωcmd − ω)− [ω]× Jω)

kf (fcmd − f)

⎤
⎥⎦ , (8)

where J is the inertia matrix, fcmd and ωcmd are the com-
manded total thrust and body rates provided by D-VAT,
kf and kω are scalar gains, and fdrag = −Kv ṗ is a linear
drag term, being Kv the drag coefficient matrix. The fol-
lowing nominal values of the parameters in (8) have been
employed: J = diag(0.0030, 0.0045, 0.0028) kgm2 and Kv =
diag(0.3, 0.3, 0.15). Moreover, kf = 36 and kω = 0.1, resulting
in a thrust settling time and control torque compatible with the
MAV actuator specifications. To improve the robustness against
model uncertainty we adopt a strategy similar to [32] and on
each episode of the training phase we randomize the values of
m, J , g and Kv up to ±10% of their nominal values, while kf
and kω are uniformly randomized in the intervals [12, 60] and
[0.036, 0.18], respectively.

To assess the performance on both indoor and outdoor en-
vironments, the experiments are performed on the Office and
the Park visual scenarios. In each scenario, we consider four
different trajectories for the target: a planar eight-shape, a planar
rectangle, a 3D eight-shape and a 3D spiral. The performance
in Table IV and the qualitative results in the attached video
show that D-VAT achieves remarkable tracking performance
even when deployed on a real platform without fine-tuning.
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TABLE IV
EXPERIMENTAL RESULTS WITH MIXED REALITY

Our approach achieves results comparable to those obtained
in simulation (see Tables II and III), proving its generalization
capabilities against unmodeled dynamics.

VI. CONCLUSION

In this work, we proposed D-VAT, an end-to-end visual ac-
tive tracking approach for MAV systems. The D-VAT agent is
trained by exploiting an asymmetric actor-critic DRL formula-
tion. D-VAT computes thrust and angular velocity commands
for the tracker MAV directly from input images. Experiments
against different baselines show that our approach achieves a
superior tracking performance and it is capable of generalizing
over scenarios that considerably differ from those used during
training, including real platforms.

Currently, D-VAT can track vehicles whose appearance is
similar to that of the target MAV used for the optimization.
Future work will consider methodologies to make the tracker
agent independent from the appearance of the target MAV.
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