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Multi-Task Adaptive Gating Network for
Trajectory Distilled Control Prediction
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Abstract—End-to-end autonomous driving is often categorized
based on output into trajectory prediction or control prediction.
Each type of approach provides benefits in different contexts,
resulting in recent studies on how to combine them. However, the
current proposals are based on heuristic choices that only partially
capture the complexities of varying driving conditions. How to
best fuse these sources of information remains an open research
question. To address this, we introduce MAGNet, a Multi-Task
Adaptive Gating Network for Trajectory Distilled Control Predic-
tion. This framework employs a multi-task learning strategy to
combine trajectory and direct control prediction. Our key insight
is to design a gating network that learns how to optimally combine
the outputs of trajectory and control predictions in each situation.
Using the CARLA simulator, we evaluate MAGNet in closed-loop
settings with challenging scenarios. Results show that MAGNet
outperforms the state-of-the-art on two publicly available CARLA
benchmarks, Town05 Long and Longest6.

Index Terms—Autonomous agents, end-to-end autonomous
driving, gating network, imitation learning, intelligent
transportation systems.

I. INTRODUCTION

L EARNING effective driving policies is pivotal for the
development of end-to-end autonomous driving solutions.

Typically, these driving policies are distinguished based on their
outputs, falling into either trajectory prediction [1], [2], [3], [4] or
direct control prediction categories [5], [6], [7]. Trajectory pre-
diction aims to forecast the vehicle’s motion in the future over a
specified horizon and uses separate controllers, for instance, PID
or model predictive controllers (MPC), to translate the planned
trajectories to the vehicle actuators. Conversely, control-based
methods optimize the control signal directly. Both trajectory and
direct control prediction have merits and demerits. In particular,
trajectory prediction outcomes can be integrated with other
tasks, like semantics and occupancy prediction methods [8], or
multi-agent interactions [9], enhancing safety and refining the
planned trajectory. However, since trajectory prediction relies on
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controllers to convert planned trajectories into control signals,
the type of controller used may constrain its performance. On the
other hand, control-prediction methods often result in discon-
tinuous and unstable behavior because they make independent
predictions at different steps. However, a clear consensus on
which paradigm is superior remains elusive.

The underlying research question rarely studied in the lit-
erature is how to combine the trajectory and control predic-
tion based on observed situations. The pioneering work in this
direction is Trajectory-guided control prediction (TCP) [10],
which has developed a multi-task learning framework for com-
bining both prediction methods by heuristically determining a
situation-fusing parameter. However, this heuristic parameter
cannot fully capture the situation-dependency of the optimal
combination of trajectory and control predictions.

To fill this gap, we introduce MAGNet (Multi-Task Adaptive
Gating Network for Trajectory Distilled Control Prediction) by
designing a gating network that learns the situation-fusing pa-
rameter based on the perception of the environment. MAGNET
employs a multi-task learning strategy to perform trajectory
and control prediction simultaneously. MAGNet incorporates
the self-attention mechanism to distill the control prediction
branch with the trajectory guidance to address the limitations of
direct control methods that predominantly focus on immediate
low-level actions, often not fully capturing the complexities
of end-to-end autonomous driving. Moreover, our method dy-
namically learns the situation-fusing parameter, adapting to the
environmental input representation, for fusing the trajectory and
control prediction outputs. By doing so, we achieve a more
dynamic integration of trajectory and control predictions, en-
hancing the vehicle’s situational awareness.

The main contributions of this letter can be summarized as
follows:

1) We developed MAGNet with a novel gating network
that dynamically fuses control and trajectory predictions,
distinguishing it from traditional methods that typically
depend on static or heuristic-based approaches for inte-
gration. This methodological advancement empowers the
model to adapt its integration strategy to suit each unique
driving scenario. This flexibility is anticipated to enhance
the robustness and accuracy of driving policies.

2) We have integrated a self-attention mechanism into the
control prediction branch of MAGNet, primarily due to
its ability to enhance the model’s focus on the most
pertinent features derived from trajectory prediction. The
use of self-attention in this context is novel because it
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allows MAGNet to selectively emphasize critical aspects
of the input data, which is crucial for making precise and
efficient control decisions in dynamic and complex driving
environments.

3) Our evaluations and ablation studies demonstrate that
MAGNet’s situation-based fusing parameter outperforms
heuristic methods, with experimental results on CARLA
benchmarks confirming its efficacy over state-of-the-art
models in closed-loop settings.

II. RELATED WORK

A. End-to-End Autonomous Driving

End-to-end autonomous driving methods, classified into tra-
jectory and direct control prediction approaches, learn to map
sensor data to actions via imitation learning (IL) or reinforce-
ment learning (RL) [11]. RL, particularly model-free reinforce-
ment learning, is effective in autonomous driving, adapting well
to data shifts and proven successful in vehicle control [12].
Furthermore, model-based methods learn the world model using
pre-recorded trajectories and compute action-value functions,
which, with sensor inputs, train a policy for error-correct naviga-
tion [13]. Some studies separate perception from the RL process
in driving policy learning [14], [15], [16].

In literature, end-to-end driving policies are often learned
through imitation learning, particularly behavior cloning. This
involves feature representation steps like mapping BEV seman-
tics to waypoint prediction [2], or incorporating global and
temporal reasoning [17]. Some studies also focus on a unified
framework that integrates perception, prediction, and planning
using intermediate representations [8], [18]. Sensor fusion tech-
niques are increasingly used in driving policy learning, such as
combining Lidar and image data with self-attention and GRU-
based decoders for trajectory prediction [3], [19]. Additionally,
some methods learn policies from both ego and other vehicles’
perspectives using viewpoint-invariant representations [9], and
also improve the decoder for trajectory learning [20].

Unlike the conventional trajectory prediction, direct control
prediction is another approach for learning the driving pol-
icy [21], [22], [23], [24]. Some studies have incorporated the
perception network and learned controller for post-trajectory
prediction for learning the control policy [5], [25], [26].

B. Multi-Task Learning and Knowledge Distillation

Multi-task learning trains networks on related tasks to boost
performance and generalization, a technique increasingly ap-
plied in end-to-end autonomous driving systems [27], [28],
[29]. FASNet, within a multi-task learning framework, fore-
casts future states and actions using deep-predictive coding
and vehicle kinematics, with control signals produced from a
weighted average of predicted actions [30]. Similar to our work,
Trajectory-guided control prediction (TCP) follows a multi-task
learning framework for trajectory and control prediction and
then adopts a heuristic approach to fuse them [10]. Unlike TCP’s
heuristic integration of trajectory and control predictions, our
method employs a learned fusion strategy via a situation-aware

gating network, adjusting fusion coefficients for contextual pre-
cision. We also enhance branch interaction with a self-attention
mechanism, optimizing knowledge distillation by prioritizing
salient feature integration.

Knowledge distillation has been used in autonomous driving,
training a privileged agent with extensive data and then using
it to train a sensorimotor agent with limited data [1]. Some
studies include an an alignment module as enhancement, to
better transfer knowledge from teacher to student, optimizing
learning through a coaching approach [31].

III. METHOD

A. Problem Setting

In end-to-end autonomous driving, the objective is to translate
an input representation x into a corresponding control action
u. In this letter, we consider the input representation which
encompasses sensor signal si, vehicle speed υ, a high-level
navigation command ρ, a goal point (x, y). This goal point (x, y)
provides a target location for the vehicle’s navigation, integral
to the driving task. The resulting control action constitute of
longitudinal control signals: [throttle ∈ [0, 1], brake ∈ [0, 1]],
and the lateral control signal: [steer ∈ [−1, 1]].

In our research, we explore methods to contextually and adap-
tively merge the outputs of trajectory and control prediction in a
learnable manner. For the trajectory prediction, a point-to-point
navigation approach is adopted by learning a driving policy π
that imitates the behavior of an expert policy π∗ in a supervised
manner with the loss function, L:

argmin
θ

E(x,W)∼D[L(W, πθ(x))] (1)

whereW are the ground-truth waypoints and π(x) is the learned
policy for predicting the waypoint over the horizon T . Similarly,
the control branch is trained in a manner consistent with behavior
cloning in imitation learning, where expert-provided control sig-
nals directly supervise the model’s current control predictions,
and it can be formulated as:

argmin
θ

E(x,u)∼D[L(u, πθ(x))] (2)

where D corresponds to the dataset. The dataset D is collected
by rolling the expert policy π∗ that interacts with the simulated
world. Each trajectory τ = (x0,u

∗
0,x1,u

∗
1, . . .,xT) comprises

of state-action (x,u∗)Ti=0 pairs, where u∗ includes the controls
signals and waypoints information, along with the goal point
data.

B. Architecture

Fig. 1 provides an overview of the MAGNet architecture,
which consists of four main components: an encoding stage
for feature extraction, trajectory prediction and control predic-
tion branches, and a situation-based gating network for fusing
the outputs of these branches. The encoding stage is further
divided into two encoders. The image encoder (EIc ), built on
a ResNet [32] architecture, is responsible for extracting feature
embeddings (ICemb

) and feature vector (ICfeat
) from the input
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Fig. 1. Overview of architecture.The architecture comprises of three modules: trajectory prediction branch, control prediction branch and gating network. The
encoded features are shared by all the three modules. The gating network receive both outputs from the trajectory and trajectory-distilled control prediction branch,
and fuse them by learning the situation-based fusing parameter.

Fig. 2. Trajectory prediction branch. The architecture receives the encoded
features F, down-sampled and passed to GRU based decoder for predicting the
next waypoints.

RGB image. ICfeat
is the feature vector from the last block of

ResNet module used in image encoder (EIc ) for the feature rep-
resentation. Additionally, a measurement encoder (EIm ) is em-
ployed to generate measurement features (IMfeat

). The image
feature embedding (ICemb

) is averaged and concatenated with
measurement features (IMfeat

) to form combined feature vector
F ∈ R

dc+dm , where dc and dm are the dimensions of (ICemb
)

and (IMfeat
), respectively. The feature vector F is propagated

to the subsequent two branches and the gating network. The
following sections detail the trajectory branch, control branch,
and situation-based gating network.

1) Trajectory Prediction Branch: Unlike the control pre-
diction that directly predicts the control action, the trajectory
prediction branch, as illustrated in Fig. 2, predicts the planned
trajectory over the horizon K, which are then processed by
low-level controllers utraj = I(W), where I corresponds to the
low-level controller, W corresponds to the waypoints. In the
proposed method, the trajectory prediction branch inputs the
combined feature vector F, down-sampled to a feature vector of
f = 256 by passing through a series of linear layers. For predict-
ing the next waypoints, we have employed the auto-regressive
GRU [33] model and initiated the hidden states of the GRU
model with the feature vector f . The auto-regressive model,
built on a GRU architecture, utilizes the current position and goal
location as inputs. This design enables the network to concen-
trate on pertinent contextual information within its hidden states,
thereby enhancing its ability to predict subsequent waypoints.
Finally, a linear layer followed by GRU layers is used to predict
the next waypoints (w0, w1, . . ., wK) over horizon K = 4. Two
PID controllers, one for longitudinal and another for lateral

Fig. 3. Control prediction branch. The architecture for predicting the multi-
step control prediction through trajectory branch supervision. GRU for multi-
step control prediction and self-attention for knowledge distillation between
trajectory and control.

control, process the predicted waypoints for generating control
actions in the form of throttle, brake, and steer, respectively.

2) Control Prediction Branch: As illustrated in Fig. 3, we
designed the control prediction branch to predict the multi-step
control actions in the future by distilling the information from
the trajectory branch. Since the traditional control prediction
methods follow the behavioral cloning approach, which relies
on independent and identically distribution, it does not hold
in the case of closed-loop settings. To address this limitation,
we employ self-attention to design a trajectory distilled control
prediction branch.

The control prediction branch comprises two branch net-
works: value and policy head. An initial feature vector F un-
dergoes processing through a series of linear layers to produce
a down-sampled feature vector x, which is then utilized by both
the value and policy heads. In the trajectory distilled control
prediction, the self-attention is used initially to compute the
attention matrixA ∈ R

m×n, as shown in (3), where theQ,K and
V matrices are derived from the measurement features (IMfeat

).
The rationale behind employing the self-attention mechanism
in our model lies in its capability to independently evaluate
and integrate input features, both measurement and image data.
This approach ensures contextually informed and temporally
coherent feature integration, which is critical for making ac-
curate decisions in dynamic driving environments. It is to be
noted here that the self-attention employed in our trajectory
distilled control prediction branch is different from the TCP.
TCP uses trajectory-guided attention to focus on specific regions
of the sensor input, creating an attention map that aggregates
2D image features for control prediction. However, MAGNet
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employs a self-attention mechanism that merges measurement
features with image features, enhancing the model’s capability
to focus on the most relevant aspects of the input for control
prediction. This approach is more dynamic and context-aware,
allowing for integrating different types of input features.

A(Q,K,V) = softmax

(
QKT

√
d

)
V (3)

This initial attention matrix is used to compute the feature
embedding for the control prediction branch by taking the dot
product with image feature vector (ICfeat

). The core logic
unfolds within the temporal loop implemented as GRU with
a prediction horizon K. For each iteration [0,K − 1], the model
ingest a concatenated vectorxin ∈ Rn+2p, wheren andpdenote
the dimensions of the current control state x and the parameters
μ and σ, respectively. The hidden state h ∈ Rq is updated using
the GRU decoder as illustrated in the (4),

ht = GRU(xin,ht−1) (4)

where ht−1, which serves as hinis the input hidden state for the
GRU at the current time step t.

The hidden state h and a trajectory-guided hidden state
utrajhidden

are subsequently used to compute a waypoint-based
attention mapwpA using another self-attention mechanism. This
attention map is applied to ICfeat

to produce a new feature
embedding, which is then combined with h to obtain the merged
feature. This merged feature updates xin as shown in (5):

xin = x+ dx+ μ+ σ (5)

Throughout the loop, the model refines these variables itera-
tively, generating a sequence of multi-step control predictions
(u0, u1, . . . , uK) that are dynamically and temporally coher-
ent. Incorporating self-attention mechanisms into the architec-
ture significantly enhances the model’s capacity for sequential
decision-making.

3) Gating Network: The gating network, as illustrated in
Fig. 1, serves as high-level decision-making in fusing the tra-
jectory and control prediction outputs to yield an optimized and
context-aware command to the vehicle actuators. The primary
objective in designing the gating network is to fuse it with sit-
uational awareness capabilities. It aims to dynamically evaluate
and choose between trajectory-based controls utraj = I(W)
and direct control signals uctrl = (u0, u1, . . . , uK) from the
control prediction branch. This enables the gating network to
make context-sensitive decisions in various driving scenarios,
such as navigating intersections, executing turns, or overtaking
other vehicles.

To this end, the gating network generates two outputs: a
high-level commandgΦ and a situation-fusing parametergα, re-
spectively, by receiving the combined feature vector F as input.
The high-level command gΦ encompasses a set of commands
including ‘straight’, ’left turn’, ‘right turn’, ’lane-following’,
‘change lane to the left’, and ’change lane to the right’. The gΦ
is an auxiliary information that is predicted from the proposed
MAGNet framework. Mathematically, let F represent the situ-
ation context derived from the sensor information (e.g., image
and measurements); the gating network can be expressed as in

(6):

(gΦ,gα) = G(F,utraj,uctrl) (6)

gα is a function of F and the outputs utraj, uctrl from the
trajectory and control branches as illustrated in (7):

gα = softmax (Wgα
· [F;utraj;uctrl] + bgα

) (7)

where Wgα
and bgα

are learnable parameters. The softmax
function ensures gα is a probabilistic weighting factor in the
[0,1] range. The high-level command gΦ network outputs the
discrete high-level commands and is expressed as in (8)

gΦ=Wout ·ReLU(Whidden ·BN(Win · F+bin) + bhidden)

+ bout (8)

Finally, the output control actionP is a weighted sum ofutraj =
I(W) and uctrl = (u0, u1, . . . , uK), modulated by gα is given
by (9) as:

P = gα · utraj + (1− gα) · (u0, u1, . . ., uK) (9)

The model can thus adaptively balance long-term planning
and immediate reactive behaviors, making it highly robust and
adaptive to a variety of dynamically changing environments.

4) Loss Design: The MAGNet framework includes trajec-
tory planning loss Ltraj , control prediction loss Lctrl, auxilary
lossLaux and the gating lossLG. Since the MAGNet focuses on
incorporating the trajectory and control prediction in a unified
framework with situation-based fusion, the proposed method
was trained in two phases. In phase one, the trajectory and
control prediction branches are trained end-to-end without a
gating network and then frozen for training the gating network
in the second phase.

The trajectory loss Ltraj can be expressed as shown in (10)

Ltraj =
K∑

i=1

‖wi − ŵi‖1 + λF · LF
(
f
(0)
traj , f

(0)
Expert

)
(10)

where wi, and ŵi signify the predicted and ground-truth way-
points at time i, respectively. λF serves as a tunable weight for
the feature loss LF , which computes the L2 distance between
f
(0)
traj and f

(0)
Expert at the current time step, thereby acting as an

auxiliary supervisory signal.f (0)
traj is the feature representation of

the predicted trajectory at the initial state and f
(0)
Expert represent

the feature representation from the expert demonstration. For
the control prediction, the Lctrl loss is expressed in (11)

Lctrl = KL(Beta(a0) ‖ Beta(â0))

+
1

K

K∑
i=1

KL(Beta(ai) ‖ Beta(âi))

+ λF · LF (f
0
ctrl , f

0
Expert )

+
1

K

K∑
i=1

LF (f
i
ctrl , f

i
Expert ) (11)

The loss function Lctrl comprises four terms. It uses Kullback-
Leibler (KL) divergence to measure the difference between
predicted and ground-truth Beta distributions, initially and over
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future time steps i. A feature loss, weighted by λF , enhances
the model’s learning at each time step. The aggregated loss L
for phase one is:

L = λtraj · Ltraj + λctrl · Lctrl + λaux · Laux (12)

where Laux is the weighted sum of L1 loss for speed prediction
and L2 loss for the value prediction, respectively.

After training, the trajectory and control prediction branches
are fixed, and the gating network G is trained end-to-end. The
loss function LG is expressed in (13).

LG =
∑

i∈{steer, throttle, brake}
λi ·

(
(ocombined,i − otraj,i)

2

+(ocombined,i − octrl,i)
2
)

+ λcommand · Lcommand

+ λL1 · L1 (13)

Here, λi, λcommand and λL1 are the hyper-parameters.
Lcommand is the loss between predicted high-level command
and ground-truth as expressed by (14), whereas L1 corresponds
to regularization term given by (15)

Lcommand = −
6∑

c=1

yc log(pc) (14)

L1 =
∑
j

|θj | (15)

The combined output ocombined,i for each control signal i ∈
steer, throttle, brake is computed as a weighted average of
the outputs from the trajectory and control prediction branches,
denoted as otraj,i, and octrl,i respectively. The weights αtraj,i

and αctrl,i modulate these contributions as expressed in (16).

ocombined,i =
tanh(αtraj,i · otraj,i) + tanh(αctrl,i · octrl,i)

2
(16)

IV. EXPERIMENTS

A. Benchmark

In this work, CARLA simulator used for the closed-loop
evaluation of the proposed method [34]. We have used two
widely used benchmarks, Town05 Long and Longest6 [3],
where the Longest6 benchmark uses the six longest routes of
each town (Town01-Town06) comprising 36 routes. In each
benchmark, the routes are defined by a sequence of navigation
points together with sensor and high-level command data (turn
right/left, lane changing and following, straight). The task in
closed-loop driving is to drive the autonomous agent to the
desired destination by simulating the traffic situation and also
include challenging scenarios, for instance, obstacle avoidance,
crossing unprotected intersections, and sudden control loss.

B. Data Collection

In our experiments, we choose Roach [16] for the supervision
as an expert model. Roach is an RL-trained model incorporating

privileged information, including roads, routes, lanes, vehicles,
pedestrians, and traffic elements, rendered into a 2D bird-eye-
view (BEV) image. This learning-based expert offers advantages
over rule-based experts by providing a richer set of information
beyond just direct supervision signals.

For data generation, we adhere to the protocol outlined in [10],
rolling out an expert policy with privileged information to gather
the dataset using the CARLA simulator. Our data collection
settings utilize a monocular camera (front-facing), IMU, GPS,
and speedometer. We have collected data in Town01, Town03,
Town04, and Town06, under various environmental conditions,
resulting in 189 K data points for training.

C. Evaluation Metrics

Our model’s performance is assessed using CARLA Leader-
board metrics, focusing on Route Completion (RC) for
measuring route success, Infraction Score (IS) for traffic rule
adherence, and Driving Score (DS) as the primary metric com-
bining RC and IS for a holistic performance evaluation [3], [9],
[34].

D. Training Details

The training of the MAGNet is done in two phases. In the
first phase, the trajectory and control prediction branches are
trained end-to-end. For this, the image encoder adopts ResNet
architecture trained on ImageNet [35]. The size of the input RGB
image is 900× 256, with the FOV of the camera set to 100 deg.
In the trajectory and control branch, the T = 4 corresponds to
the next four future steps at 2HZ. For the PID settings, we follow
the same settings as proposed in [3], where the values of Kp =
5.0, Kd = 1.0 and Ki = 0.5 are for the longitudinal control,
and the values of PID controllers are Kp = 0.75, Kd = 0.3 and
Ki = 0.75 for lateral control. The hyper-parameters used in the
training for phase one are as follows: λtraj = 1, λctrl = 1, λF =
0.05 andλaux = 0.05. For the training of the gating network (G),
the hyper-parameters are set as follows: λsteer = 1, λthrottle =
1, λbrake = 1, λcommand = 1, and λL1

= 0.5. The training for
both phases is done on 2 Nvidia V100 GPUs, having a memory of
32 GB each. The Adam optimizer [36] is used for each training
phase with a learning rate of 5× 10−4 and weight decay of
1× 10−7. In both training phases, the models are trained for 60
epochs having a batch size of 64.

E. Results

We compare the proposed method MAGNet with other
state-of-the-art methods on two publicly available benchmarks,
Town05 Long and Longest6, in closed-loop settings. Table I
illustrates the quantitative results of MAGNet with the state-
of-the-art methods on Town05 Long benchmark. In our quan-
titative evaluation, the proposed method is equally compared
to the camera and Lidar-based state-of-the-art methods. As the
MAGNet employs a monocular camera for predicting the diving
policies, it obtains better driving, route completion, and infrac-
tion scores when compared with camera-based driving agents.
Specifically, MAGNet achieves a driving score of 73.3± 3.9,
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Fig. 4. Visualization of MAGNet’s decision-making on CARLA benchmarks: (a), (b) show urban driving in Town05 Long, (c), (d) in Longest6, highlighting
‘traj’ and ‘ctrl’ modes and the gating network’s effectiveness.

TABLE I
COMPARISON OF MAGNET WITH STATE-OF-THE-ART METHODS ON TOWN05
LONG BENCHMARK IN TERMS OF DRIVING SCORE (DS), ROUTE COMPLETION

(RC) AND INFRACTION SCORE (IS)

98.5± 1.18 of route completion, and an infraction score of
0.69± 0.05, outperforming the ThinkTwice [20] (a camera-
based driving agent) by 12.8% in driving, 3.1% in route com-
pletion and 14.5% in infraction scores, respectively. Similarly,
MAGNet also performs better when compared with Lidar-based
methods; for instance, MAGNet outperforms LAV(a Lidar-
based driving agent) [9] by a margin of 57.6% in driving score,
41.1% in route completion and 8.2% in infraction score respec-
tively. Since MAGNet follows a multi-task learning framework,
we compared our method to the baseline method TCP [10],
which also follows the multi-task learning framework. Upon
evaluation, the MAGNet outperforms the TCP [10] baseline
method by 28.2% in driving score, 22.5% in route completion,
and 8.2% in infraction score, respectively.

As for the Longest6 benchmark, MAGNet has also shown
better performance when compared with state-of-the-art meth-
ods as illustrated in Table II. For instance, MAGNet achieves
the driving score of 71.43± 2.3, route completion score of
84.54± 1.5, and infraction score of 0.87± 0.05, as compared
to TCP [10], where it achieves the driving score of 42.86± 0.63,
route completion score of 61.83± 4.19 and 0.71± 0.04 of
infraction score. Thus, MAGNet outperforms TCP [10] by a mar-
gin of 66.7% in driving score, 36.7% in route completion, and
22.5% in infraction score on Longest6 benchmark, respectively.
Similarly, when the proposed MAGNet is compared with camera
and Lidar-based methods, it performs better in the driving, route

Fig. 5. Attention map visualizations for MAGNet: (a) showing ‘traj’ mode
selection highlighted by focused attention regions, and (b) illustrating ‘ctrl’
mode selection where attention disperses relevant to control adjustments. These
attention maps illustrate that the model is learning the representations.

TABLE II
COMPARISON OF MAGNET WITH STATE-OF-THE-ART METHODS ON LONGEST6
BENCHMARK IN TERMS OF DRIVING SCORE (DS), ROUTE COMPLETION (RC)

AND INFRACTION SCORE (IS)

completion, and infraction scores, as illustrated in Table II on
Longest6 benchmark.

The efficacy of MAGNet is illustrated in Fig. 4, showcasing
adaptability in various driving scenarios. The qualitative find-
ings align well with quantitative benchmarks, substantiating its
comparative effectiveness against state-of-the-art methods.

F. Ablation Study

This section presents a quantitative analysis of control-only,
trajectory-only, and our proposed method, using a uniform
feature extraction process with a ResNet-based image encoder
and a measurement encoder. The control-only model uses only
the control branch, while the trajectory-only model uses only
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Fig. 6. Statistical comparison of MAGNet and TCP: (a) shows MAGNet’s
(gα) and TCP’s heuristic parameters; (b)-(d) display their impacts on throttle,
brake, and steering controls.

the trajectory branch. Control-only predictions use the feature
vector F and trajectory-only predictions down-sample F for
the GRU decoder to forecast future waypoints. As shown in
Table III, control-only exhibits higher reactivity but more infrac-
tions, and trajectory-only shows lower route completion, both
under-performing compared to our proposed method, which
combines both approaches with a situational gating network,
leading to superior performance metrics. Additional we have
extended our ablation study to include a heuristic-based com-
bination of control-only and trajectory-only module. We have
adopted the same heuristic-based approach used in TCP for fair
comparative analysis. While the heuristic approach improved
over the individual control-only and trajectory-only models, it

TABLE III
ABLATION STUDY BETWEEN OURS CONTROL-ONLY, TRAJECTORY-ONLY, TCP,

OURS (HEURISTIC) METHOD, AND OURS (MAGNET)

Fig. 7. Alpha-Driven Mode Distribution: ‘ctrl’ mode is common at lower
alphas, ‘traj’ at higher, indicating strategic mode selection.

still did not achieve the performance level of our integrated
MAGNet approach as illustrated in Table III.

We have conducted a statistical analysis to evaluate the effec-
tiveness of our MAGNet model. Our study assesses MAGNet’s
efficacy, focusing on the gα parameter within its gating network
and comparing it to TCP’s heuristics approach. We investigated
the impact of these parameters on throttle, brake, and steer
controls. Moreover, we demonstrated MAGNet’s adaptability
to environmental changes through attention maps, as shown in
Fig. 5. Tables I–II shows a quantitative comparison between
MAGNet without attention and the proposed MAGNet with
attention.

Fig. 6(a)–(d) details the results of this comprehensive analysis,
comparing MAGNet with TCP across different routes and driv-
ing conditions. It highlights instances where the agent alternates
between ‘traj’ (trajectory) and ‘ctrl’ (control) modes in response
to varying situations. Notably, we found that MAGNet’s throttle,
brake, and steering profiles are significantly smoother than those
of TCP, demonstrating the efficacy of our model. Additionally,
the analysis reveals the adaptive behavior of the gα parameter
in MAGNet, which dynamically adjusts based on the driving
context. We also present a distribution of ‘traj’ and ‘ctrl’ modes
across various routes in Fig. 7. This distribution reveals that ‘ctrl’
mode is favored at lower alpha values and ‘traj’ mode at higher
ones, indicating their respective suitability for different driving
scenarios.

V. CONCLUSION

In this work, we present MAGNet, a framework designed to
learn situational fusion strategies that integrate trajectory and
direct control predictions. We also develop a trajectory-distilled
control prediction technique that leverages self-attention for
multi-step control output predictions. Our findings indicate
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that the situational fusion parameter can be effectively learned
without resorting to heuristic methods for merging trajectory
and control predictions. Notably, our proposed approach sur-
passes the leading TCP method in a closed-loop setting across
two widely recognized benchmarks. Furthermore, compared
to state-of-the-art methods, including those using camera and
Lidar-based agents, MAGNet performs better in driving score,
route completion, and infraction score metrics.

The challenge of effectively fusing situation-based parame-
ters in autonomous driving remains an open issue. While our
proposed work takes a significant step forward by adaptively
learning the situation-based fusing parameter, it still needs
to incorporate rules-based methods. Specifically, combining
signal-temporal-logic (STL) with adaptive learning introduces
complexities in harmonizing these adaptive approaches with es-
tablished rules. The key challenge lies in ensuring their cohesive
operation to improve system safety and efficiency, presenting a
promising avenue for future research.
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