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Abstract—We propose a novel self-supervised approach for
learning to visually localize robots equipped with controllable
LEDs. We rely on a few training samples labeled with position
ground truth and many training samples in which only the LED
state is known, whose collection is cheap. We show that using
LED state prediction as a pretext task significantly helps to learn
the visual localization end task. The resulting model does not
require knowledge of LED states during inference. We instantiate
the approach to visual relative localization of nano-quadrotors:
experimental results show that using our pretext task significantly
improves localization accuracy (from 68.3% to 76.2%) and outper-
forms alternative strategies, such as a supervised baseline, model
pre-training, and an autoencoding pretext task. We deploy our
model aboard a 27-g Crazyflie nano-drone, running at 21 fps, in a
position-tracking task of a peer nano-drone. Our approach, relying
on position labels for only 300 images, yields a mean tracking error
of 4.2 cm versus 11.9 cm of a supervised baseline model trained
without our pretext task.

Index Terms—Deep Learning for visual perception, deep
learning methods, micro/nano robots.

I. INTRODUCTION

THE ability to estimate the position of a target robot in a
video feed is crucial for many robotics tasks [1], [2], [3].

State-of-the-art (SoA) approaches use deep learning techniques
based on Convolutional Neural Networks (CNNs) [4]: given
a camera frame, they segment the target robot, regress the
coordinates of its bounding box or its position in the image.
Training these approaches to handle new robots or environments
requires extensive labeled datasets, which are time-consuming
and expensive to acquire, often relying on specialized hardware,
e.g., motion tracking systems, to generate ground truth labels.
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This article presents an approach to drastically reduce the
labeled data required to train such models, building upon recent
results in Self-Supervised Learning [5]. In the robotics literature
(see Section II), the term Self-Supervised denotes two distinct
paradigms. In the first, a robot system autonomously generates
labeled data for the task of interest, named end task, and is
trained in a standard supervised way. This paradigm has been
used in robotics since the mid 2000s [6], [7], [8], [9]. As a
recent example, Li et al. [4] use nano-drones equipped with
SoA algorithms to automatically acquire camera frames and the
corresponding relative location of the target drone. In the second
paradigm, a robot system autonomously generates abundant
labeled data for a pretext task: the pretext task requires similar
perception skills as the end task while relying on cheaper ground
truth that is easier or free to collect. Then, a model is trained
to solve both tasks simultaneously using an additional dataset
containing only few labels for the end task. Despite not being
useful during deployment, the pretext task forces the model to
learn meaningful features, boosting the performance on the end
task. The paradigm is widely successful in the deep learning
literature [5] and has only recently been adopted for perception
applications [10], [11].

This article introduces a novel approach based on the second
paradigm, tailored to robotics applications, and suitable for
deployment on resource-constrained platforms. Our contribu-
tion, presented in Section III, is the use of target robot LED
state prediction (ON or OFF) as a pretext task to improve the
learning process of a visual localization end task. By learning to
predict the state of the LEDs aboard, the model learns features
that are also useful to localize the target robot. The idea is
compelling because most robot platforms feature controllable
LEDs: during data collection, the target robot blinks its LEDs
and radio-broadcast their state; at the same time, another robot
automatically collects images annotated with LED state ground
truth.

We instantiate this general idea to a specific, challenging end
task: predict the image-space position of a target nano-drone
given a low-resolution, low-dynamic-range image acquired by
the camera of a peer nano-drone, as shown in Fig. 1. A Fully Con-
volutional Network (FCN) model [12] simultaneously learns
to solve pretext and end tasks using the dataset described in
Section IV, containing only few samples labeled with the drone’s
location. We provide detailed comparisons and an ablation
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Fig. 1. Fully convolutional network model is trained to predict the drone position in the current frame by minimizing a loss Ltask defined on a small labeled
dataset Tl (bottom), and the state of the four drone LEDs, by minimizing Lpretext defined on a large dataset Tl ∪ Tu (top).

study on the Bitcraze Crazyflie 2.11 nano-drone in Section V.
Results show the proposed pretext task to significantly improve
performance over a supervised baseline, different pre-training
strategies, and an autoencoding pretext task. The model gener-
alizes well to unseen environments, and is capable of localizing
multiple drones simultaneously. Finally, we deploy the model
aboard the target platform to complete a vision-based position
tracking task. Conclusions are drawn in Section VI.

II. RELATED WORK

A. Relative Visual Localization of Drones

Drone-to-drone relative localization approaches rely on var-
ious sensors, including microphones, infra-red sensors, Ultra-
Wide Band (UWB), color and depth cameras. In particular,
microphones can be used for localization, integrating distance
estimates from a drone beacon emitting a specific sound [13].
Multiple infra-red sensors with known geometry allow the tri-
angulation of a drone equipped with infra-red emitters [14].
Camera-based approaches rely on visual fiducial markers such
as circles printed on paper [15], light-emitting markers [16], by
detecting the drone in depth images with handcrafted [17], or
learned [18] models. In our work we use monocular grayscale
images as the model’s input. LEDs, which come already in-
tegrated with the adopted platform, are exclusively used to
generate data for the self-supervised pretext task and are not
used during inference.

UWB is a radio communication technology recently adopted
for localization tasks [19], [20], [21], [22], [23], enabling com-
munication between multiple robots and providing a distance
measurement through the Received Signal Strength Intensity
(RSSI). RSSI measures the amount of radio signal received from
a source and is used to derive its distance. Using three non-
collinear UWB sensors enables the triangulation of robots [19].
A single sensor requires more complex approaches, such as
integrating distance measurements from UWB beacon drones
moving in a pattern [20]. Communication is used during lo-
calization to combine distance measurements with broadcasted
state-estimates [21], [22] and optimizing a camera-based initial
guess [23].

In contrast, our approach does not require specialized hard-
ware that supports the communication, and does not assume the

1https://www.bitcraze.io/products/Crazyflie-2-1

target drone to share information with the observer drone during
inference.

B. Self-Supervised Relative Drone Localization

Self-supervised approaches proposed for object localization
tasks [9], [24], [25], [26] can, in principle, be used to localize
drones. Objects are localized by fitting their known 3D model
onto a monocular image [24] or onto a point-cloud obtained by
segmenting multiple RGB-D images [9]. Other approaches do
not require knowledge of the 3D model of the objects of interest.
Instead, they learn by using a pre-trained model and moving the
object to generate more training data [25] or by combining state
estimates with sparse trusted information, e.g., that coming from
a fiducial marker [26].

Self-supervised relative drone localization approaches learn a
model with limited access to labeled data, using UWB to provide
ground truth [4], or a stereo microphone for an audio-based
pretext task [10]. In detail, Li et al. [4] pre-train a purely visual
estimator using synthetic data, then fine-tune it using a small
labeled dataset generated autonomously from UWB nodes [22].
In contrast, our approach introduces a pretext task defined on
images with no ground truth for the target position: it is based
solely on LED state estimation, and does not require additional
hardware besides controllable LEDs – which are present on most
robot platforms.

We explored cross-modal self-supervised learning of vi-
sual quadrotor localization in recent work [10], using im-
ages acquired by a ground robot equipped with a stereo
microphone. The pretext task consists of predicting fea-
tures (intensity in various frequency bands) of the perceived
sound of a quadrotor, given an image. By solving this pre-
text task, the model is forced to learn features of the per-
ceived sound that, in turn, are informative of the drone’s
location.

The present work proposes a more general pretext task that
does not rely on additional sensors, such as a microphone, and
is suitable for applications with limited power budget. The only
requirement is that the target robot is able to vary its appearance
for the observer: in the absence of controllable LEDs, which are
the most straightforward and convenient way to achieve this, one
may rely on any other actuator that affects the robot appearance,
e.g., raising a limb.

https://www.bitcraze.io/products/Crazyflie-2-1
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III. LED STATE PREDICTION AS A PRETEXT TASK

We consider visual robot-to-robot localization problems, in
which an observer robot has to predict the position of a target
robot on the image plane. The observer robot takes a monocular
image from its forward-looking camera and predicts the position
of the target robot visible in the image. Additionally, we require
the target robot to be equipped with controllable LEDs.

We collect tuples consisting of
{
〈ij ,pj , lj〉

}N

j=1
where i ∈

Rwhc denotes a camera frame of w × h pixels and c channels,
p ∈ R2 the image-space position of the robot, and l the shared
state of the four robot LEDs, which can be either all OFF,
represented with a 0, or all ON, represented with a 1.

In the following, we call samples labeled when the drone’s
position p is known or unlabeled otherwise. We denote the set
containing the (possibly small) amount of labeled samples with
T� and the unlabeled set with Tu. We also collected a separate
labeled setQ that serves as a testing set and on which we compute
performance metrics.

We learn a Neural Network (NN) model m that, given a
monocular image, predicts two maps: the location map q̂ con-
taining likely drone locations, and the LED state map l̂ the
probability of seeing a drone with its LEDs on, (q̂, l̂) = m(i|θ),
where θ is the set of trainable network weights. Specifically, we
consider a Fully Convolutional Network (FCN) architecture con-
sisting solely of convolutional layers and whose output consists
of two maps. Using a map to represent the drone’s location has
two advantages compared to using the drone’s coordinates [27].
First, it allows one to handle images with zero, one or more
visible drones [4]. Second, it enforces an inductive bias by
limiting the receptive field of each cell of the output map; in
fact, we expect the target drone to cover a small portion of the
input image [28].

A ground truth location map q ∈ [0, 1]wh of w × h cells is
generated from the robot’s position p = (u, v): we start with a
map filled with zeros and place a circle of radius r = 4 pixels
centered in p, filled with ones and with a soft-edge transitioning
to zero.

We train m by optimizing the weights θ through gradient
descent steps, minimizing the loss function L. The loss, in turn,
is defined as the weighted sum of two terms: the first term Ltask

consists of a regression loss computed on the labeled training set
T�, whose aim is to learn the robot localization task, and defined
as

Ltask =
1

|T�|

|T�|∑
i=1

mean
(
|q̂i − qi|2

)
(1)

where mean is the average of the map cells. The second term
Lpretext consists of a classification loss defined on the union of
the training sets T� ∪ Tu, learning the LED state prediction task,
and defined as

Lpretext =
1

|Tu ∪ T�|

|Tu∪T�|∑
i=1

BCE
(
mean

(
l̂
)
, l
)

(2)

where BCE is the binary cross-entropy. To obtain the scalar l̂
representing the probability of the drone’s LEDs being on, we
compute the average of the LED state map l̂2.

The complete loss function is L = (1− λ)Ltask + λLpretext,
where λ ∈ [0, 1] controls the tradeoff between the two loss terms
during training. In (1) and (2), each loss is weighted by the
reciprocal of the dataset size on which it operates, ensuring
that the impact of each loss during training is comparable when
working on differently-sized datasets.

IV. EXPERIMENTAL SETUP

In the following, we instantiate the presented approach to
the challenging task of drone-to-drone localization, as shown in
Fig. 2. This task represents the broader set of image-based robot
localization tasks, as many mobile robots feature cameras and
controllable LEDs. Among platforms to which our approach is
applicable, we specifically selected nano-drones for our exper-
iments: they are difficult to localize due to their small dimen-
sions and complex shape. Additionally, they have constrained
resources: the camera is low resolution, low dynamic range, and
has a limited field of view; the onboard microprocessor imposes
limitations on the breadth and depth of the NN, especially for
real-time applications.

A. Robot Platform

The platform of choice is the Bitcraze Crazyflie 2.1, a nano-
drone measuring 10 cm in diameter and weighing only 27 g,
extended by the Ai-deck companion board, see Fig. 2. The Ai-
deck provides a forward-looking monocular camera, acquiring
320× 320 pixels grayscale images, and a GWT GAP8 Parallel
Ultra-Low Power (PULP) System-on-Chip (SoC) [29] extend-
ing the basic computational capabilities, i.e., state estimation
and low-level control, offered by the STM32 microcontroller
available on the nano-drone. We employ the GAP8 SoC to
boost the execution of NNs, which require integer quantization
to exploit its 8-core general-purpose cluster due to the lack of
floating point support. Additionally, the drone features on its
body four controllable LEDs, which we exploit to define the
pretext task.

We consider a scenario in which two identical Crazyflie
drones fly in the environment: one drone takes the observer role,
acquiring camera frames in which the other drone (target) is
visible.

B. Datasets

Our experimental validation is based on Nano2nano3, a
dataset collected in a 10× 10 m lab equipped with a motion-
tracking system and consisting of 72 different sequences. For
each sequence (average length of 210 seconds and 830 frames),
the target Crazyflie flies a pseudo-random trajectory with the
four controllable LEDs switched either ON or OFF. At the same
time, the observer drone continuously moves to increase the

2One may obtain l̂ as the average of l̂ weighted by the map q̂; in our
experiments, this resulted in less stable training and a lower performance.

3https://github.com/idsia-robotics/drone2drone_dataset

https://github.com/idsia-robotics/drone2drone_dataset
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Fig. 2. Palm-sized Bitcraze Crazyflie 2.1 nano-drone platform (10 cm in diameter). (a) The drone’s hardware and its four controllable LEDs; (b, c) high-resolution
pictures of the flying drone; (d, f) samples from our dataset; (e, g) zoom-in on the drone using the model’s receptive field (45× 45 pixels).

variability of represented backgrounds. To further increase data
variability, in each sequence the camera exposure setting is set
to one of three possible values. The trajectory is computed so as
to keep the target in the camera view and cover the image space
as uniformly as possible, with distances ranging from 0.2 meters
to 2 meters. Each frame is labeled with the target pose relative
to the observer’s camera, its position in the image, and the state
of the LEDs.

Half of the 72 sequences are used as the testing set Q (30 k
samples). Data from remaining 36 sequences is partitioned into
the labeled training set T� (1 k samples) and the unlabeled
training set Tu (29 k samples). For an approach described in
Section IV-C, we employ the synthetic training dataset Ts pro-
posed in [4, Section IV] consisting of 800 random-background
images depicting the drone in a random pose. Images are con-
verted to grayscale and padded with a solid random gray value
to match size and channels of our data.

Additional generalization experiments are reported in
Section V-D and shown in the supplementary video; these ex-
periments use data recorded in different rooms, without ground
truth for the drone location.

C. Alternative Strategies

We assess the validity of our approach, named LED state
prediction Pretext (LED-P), against various alternatives. First,
we consider a naive model (DUMMY) that always predicts
the mean position on the labeled training set T�. The Baseline
(BAS) strategy involves training using only Ltask (achieved with
λ = 0) on the labeled training set T�. The Upper Bound (UB)
strategy is used to estimate the maximum achievable perfor-
mance. It minimizes only Ltask, assuming to have access to
ground truth position labels for both T� and Tu, representing
a fully-supervised scenario where ground truth is cheap and
abundant.

We also consider alternative strategies: Autoencoding Pretext
(AE-P), Contrastive Language-Image Pre-training (CLIP) and
Efficient Deep Neural Networks (EDNN).

Undercomplete autoencoders are a frequently-adopted strat-
egy for taking advantage of unlabeled data, defining an image-
reconstruction pretext task [5]. The intuition is that by learning
to compress and decompress an image, autoencoders learn a
high-level representation that can be useful to solve the end task.
In AE-P, we train an autoencoder on T� ∪ Tu by minimizing the
MS-SSIM [30] between input and reconstructed images; then,
an additional NN head learns the localization task using Ltask

on T�, taking as input features computed by the autoencoder’s
bottleneck.

CLIP is a powerful bi-modal feature extractor trained to
minimize the distance of embeddings between an image and its
caption [31]. The learned image encoder is shown to outperform
supervised models in many zero- and few-shot tasks. In CLIP, we
take the features extracted from the pre-trained image encoder
and pass them to a NN head trained for the localization task
using Ltask on T�.

In EDNN, we consider supervised pre-training on synthetic
images, as described in [4], to cheaply generate labeled data. The
strategy consists first in training using the synthetic dataset Ts
on the localization task with a focal loss [32], and then fine-tune
the NN parameters using Ltask on T�.

D. Network Architectures and Training

BAS, UB, EDNN and LED-P share the same tiny FCN [12]
architecture consisting of nine convolution blocks, in order: two
blocks with 8 channels, 2×max-pooling, three with 16, 2×max-
pooling, three with 32, 2×max-pooling and one with 2 channels
as the output, totalling 22.1 k trainable parameters. Convolution
blocks consist of a convolution layer, batch normalization and
ReLU activation. The model’s input is a grayscale image of
320× 320 pixels, normalized between zero and one. The model
produces two maps of 40× 40 cells, each cell with a 45× 45
pixels receptive field, as illustrated in (e, g) of Fig. 2. Cells of
the first map denote drone presence in the corresponding area of
the input image,4 while cells of the second denote whether the
drone has its LEDs on (1.0) or off (0.0); cells with no visible
drone are expected to have a value close to 0.5.

AE-P uses an encoder with four convolution blocks with 4,
8, 16 and 32 channels, interleaved by 2× max-pooling layers,
and terminating with the Fully-Connected (FC) bottleneck; in
our experiments we considered bottlenecks of 512 and 1024
neurons. The decoder uses four convolution blocks with chan-
nels symmetrical to the encoder and interleaved by 2× bilinear
upsampling. We attach to the bottleneck a convolution head re-
sponsible for localizing the drone, consisting of two convolution
blocks with 32 and 1 channels and interleaved by 2× bilinear
upsampling.

CLIP uses the pre-trained image encoder of the homonymous
model [31] as a feature extractor; specifically, we adopt the
variant using the vision transformer ViT-B/32 producing 512
features. We follow a similar approach to what is presented
in [31, Section 3] but keeping CLIP parameters frozen and
replacing the logistic regression with a FC head. A FC head uses
two blocks composed of a FC layer, batch normalization and

4Map cells are independent one another and assume values in the range from
0 (no drone) to 1 (drone present in given cell).
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Fig. 3. LED-P model predictions on the test setQwith argmax and barycenter
approaches for the u and v components of the drone’s position.

ReLU activation. We conducted many trials to find performing
architectures that use the 512 CLIP features; we report here the
best two: the top performer with 16 neurons and the second with
512, followed by the output block of 400 neurons reshaped into
a 20× 20 grid.

Finally, we compare LED-P with Frontnet [27], an approach
that directly regresses the drone’s coordinates.

All NNs are trained using Adam [33] as the optimizer, running
for a total of 200 epochs. We adopt a scheduler that divides the
learning rate by a factor of 5 every 50 epochs, starting with
a learning rate η start = 1e−2 and reaching a final learning rate
η final = 8e−5. In each epoch we randomly draw mini-batches of
64 examples from the two joined training sets and minimize the
loss function described in Section III. Specifically, we minimize
Lpretext (settingLtask to 0) for examples taken from Tu since there
are no known labels, and the complete loss L when fed samples
from T�.

Additionally, to increase the variability of the drone’s visual
appearance, we apply the following augmentations: horizontal
flip (50% probability), random rotation (uniform ±9◦), random
translation (uniform ±32 pixels), and apply multi-frequency
simplex noise.

E. From Grid Map to Robot Position

We consider two approaches to recover p̂ from the model’s
predicted map q̂ named argmax and barycenter: argmax se-
lects the coordinate of the cell of q̂ whose value is largest;
barycenter computes the expected drone position by averaging
the coordinates of each cell weighted by the corresponding
probability of depicting a drone [34]. The probability of each cell
is obtained by normalizing q̂ s.t. its sum equals one. As shown in
Fig. 3, barycenter returns conservative estimates, biased towards
the dataset’s mean. In contrast, argmax yields unbiased results
at the expense of larger errors for frames with no detected
drone. Banding artifacts are present with argmax since it cannot
represent positions inbetween cells of the 40× 40 map, i.e., it
discretizes the input image coordinates into 8-pixel-wide bins.
In the following experiments we use the argmax approach.

F. Evaluation Metrics

We compare models on different metrics computed on the
test set Q. The Pearson correlation coefficient ρ, computed
separately for the horizontal u and vertical v components of p;
it measures the linear correlation between predicted and ground
truth values. We also compute the model’s error distribution

using the euclidean distance between p and p̂. From this distri-
bution, we derive the median value in pixels D̃ and a precision
score Pk. We chose median instead of mean for being a robust
central tendency estimate for skewed distributions. Pk is the
fraction of samples whose position error is lower than k pixels,
considering predictions with a distance smaller than the thresh-
old k as correct, similarly to ADD for 6 Degrees of Freedom
pose estimation [24]. Additionally, we report P+

k , defined as
the relative improvement of LED-P models with respect to the
corresponding baseline BAS, such that BAS represents 0%, and
UB 100%. In our experiments we consider k = 30 pixels, i.e.,
approximately 10% of the edge length of images.

Even though LED state prediction is not our end task, we
also report the Area Under the Receiver Operating Characteristic
Curve (AUC) for the LED classification output: it measures how
well a model distinguishes the two classes at various thresholds,
i.e., telling between a drone with LEDs off or on. A random
classifier achieves an AUC score of 50%, while an ideal classifier
achieves a score of 100%.

V. RESULTS AND DISCUSSION

This section reports the performance of our proposed strategy
(Section V-A), how performance changes as a function of λ and
of the amount of labeled examples (Section V-B), a comparison
with alternative approaches (Section V-C), generalization ability
of our proposed strategy (Section V-D) and a deployed in-field
experiment on nano-drones (Section V-E).

A. LED State Prediction Improves Performance

In Table I, first and last panels, we report the performance of
our LED-P strategy against a dummy model (DUMMY), base-
line (BAS) and an upperbound (UB). We observe that LED-P-
100, trained leveraging unlabeled images, performs moderately
better than BAS-100 across all evaluation metrics. The P30 met-
ric indicates that 86.9% of predictions fall within 30 pixels from
the respective ground truth position, with a median error of only
8 pixels out of a 320× 320 pixels image. We also computed P30

scores on two subsets of Q containing examples with LEDs off
and on, on which our LED-P-100 model scores 83.3% and 91.2%
respectively, showing more difficulties in localizing drones with
LEDs off. On the same metric, we report LED-P-100 to score
higher than BAS-100 with a p-value of 0.029, computed with
the non-parametric one-sided Mann-Whitney U test. This model
achieves a P30 of 88.3% when localizing the drone in brighter
images and 85.3% in darker ones, showing a slight performance
drop in the latter case.

B. Impact of λ and Amount of Labeled Examples

In Fig. 4, we inspect the LED-P-30 (λ = 0.001) prediction
against BAS-30 on samples taken fromQ, where it scores 30.9%
in P+

30, a considerable improvement over the respective baseline.
Our model demonstrates an overall good performance when the
target drone flies at or below the camera height as the drone’s
LEDs are more easily visible, and to a lesser extent when the
target flies higher, which reduces the LEDs’ visibility. On the
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TABLE I
COMPARISON OF MODELS, 5 REPLICAS PER ROW. PEARSON CORRELATION COEFFICIENT ρu AND ρv , PRECISION P30 AND MEDIAN OF THE ERROR˜D

Fig. 4. LED-P-30 with λ = 0.001 (small green circle), BAS-30 (yellow cross) predictions and ground truth (large magenta circle) on frames taken from Q with
the drone’s LEDs turned on (first three) and off (last three), and featuring different camera exposure settings.

LED state prediction, our model scores 74% in AUC despite
the drone LEDs not being visible in many of Q samples. Failed
detections occur when the model predicts the position of similar
looking areas of the image; this happens less frequently when
LEDs are on since their presence improves the drone’s visibility.

The approach is robust to the unlabeled training set Tu con-
taining some frames in which the drone is out of the field of view,
thus making its LED state impossible to predict. We explore the
approach robustness in an experiment where we add 3.4 k such
samples to Tu, a 10% increase. After training on the modified
Tu, LED-P-30 (λ = 0.001) scores 10.3 in D̃ and 73.2% in P30, a
small decline in performance when compared to the same model
trained using the original Tu.

In Fig. 5, we show the P+
30 relative improvement score for

BAS and LED-P strategies as the amount of labeled training
examples and the weight of the loss λ vary. LED-P outperforms
BAS when training on as few as 100 labeled examples (10% of
T�). The optimal value of λ for our loss is 0.001 for 100 and 300
labeled examples (10% and 30% of T� respectively), and 0.0005
for the full labeled dataset.

Inspecting the two loss term values, we note that Ltask is in
the order of magnitude of 10−4 and Lpretext in 10−1. The optimal

Fig. 5. P+
30 score for BAS (λ = 1) and LED-P (λ < 1) strategies as the

amount of labeled training examples T� and the weight of the loss λ vary.

λ values are scaling the loss terms to be in the same order of
magnitude, striking a balance between the two.

C. Alternative Training Strategies

We investigate strategies using a different architecture, model
pre-training, or different pretext tasks, described in Section IV-C,
and whose performance metrics are reported in Table I, fourth
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Fig. 6. Generalization and multi-drone localization examples using LED-P-30 (λ = 0.001). The first four images are taken from an unseen lab environment [35]
and the last two from an unseen synthetic one [4]. Errors are visually marked as false positives (FP) or false negatives (FN).

panel. EDNN scores 10.2 pixels in D̃ demonstrating some
degree of accuracy; however, it scores lower than LED-P-100
and BAS-100 that use the same amount of labeled data. This
result suggests that task similarity is less influential than dataset
relevance, i.e., training on the same task with data vastly different
(in appearance) from testing achieves lower scores than solving
a different task on similar data, e.g., our LED state prediction
pretext task.

Frontnet achieves 31 pixels in D̃ despite having been trained
similarly to BAS-100, which achieves only 8.2 pixels. The
increase in error demonstrated by Frontnet indicates that using
a FCN model producing a map-based representation leads to a
better performance than direct regression.

AE-P successfully learns to reconstruct input images using
the bottleneck features. However, the model focuses on large-
scale aspects of the environment, such as floors, walls and
fixtures, distinctive of background elements and disregards high
frequency elements such as the drone. This tendency results
in a feature space, regardless of bottleneck size, that is not
informative of the drone’s position, rendering this pretext task
inadequate for localizing small objects. Even in CLIP’s case,
we note how the provided features do not translate in good
localization performance; this confirms previous reports [31]
that CLIP’s image encoder features underperform on highly
specialized end tasks, such as ours. AE-P and CLIP highlight
the importance of having good features, which can be obtained
by choosing the right kind of pretext task, and promoting the
recognition of patterns similar to those required to solve the end
task.

D. Generalization Ability

In Fig. 6, we show the prediction of the observer drone
using LED-P-30 (λ = 0.001) on images featuring multiple target
drones collected in another lab environment [35], and synthetic
frames from a simulator [4]. For this scenario, we modified the
argmax approach by thresholding the localization map l̂ with its
95-percentile, extracting the maximum value of each connected
component, discarding components whose maximum is below
0.2 and returning their centroid as the drone locations. For the
most part, our model correctly localizes the drones despite the
motion blur and defocus, with all examples featuring at least two
correct predictions. Failed detections on the edge of the field of
view occur due a strong vignetting effect, which degrades the
image quality.

Fig. 7. In-field experiment: measured vs ideal trajectory of the observer drone
when using LED-P-30 (λ = 0.001) for estimating the target position.

E. In-Field Experiment

The LED-P-30 (λ = 0.001) and BAS-30 models are de-
ployed aboard the observer nano-drone, using the academic
NEMO/DORY framework5. NEMO provides post-training
quantization-aware fine-tuning, to convert deep learning models
from floating-point to integer arithmetic, needed due to the
absence of floating point units on the GAP8 SoC. DORY,
instead, produces a template-based C implementation, which
takes care of data movements across the memory hierarchy of
the GAP8 SoC. This stage is fundamental in achieving fast
inference, as sub-optimal data tiling/transfers might lead to poor
performances. Our optimized NN pipeline achieves an in-field
inference rate of 21 frames per second.

In the observer drone, the model output is used as feedback to
a visual servoing controller, designed to keep the target drone in
the center of the image. The controller moves the observer drone
on a vertical plane, orthogonal to its camera axis, while keeping a
constant yaw. Without loss of generality, we consider the motion
of the observer drone to take place on the yz world plane, with
x = 0. In the experiment, the target drone follows a predefined,
scripted trajectory. The ideal trajectory for the observer drone is
the same as the target, projected on x = 0 vertical world plane.

Fig. 7 reports the y and z components of the measured trajec-
tory of the observer drone, controlled using position estimates
from LED-P-30, compared to the ideal one. We observe that

5https://github.com/pulp-platform/nemo

https://github.com/pulp-platform/nemo
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the drone follows very closely the ideal trajectory. The same
experiment run using BAS-30 yields worse position tracking:
the mean and standard deviation σ of the absolute position error
on the yz plane is 4.2 cm (σ = 4.0 cm) for LED-P-30, and
11.9 cm (σ = 8.3 cm) for BAS-30.

VI. CONCLUSION

We propose LED state estimation as a self-supervised pretext
task, applied to the end task of visually localizing robots from
small labeled datasets. The pretext task is optimized on large,
cheaply-collected datasets that only have ground truth for the
LED state of the observed robot. The approach is instantiated
on localizing nano-quadrotors in low-resolution images, observ-
ing improved localization accuracy compared to baselines and
alternative techniques for self-supervision. In-field experiments
used a 27-g Crazyflie nano-drone to track the position of a peer
drone; the proposed approach reduces mean position-tracking
error from 11.9 to 4.2 cm. The resulting detector can be used,
for example, within a tracking-by-detection approach [36] to
integrate predictions over time and track the target even in
presence of occlusions.

Current work aims at extending the approach to estimate the
distance and orientation of the target, handling sequential inputs,
and exploiting the known state of multiple LEDs as a localization
cue at inference time.
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