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Abstract—Tracking and following objects of interest is critical
to several robotics use cases, ranging from industrial automation
to logistics and warehousing, to healthcare and security. In this
letter, we present a robotic system to detect, track, and follow
any object in real-time. Our approach, dubbed follow anything
(FAn), is an open-vocabulary and multimodal model – it is not
restricted to concepts seen at training time and can be applied to
novel classes at inference time using text, images, or click queries.
Leveraging rich visual descriptors from large-scale pre-trained
models (foundation models), FAn can detect and segment objects
by matching multimodal queries (text, images, clicks) against an
input image sequence. These detected and segmented objects are
tracked across image frames, all while accounting for occlusion and
object re-emergence. We demonstrate FAn on a real-world robotic
system (a micro aerial vehicle), and report its ability to seamlessly
follow the objects of interest in a real-time control loop. FAn can
be deployed on a laptop with a lightweight (6–8 GB) graphics card,
achieving a throughput of 6–20 frames per second. To enable rapid
adoption, deployment, and extensibility, we open-source our code
on our project webpage. We also encourage the reader to watch
our 5-minute explainer video.

Index Terms—AI-enabled robotics, object detection, segmenta-
tion and categorization, semantic scene understanding.

I. INTRODUCTION

D ETECTING, tracking, and following objects of interest
is critical to several robotics use-cases, such as industrial
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Fig. 1. Follow anything (FAn) is a real-time robotic system to detect, track,
and follow objects in an open-vocabulary setting. Objects of interest may be
specified using text, images, or clicks. FAn leverages foundation models like
CLIP [33], DINO [34], and SAM [35] to compute segmentation masks that best
align with the queried objects. These objects are tracked across video frames
while accounting for occlusion and object re-emergence; enabling real-time
following of objects of interest by a robot platform.

automation, logistics and warehousing, healthcare, and secu-
rity [1], [2], [3], [4]. Notably, one of the key drivers of continuous
progress in providing robust object-following systems is the
combination of computer vision and deep learning [5], [6],
where training deep convolutional networks on large labeled
datasets have made tremendous strides in this area. Specifically,
the object following task relies on the video segmentation and
tracking task, which can be categorized into distinct subtasks.
These include interactive (scribble or click-based) video seg-
mentation [7], where a user draws a box around or clicks on
the object to segment and track, mask-guided video segmenta-
tion [8], [9], [10], [11], which assumes the presence of a mask to
track, and automatic video segmentation [12], [13], [14], [15],
[16], which assumes that the user does not interact with the
algorithm to obtain the segmentation masks; methods should
provide a set of object candidates with no overlapping pixels
that span through the video sequence, however, these candidates
are not specific, meaning that the segmentation will be applied
to all of the seen objects, and not recognize the desired object.
Thus, to automatically identify the required object to follow,
numerous detection approaches have been suggested [17], [18]
such as RCNN and its variants [19], [20], [21], YOLO and its
variants [22], [23], [24], and more [25], [26]. However, existing
robotic systems for object detection and following suffer two
notable shortcomings:

1) They are closed-set, i.e., the set of objects to detect and
follow is assumed to be available a priori (during the
training phase). Thus, such systems are only able to han-
dle a fixed set of object categories [2], [27], [28], [29],
[30], limiting their adaptability; adapting to newer object
categories necessitates finetuning the model.

2) Additionally, the objects of interest are specified (queried)
only by a class label, which is often unintuitive for end-
users to specify, imposing restrictions on how users inter-
act with the system [2], [31], [32].
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Deep learning is currently undergoing another wave of ever-
more performant and robust model design, with the creation
of increasingly big and multimodal models trained on internet
scale amount data containing billions of images, text, and audio.
These highly capable models (e.g., CLIP [33], DINO [34])
have demonstrated impressive performance in open-set scenar-
ios (i.e., the objects of interest are only supplied at inference
time, and not trained for a specific task) [36], [37]. Notably,
recent robotics approaches using foundation models have shown
impressive open-set interaction abilities [38], [39], [40], [41],
[42], and extended robustly to multimodal applications [43],
[44], [45], [46]. However, integrating these models into real-time
resource-constrained robotic systems poses significant chal-
lenges, due to their large model size and high inference latency.

A. Our Contributions

We address the pre-discussed gaps by developing an open-set
real-time any object following approach, which can flexibly
adapt to categories specified at inference time, via multiple
modalities including text, images, and clicks. Specifically, we
present the follow anything system (FAn):
� an open-set, multimodal approach to detect, segment,

track, and follow any object in real-time (> 6FPS on a
8 GB GPU). The desired object may be specified via a text
prompt, an image, a bounding box, or a click.

� a unified system that is easily deployed on a robot platform
(in our work, a micro aerial vehicle). The system includes
real-time processors for input image streams and visual-
servoing control loops for following the object of interest.

� built with re-detection mechanisms that account for sce-
narios where the object of interest is occluded or tracking
is lost. This mechanism can function autonomously or
with human guidance, ensuring the object is successfully
identified and tracked again, maintaining continuity in the
tracking process.

We validate our system by autonomously detecting, tracking,
and following a multitude of mobile agents including a drone,
an RC car, and a manually operated brick.

II. OUR APPROACH: FAN

Open-vocabulary object following: Given (1) a robotic sys-
tem (here, a micro aerial vehicle) equipped with an onboard
camera, and (2) an object of interest within the onboard camera’s
field-of-view (specified either as a text prompt, an image, a
bounding box, or a click); the object following task involves
detecting the object of interest, and producing robot controls
ut at each time step t such that the object of interest is con-
strained to always completely be within the field of view of
the onboard camera. This is an extremely challenging task;
it necessitates correctly identifying the object of interest and
determining its position relative to the robot’s onboard camera
frame, all the while accounting for variations in the environment,
background clutter, object size, etc. It also then requires the
object to be continuously tracked across time; while at the
same time, the robot controller needs to output a sequence
of stable velocities (or accelerations) and simultaneously en-
sure the stability of the robot and the visibility of the tracked
object.

FAn system overview: FAn uses a combination of state-of-
the-art ViT models, optimizes them for real-time performance,
and unifies them into a single system. In particular, we leverage

the segment anything model (SAM) [35] for segmentation,
DINO [34], and CLIP [33] for general-purpose visual features,
and design a lightweight detection and semantic segmentation
scheme by combining the features from CLIP and DINO with
the class-agnostic instance segmentation determined by SAM.
We use the (Seg)AOT [9], [47] and SiamMask [48] models
for real-time tracking, and design a lightweight visual servoing
controller for object following; see Fig. 1 for illustration.

A. Real-Time Open-Vocabulary Object Detection

We first describe our lightweight object detection and seg-
mentation pipeline that builds atop SAM, CLIP, and DINO.
Our system takes as input an RGB frame from a video stream,
represented by a 3D tensor F ∈ Rh×w×3, and a query q rep-
resenting the desired object to detect in the video, (e.g., a text
“a blue whale”, an image of a whale, or a click on a whale
from another image). The object detection subsystem is tasked
to detect the object specified by the user query q in an input
image frame. We use Seg to denote the class-agnostic instance
segmentation operator (SAM [35] or Mask2Former [49]). Seg
takes as an input the current frameF , and outputs a set ofnmasks
{M1, . . . ,Mn} := Seg(F ) (n depends on the input frame and
is not a constant), where each mask Mi ∈ Rh×w is a binary
matrix with ones in the indices of pixels defining the corre-
sponding segmented object, and zeros elsewhere. We also use
Desc to denote a feature extractor model; which in our case is
either the DINO or CLIP vision transformer (ViT) model. These
models extract pixel-wise feature descriptors using techniques
described e.g., in [50], [51] and summarized in Section II-C.
Desc receives as an input the current frame F , and outputs
a descriptor tensor D := Desc(F ) ∈ Rh×w×d, where for every
pixel inF , a descriptor vector of dimensiond is constructed. This
d dimensional vector encapsulates the semantic information
about its corresponding pixel. Additionally, Desc can be also
used to provide a feature descriptor v := Desc(q) ∈ Rd for the
input query q.

Embedding input queries: To detect the desired object referred
to by the query q, we start by computing the feature descriptor
of the query q: v := Desc(q), such that v encodes the informa-
tion in the feature space representing the object described by
the query q. Now the system starts receiving frames from the
stream, and for every frame Fi (i := 1, 2, 3 · · · ), FAn applies the
following steps.

First, we compute the (binary) instance segmentation masks
by applyingSeg onFi, {M1, . . . ,Mn}i := Seg(Fi). Intuitively,
this step partitions the frame into n objects (regions) and a
background, however, none of these objects are classified as
labeled/identified objects. Additionally, these regions might in-
tersect. Hence, what is missing, is to predict for each region,
whether it is the desired object to track or not. In the case where
a set of queriesQ = {q1, . . . , qm} is given, the goal is to classify
which query amongst the m provided matches (if any) best each
segment Mj ∈ Seg(Fi). This brings us to the second step.

Second, we extract the pixel-wise descriptors by applying
Desc on Fi, Di := Desc(Fi) ∈ Rh×w×d. After this step, Di

contains h · w descriptors, where each descriptor corresponds
to a pixel in the input image. To compare each region (mask)
with the given input query q, we need to aggregate these per-pixel
descriptors to form region-level descriptors. We find the average
pooling aggregation operator to be fast and effective for this
purpose. This not only provides us with a more generic descriptor
encapsulating all of the features across the specific mask but also
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Fig. 2. FAn outputs illustrations on input frame of four whales with a click
query on a whale and a click query on water. First, SAM extracts multiple
masks, then, based on DINO features, FAn classifies each mask to what object
it refers from the given queries (water/whales). Finally, whales are detected by
assigning the masks whose DINO feature descriptor is closest to the whales’
query descriptor. NOTE: Heat maps are shown in the click (query) figures.

improves the performance of the downstream system modules.
Opposed to comparing the q query’s feature descriptor v to all
of the per-pixel descriptors associated with a specific mask, we
only need to compare the aggregate region-level descriptors.
Thus, the next step in our pipeline involves computing the
mean feature descriptor vj for each segmentation region, i.e., for
every j ∈ {1, . . . , n}: vj := 1

non−zero(Mj)

∑
p∈Di[Mj ]

p, where

non− zero(M) denotes the number of non-zero entries in
binary matrix M , and Di[Mj ] denotes the set of d dimensional
vectors from Di corresponding to the non-zero pixel entries in
the mask Mj . The vector vj , encodes the semantic information
representing the region of the segment Mj in the features space.
For every region (segment/mask) j ∈ {1, . . . , n}, we have its
corresponding descriptor vj .

Similarity scores: Given a query (in the form of text, image, or
click), we first extract a query feature descriptor v by applying a
modality-specific encoder (CLIP for text-query, DINO or CLIP
image encoder followed by average pooling for image-query,
directly selecting the closest pixel/patch feature for click-query).
To match this query to the current image, we compute the cosine
similarity between each region descriptor vj , and the query

feature descriptor v as cos(vj , v) :=
vT
j v

‖vj‖‖v‖+ε , where ε > 0 is
a small constant, for numerical stability. This is the fourth step,
and it intuitively measures how similar each mask (region) is to
the query features descriptor.

Single query detection: If the similarity cos(vj , v) between
the given query and the mask feature descriptor is larger than
a given threshold α, we assign the region corresponding to this
mask in the original frame the label of the query.

Multi-class detection: Should the user provide a set of queries
Q = {q1, . . . , qm}, the system computes the descriptor vk :=
Desc(qk) for every qk ∈ Q, then, for every pair of query de-
scriptor vk and region descriptor vj , it computes: cos(vj , vk).
Now, for every j ∈ {1, . . . , n}, it finds its most similar query:
maxk∈{1,...,m} cos(vj , vk). Finally, if the cosine similarity be-
tween the query vector (vk), and the mask descriptor (vj), ex-
ceeds a thresholdα, we assign the label of the query to the region
in the original frame corresponding to this mask, otherwise, it
is considered “non-labeled”.

After this process, each pixel is assigned a label from
{1, . . . ,m}, or 0 if unlabeled. Fig. 2 provides an illustration
of the whole detection flow, and Figs. 3 and 10 present

Fig. 3. Automatic detection experiments (SAM-and-DINO). Examples of our
automatic detection scheme for detecting Drones, Bricks, and RC Cars. The
examples include (from left to right): the original input frame, the outputs of
SAM segmentation masks, and DINO + Cosine similarity semantic segmentation
and detection.

results on detecting objects via SAM+DINO, and SAM+CLIP
respectively.

Manual queries: We provide the users an option to manually
draw bounding boxes (or provide outputs from a customized
domain-specific detector) around the objects they wish to track,
or alternatively, click on one or two pixels within the object (in
real-time from the video stream). After user selection, we use
SAM to accurately segment and obtain the object mask. This
method ensures precise control over tracking, making it suitable
for high-accuracy detection scenarios.

B. Fast Detection for Limited Hardware

Off-the-shelf implementations of foundation models like
SAM and DINO are not well-suited for real-time onboard
detection, segmentation, and tracking. SAM takes several
seconds to compute segmentation masks per frame. While we
evaluated the recently proposed FastSAM [52] model and ob-
tained a 15× speedup on our hardware with comparable perfor-
mance, the best runtime achieved by FastSAM is between 10
and 12 FPS, which is still insufficient for detecting fast-moving
objects. This is because segmentation outputs also need to be
supplemented by features from ViT models, and the detection
submodules.

Fast detection by (solely) grouping DINO features:1 To miti-
gate this compute bottleneck, we instead propose to first obtain
coarse detections by grouping DINO features. These coarse
detections may further be refined by periodically computing
segmentation masks and tracking these over time, effectively
rendering the overall system operable at high frame rates. To
obtain coarse detections, (i) we extract the pixel-wise descrip-
tors by applying Desc (DINO) on the current input frame
Fi, Di := Desc(Fi) ∈ Rh×w×d, (ii) given the inputs set of
queries Q = {q1, . . . , qm}, the system computes the cosine
similarity cos(vh,w, v

k) for each pair of query qk ∈ Q (where
vk := Desc(qk)) and pixel-wise descriptor vector vh,w. Next, as
previously, (iii) for each pixel, it picks the closest (most similar)
query, i.e., the one with the maximum cosine similarity. Now,
(iv) if the cosine similarity between the query vector vk and the
pixel feature descriptor vh,w surpasses a specified threshold α,
we assign the label of the query to the corresponding pixel in the
original frame Fi. Otherwise, it is considered as “non-labeled”.
Then, (v) we build a binary matrix Bi ∈ Rh×w with 1 in pixels
that are mapped to the desired object (to detect) and 0 elsewhere.
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Fig. 4. Heat maps showing the pixels’ semantic similarity. For every pixel,
its feature descriptor is extracted then cosine similarity is computed between its
descriptor and a focal point pixel descriptor (pointed at by a yellow arrow).

Fig. 5. Fast automatic detection experiments (DINO only): Examples of our
fast automatic detection scheme on detecting (1) whales, (2) drones, (3) RC cars,
and (4) toy bricks. This approach is much faster and works very well for detecting
the desired object. However, it provides a less “clean” segmentations/masks.

TABLE I
RUNTIME IN FRAMES PER SECOND (FPS) FOR ALL OF THE USED MODELS ON

AN NVIDIA GEFORCE RTX 2070 ONBOARD A LAPTOP

TABLE II
RUNTIME IN FRAMES PER SECOND (FPS) FOR THE DETECTION PHASE OF THE

SYSTEM ON AN NVIDIA GEFORCE RTX 2070, COMPARED TO THE POPULAR

OPEN-SOURCE LIBRARY [53], USING A MORE POWERFUL GPU OF NVIDIA
RTX 3090

Finally (vi) apply the cv2.connectedComponents func-
tion on Bi. This function receives a binary image (Bi) where
white regions (pixels with label 1) on a black background (pixels
with label 0) represent connected components. The function
assigns unique integer labels to each connected component
and labels background pixels as 0. We have used it since we
might detect more than one object, each in a different region
of the frame, this function provides us with each object with its
unique mask. See Fig. 5 for experiments leveraging the detection
module proposed here.

Optimizing DINO runtime: We speed up DINO using two
optimization techniques: Quantization (reduces numerical preci-
sion) and tracing (converts dynamic graphs into static ones). See
Table I for runtime details of all the used models in our system.
We report the running time for each model independently, not as
part of the whole system. Note that some models automatically
reshape inputs to a constant size. We also compare the runtime
of our detection phase, with the popular Grounded-SAM [53]
method in Table II.

C. Extracting Per-Pixel Feature Descriptors

While a few methods adapt foundation models like CLIP to
provide per-pixel descriptors, these methods [54], [55], [56],

[57] require model re-training or finetuning on an image-text
aligned dataset. This often results in concepts absent in the
finetuning set being forgotten by the models as demonstrated in
ConceptFusion [51]. To counteract this, [51] presents a zero-shot
method for constructing pixel-aligned features that combine
local (region-level) data with global (image-level) context in-
cluded in models like CLIP. For efficiency (real-time processing)
purposes, we adapt part of this method in our system when using
CLIP for providing pixel-wise feature descriptors, however, we
only use their ablated baseline which computes purely local 2D
features by extracting a bounding box around each segmentation
mask (obtained from SAM) and passes them through the CLIP
encoder. For DINO, we use [50] as is, and find that their pixel-
wise feature descriptors are inherently informative and more
efficient.

D. Re-Detecting a Lost Object

We offer three re-detection methods for temporary object
loss during tracking, catering to different needs. Our system
automatically initiates re-detection when needed, and users can
choose the level of support before starting the FAn pipeline: The
first level relies on the tracker to re-detect the object, it’s the
fastest and less robust, occasionally leading to false detections
of similar objects. The second approach involves human-in-the-
loop re-detection, requiring a user to click/draw a bounding box
when tracking is lost, assuming human availability, which isn’t
always possible. To mitigate this, we also propose an automatic
re-detection technique.

Automatic re-detection via cross trajectory stored ViT fea-
tures: To enable a robust and accurate autonomous re-detection
of the tracked (lost) object, we provide a feature-descriptor
storing mechanism for the tracked object in different stages of
the tracking process, these stored features, will be used to find
the object once lost. Specifically, we suggest the following. Let
τ > 0 be an integer. During the tracking, at each iteration i such
that i mod τ = 0, define Mobj

i to be the mask denoting the
current tracked object in the frame, we first apply Desc on the
current frame Fi to obtain Di := Desc(Fi) ∈ Rh×w×d, then we
compute the mean descriptor of the current tracked object as:
vobji := 1

non−zero(Mobj
i )

∑
p∈Di[M

obj
i ] p. This feature represents

the tracked object in the ith step. We thus store this descriptor
and add it to the set of previously computed descriptors to obtain
the set V obj := {vobj0 , vobjτ , vobj2τ , . . . , vobji }. Now, whenever the
system loses the tracked object, we apply the following recovery
mechanism. The system goes back to the detection stage, with a
query feature descriptor at hand as v = 1

|V obj |
∑

vobj∈V obj vobj ,

seeking the closest region from the segmented frame, and thus
re-detecting the object. Here, the segmentation might be given
by the segmentation model (e.g., SAM), or by the tracker which
tries to re-detect the lost object. Note we use the mean to gain
faster performance for real-time applications, however, other
techniques can be used to improve the robustness; see Fig. 6.

III. EXPERIMENTS

Hardware: We use a quadrotor equipped with an RGB camera
(see Fig. 9). The quadrotor is custom-built with a Pixhawk
running PX4 flight control software. The camera data is streamed
directly to a remote ground station computer equipped with an
NVIDIA GeForce RTX 2070, and Intel i7-10750H CPU, with
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Fig. 6. Automatic re-detection via cross trajectory stored ViT features.
(1) At every frame, we store the DINO features representing the tracked object.
(2) Once the object is lost, we (3) either apply a segmentation model or get
suggested masks from the tracker, for every mask, we compute the DINO
descriptors, and (4) compare it to the pre-computed ones. If a high similarity is
obtained we keep tracking the object, else, we repeat (3) on the next frame.

Ubuntu 20.04.5 LTS, using the “herelink” digital transmission
system along with other telemetry data. The ground station
runs the tracking algorithm and sends control commands to the
quadrotor via Mavlink. To enable indoor testing, the quadrotor
is also equipped with an onboard computer that runs MAVROS
and interfaces with an external Vicon motion capture system to
get the position.

Implementation and system details: We outline key details
of our system: Run-time improvement. We enhance segmen-
tation/detection performance by compressing SAM and DINO
through quantization and tracing and using FastSAM. For track-
ing, we offer support for the fast SiamMask [48] tracker; see
Table I for runtime (FPS) details. Flight controller. For ver-
satility, we used PX4, open-source flight control software, to
interface with our quadrotor. The MAVSDK Python library
is used to send velocity commands for 3D motion and yaw
control, streamlining integration with PX4-based drones in fu-
ture projects. Visual servoing. We mount the onboard camera
on the bottom of the quadrotor facing the ground. At relatively
small translational velocities the first-order approximations of
roll and pitch angles are close to zero. In addition, we fixed
the drone altitude and yaw angle. This simplifies the visual
servoing task to 2D plane tracking using proportional control.
We use a proportional controller based on pixel distances to
center the object in the frame and employ a lowpass filter to
smooth quadrotor trajectories, ensuring accuracy in challenging
scenes. Video Streaming. To process frames from an online
video stream in real-time, we implemented a low-latency online
streamer using the OpenCV library in Python. This streamer
continuously reads frames with a parallel thread and maintains
a buffer size of 1, ensuring immediate access to the latest frame
when needed. Software. We mainly use Torch, cv2, and mavsdk;
see our https://github.com/alaamaalouf/FollowAnythingproject
page for full details.

A. Real Time Object Following Exprements

We tested (i) our overall system for detecting, tracking, re-
detecting, and following: RC cars, drones, and bricks in real-
time. Here we used SAM+DINO and DINO-SOLO approaches
for the detection task on all of the tested objects - the provided
queries are clicks on the desired objects from other pictures
(we provide a script for obtaining these click queries). Both

Fig. 7. Automatic tracking, following, and re-detection. The tracked object
is referred to by the yellow arrow, we also show the results of the re-detection
mechanism in the last two rows.

Fig. 8. Trajectory comparison. We report the mean Euclidean distance be-
tween every point in the x, y plane of the quadrotor and its aligned point in the
plane (closest point) of the followed object.

approaches worked seamlessly for detecting and tracking the de-
sired objects. (ii) We demonstrate our system for re-detecting an
object that gets occluded from the scene during tracking. Specifi-
cally, during the following experiments, the RC car and the brick
pass under a “tunnel” twice, and our re-detection mechanism
is able to recover and resume tracking. Fig. 7(a), (b), and (c)
show different scenarios during the following. We encourage the
reader to view the demos on our https://github.com/alaamaalouf/
FollowAnythingproject webpage and in the https://www.
youtube.com/watch?v=6Mgt3EPytrwexplainer video. (iii) In
addition, we recorded the actual 3D trajectory coordinates
of the following quadrotor and the target object to assess the
robustness of our tracking system. Specifically, we recorded
continuous tracking data for over 4 minutes while following
a ground robot. We report the mean Euclidean distance between
every point in the x, y plane of the quadrotor and its aligned
point in the plane (closest point) of the followed object. This
experiment was conducted 4 times; using PID vs proportional-
only as a controller, and using SAM+DINO vs DINO-SOLO
as a detector. The results are reported in Fig. 8. We can see
that the drone follows the object smoothly and accurately using
the different controllers and detectors. We also visualize both
trajectories for the case of SAM+DINO.

B. Zero-Shot Detection Exprements

Data: We stored the tracking and detection streams from the
SAM+DINO following experiment and used it to test the FAn
system and its different variants for zero-shot detection. For
each of the tested objects, we picked multiple frames during
the tracking and detection showcasing diverse object positions
and diverse scenes. Other than that, we also use our private set
of whale images to test on.

https://github.com/alaamaalouf/FollowAnything
https://github.com/alaamaalouf/FollowAnything
https://github.com/alaamaalouf/FollowAnything
https://www.youtube.com/watch{?}v=6Mgt3EPytrw
https://www.youtube.com/watch{?}v=6Mgt3EPytrw
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TABLE III
TRUE POSITIVE DETECTIONS DIVIDED BY THE NUMBER OF OBJECT

APPEARANCES (PROVIDED NEXT TO THE OBJECT NAME), AND NUMBER OF

FALSE POSITIVE DETECTIONS (NUMBER IN BRACKETS IF ANY); SINGLE QUERY

TEST

TABLE IV
TRUE POSITIVE DETECTIONS DIVIDED BY THE NUMBER OF OBJECT

APPEARANCES (PROVIDED NEXT TO THE OBJECT NAME), AND NUMBER OF

FALSE POSITIVE DETECTIONS (NUMBER IN BRACKETS IF ANY); MULTIPLE

QUERIES TEST

Comparison: We quantitatively compare the suggested meth-
ods and analyze their advantages and disadvantages. We applied
each of SAM+DINO, SAM+CLIP, and DINO-SOLO to assess
their efficacy in detecting the object within the given data. We
report both True Positive and False Positive detection results.
Furthermore, we conducted a comparative analysis involving
an alternative version of our approach, which consists of two
variations. (i) Majority Voting: We assigned each pixel in the
mask to its most similar query, and subsequently assigned the
mask the label that was most frequently selected across all
mask pixels. (ii) K-Means: For each mask, we retained a set
of K > 1 representatives based on the K-means algorithm.
We then gauged the similarity of these representatives with the
provided queries and assigned the mask a label based on the
majority consensus among these K representatives. Our testing
encompassed two scenarios: (i) The system was presented with
multiple queries representing the environment, including “a
robot leg, a box, a ground” (in the whales experiment, these
queries were replaced with “water”), along with the desired
query “a drone, a toy car, a brick, a whale” (Table IV) and (ii)
The system was given a single desired query (Table III).

The threshold α: For all methods, we tuned α to minimize
the false positive detections while achieving a fine true positive
detection rate; In our system, it’s acceptable to not immediately
identify the intended object, but our priority is to prevent the
detection and tracking of an incorrect target. We used 0.35 for
SAM+DINO and 0.23 for DINO+CLP in all experiments. For
DINO-SOLO 0.4 and 0.6 were used in the multiple queries and
single query experiments, respectively.

C. Mask Quality Experements

We compare the mask quality of our detection methods
(DINO-SOLO, SAM+DINO/CLIP). We use the first video from
the Cholec80 dataset [58], which has mask annotation for body
parts and tools across frames during surgery. We aimed to detect
the “grasper” tool and track it across frames. Table V reports (1)
the mean intersection over union (mIoU) of the detection and the
annotated data across frames and (2) the true positive detection
percentage of the desired object, we also test how the detected

TABLE V
MIOU FOR TRACKING AND DETECTION (DINO-SOLO VS SAM+DINO OR

CLIP)

Fig. 9. Left: Our custom-built quadrotor. Right-up: Successful automatic
detection via text queries (SAM+CLIP) on low-resolution images; text queries
used from left to right: “a toy car” (single query), “a drone” (single query), and
“a whale”+“water” (multiclass). Right bottom: In some cases, the raw data
from the cropped masks (to get pixel-wise features from CLIP) does not provide
enough information for CLIP—since the image is of low resolution and the
mask is small causing it to provide not accurate descriptors and thus FAn may
not detect the objects.

Fig. 10. Automatic detection experiments via text queries (SAM-and-Clip) on
high resolution data.

mask quality affects the tracking; we report (3) the mIoU of
the desired tracked object after each of the detection methods
detected it. Queries: “body part”, “background”, and “surgery
tool”.

D. Discussion and Conclusions

SAM+DINO: Figs. 3 and 2 show example results for real-
time detection via SAM+DINO. Tables IV and III, indicate
that the detection achieves a high level of accuracy for cars
and whales, and performs well for drones and bricks - but
may occasionally miss certain instances. After analyzing the
results, it becomes apparent that when SAM generates reliable
regions/segmentation, DINO consistently assigns the correct
labels to each of these regions, ensuring precise and appropriate
object detection. However, in cases where SAM fails to capture
these regions accurately (resulting in inadequate segmentations),
the object goes undetected. This scenario is exemplified by 4
drone object in the dataset and 3 bricks, where SAM fails to
identify the mask of the drone/brick (see Fig. 11). Regarding ac-
curate DINO classifications, we offer explanations illustrated in
Fig. 4. These figures depict heatmaps based on cosine similarity
calculations between DINO feature descriptors of each pixel and
a designated focal point pixel. The visualizations demonstrate
that pixels sharing similar semantic characteristics exhibit a high
degree of similarity in their DINO features.
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Fig. 11. With vs without SAM. Right: SAM creates high-quality segmentation
masks compared to DINO-SOLO (not using SAM). Left: SAM might miss
important regions in the image.

DINO-SOLO: In Fig. 5 we show several examples showcasing
the efficiency of our rapid automated detection system. This
approach is significantly faster and performs admirably in de-
tecting the desired objects. Even more, in many cases when SAM
misses providing the desired object a mask, using DINO-SOLO
can still detect the object. However, the resulting masks are not
of high quality compared to the masks obtained from SAM, and
this may potentially affect the tracking performance; see Fig. 11
and Table V.

SAM+CLIP: Examples for detection via “text” prompts
through SAM+CLIP are shown in Fig. 9. For the tested low-
resolution images, SAM+CLIP detections are not as robust,
the method yields less precise similarity scores, increasing the
likelihood of missed detections, particularly for objects lacking
unique shapes like the brick. Additionally, in some cases, as
the image has low resolution, if the object has a small (correct)
mask, it does not present enough raw information and is thus
misclassified. Fig. 9 shows an example of low-resolution images
for such scenarios; we further discuss why this happens when
using CLIP and not DINO in our discussion later. We note that
this method is still beneficial for our system, the main idea is
that we need one accurate detection with high confidence (e.g.,
with further increasing α) for the desired object and then we can
start the object-following scheme, thus, we can still benefit from
the multimodality of the system. Additionally, as this method
requires only the text prompt and not an image/clicks, it is much
easier to utilize. To verify our claims regarding the reason for the
dropped performance of FAn when using SAM+CLIP, we tested
it on high-resolution images. Here, the reasoning and detection
are robust justifying our claims. We conduct the following 4
tests: (i) Standard detection, e.g., “detect a whale”, (ii) scene
reasoning-based detection, e.g., “detect the boy holding the
ball”. (ii) Special attribute-based detection, like, “detect the
white dog”. (iv) Special prior knowledge-based detection. In this
case, the system should have prior knowledge of a specific object
like its name/nickname. For example “detect Messi/Cristiano
Ronaldo”. (v) Special prior knowledge& attribute based detec-
tion. e.g., “detect a Real Madrid player”. See result in Fig. 10.

SAM limitations. With vs without: SAM might miss important
regions in the image. When the desired object is in these regions
it will be impossible to detect it and thus DINO+SAM yields
fewer true positive detections compared to DINO-SOLO. On
the other hand, DINO+SAM provides high-quality masks once
the object is detected while DINO-SOLO masks are less refined.
See Tables V, III, and IV.

Queries: Using multiple queries to annotate other objects
that might be in the scene reduces the number of False positives
leading to a more robust and reliable system.

DINO vs CLIP: The method we are using to obtain pixel-wise
features from DINO [50] is faster and provides better descriptors
for every pixel compared to the method used for CLIP. This is
because it requires one forward pass on the whole image to
compute the per-pixel features. In addition, when using DINO,

the method computes the per patch/pixel features while taking
into count the full image, as it simply utilizes the patch-wise
descriptors (outputs of the query, key, or value matrix in some
attention layer of the transformer) of DINO, thus providing
descriptors with richer context of the whole image. In CLIP, the
method uses SAM to extract masks [51] and then applies CLIP
on crops of these masks to extract features for all pixels in this
mask, thus, it is less efficient and might yield less meaningful
features when applying CLIP on small crops with limited raw
data.

The competing methods: We found no improvement with
other variants like K-means and majority voting; often, our
original methods performed better. Also, the K-means variant
runs at 0.03 FPS, and the majority voting runs at 0.32 FPS.

Summary: FAn bridges the gap between SOTA computer
vision and robotic systems, providing an end-to-end solution
for detecting, tracking, and following any object. Its open set,
multimodal, real-time capabilities, adaptability to different en-
vironments, and open-source code make it a valuable tool.
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