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Learning to Place Unseen Objects Stably Using a
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Abstract—Object placement is a fundamental task for robots,
yet it remains challenging for partially observed objects. Existing
methods for object placement have limitations, such as the require-
ment for a complete 3D model of the object or the inability to handle
complex shapes and novel objects that restrict the applicability
of robots in the real world. Herein, we focus on addressing the
Unseen Object Placement (UOP) problem. We tackled the UOP
problem using two methods: (1) UOP-Sim, a large-scale dataset to
accommodate various shapes and novel objects, and (2) UOP-Net, a
point cloud segmentation-based approach that directly detects the
most stable plane from partial point clouds. Our UOP approach
enables robots to place objects stably, even when the object’s shape
and properties are not fully known, thus providing a promising so-
lution for object placement in various environments. We verify our
approach through simulation and real-world robot experiments,
demonstrating state-of-the-art performance for placing single-view
and partial objects.

Index Terms—Deep learning in grasping and manipulation, deep
learning methods, data sets for robotic vision.

I. INTRODUCTION

ROBOTS need to have the ability to manipulate unseen
objects to operate effectively in various environments,

which are common in manufacturing, construction, and house-
hold tasks. While deep learning has progressed to recognize and
handle unseen objects, most of the current research focuses on
identifying [1], [2] or grasping [3], [4] them [5], [6]. However,
it is important to note that when a robot picks up an object from
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a cluttered container or receives it from a human, the robot must
be able to place the object stably. Thus, this study addresses
the Unseen Object Placement (UOP) problem, which involves
stably placing novel objects in a real-world environment.

Conventional approaches [7], [8] for stable object placement
require full 3D models and analytical calculations. These meth-
ods involve sampling stable planes after calculating the center of
mass of the object, which is not feasible for all real-world objects
that may be encountered. One approach [9] combines analytical
methods with a 3D object completion model that can reconstruct
the full shape of an object from raw perception data. However,
using this approach is difficult since the predicted point cloud
may not be precise, resulting inaccuracies in determining stable
planes. Our UOP method addresses these limitations by directly
detecting stable planes of unseen objects from single views and
partial point clouds, thus eliminating the need for a full 3D
object model. This enables the robot to stably place the object
even when the shape and properties of the object are not fully
known.

In this letter, we propose a method for UOP that detects stable
planes from complex shapes and novel objects. To achieve this,
we generated a large-scale synthetic dataset called UOP-Sim,
which contains various 3D objects and annotations of stable
planes generated using a physics simulator. Unlike previous
approaches [12], [13] that rely on heuristics to label the preferred
placement configurations, we automatically annotate various
feasible planes that can support stable object poses. Our dataset
includes 17.4 K objects and a total of 69 K annotations. We
propose a point cloud instance segmentation based network
referred to as UOP-Net that predicts stable planes from partial
point cloud and train it using only the UOP-Sim dataset. We
compare the performance of our approach with three baselines
and learning-based methods. We demonstrate that it achieves
state-of-the-art (SOTA) performance in both the simulation and
real-world experiments without any fine-tuning on real-world
data.

The main contributions of this study are as follows:
� We propose a task called UOP to place an unseen object

stably from single views and partial point clouds.
� We provide a public, large-scale 3D synthetic dataset called

UOP-Sim that contains a total of 69,027 annotations of
stable planes for 17,408 different objects.

� We introduce a point cloud instance segmentation network
named UOP-Net that predicts stable planes for partially
observed unseen objects.
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� We compare the performance of our approach with previ-
ous object placement methods and confirm that our method
outperforms the SOTA methods without any fine-tuning in
real-world environments.

II. RELATED WORKS

Stable object placement: Previous studies [7], [14], [15],
[16] demonstrated that robots can stably place an object with
known geometrical properties by analyzing the convex hull and
sampling stable planes for the object. However, this approach
requires precise object priors (e.g., CAD, mass), and it may not
be available in real-world scenarios with partial observations
(e.g., from an RGB-D camera). Several researchers attempted
to address this limitation with deep learning-based comple-
tion methods that predict the invisible part of an object [9];
however, these approaches have limitations in generating the
precise shapes of unseen objects. Our UOP method addresses
these limitations by directly detecting stable planes from partial
observations without the need for complete 3D object mod-
els. Unlike previous methods, the UOP method is more gen-
eralizable and adaptable to real-world scenarios with partial
observations.

Unseen object placement: Previous studies on unseen object
placement focused on the identification of stable placements
that satisfy human preferences. For example, Jiang et al. [12]
trained a classifier using a hand-crafted dataset to identify
these placements; this approach relies on heuristic labels and
requires complete observability. Cheng et al. [17] proposed a
deep learning model based on simulations to address the issue
of heuristic labels; however, this approach was limited to task-
specific objects. Another common approach [18] for placing
unseen objects is using bounding box fitting to determine the
shape and orientation of the object. This method can be fast
and effective; however, it ignores the geometry of the object
and relies only on its bounding box. Although this approach can
be applied to unseen objects, it may not stably place objects
in all situations, and therefore, it may be less effective than
methods that consider the geometry of the object. In contrast, our
approach can stably place unseen objects on a horizontal surface
using only a single partial observation. Our method can handle a
broad range of objects instead of being limited to specific object
types.

Robotic applications of object placements: Prior works on
object placement for robotic applications focused on solving
specific tasks such as constrained placement [18], upright place-
ment [19], [20], and rearrangement [21], [22]. However, these
methods have several limitations. For example, Mitash et al.’s
approach [18] relies on multi-view shape fitting and requires
access to object models that may not be available in some
scenarios. The deep learning approach proposed in [22] is lim-
ited to determining the required rotation for stable placements
of objects in an upright orientation. Li et al. [23] proposed a
method that can only predict rotations that maintain objects in
positions that maximize their height; these limitations restrict
the applicability and potential of these methods for more general
object placement tasks such as stacking and packing. In contrast,

our approach addresses the fundamental problem of placing
unseen objects on a horizontal surface and has the potential to
be applied to a wider range of robotic applications.

III. PROBLEM STATEMENTS

A. Assumptions

The suggested approach is used when a robot must retrieve
unseen objects that are mixed up in a container, or when a person
hands a novel object to a robot and the robot does not know its
correct orientation. The camera pose is assumed to be known
in the workspace. The robot begins by grasping an object and
capturing the scene using a single-view RGB-D camera. The
resulting partial point cloud of the object is fed into the model
to predict the most stable plane.

B. Definitions

Point cloud: Let X ∈ R
N×3 be point clouds obtained by

capturing the manipulating scene in which the robot grasps the
object from the camera.

Object instability and stable planes: LetU denote the instabil-
ity of an object model. We define instability of an object model
as the average of movements in a simulator over discrete time
step L. Stable planes S are annotated for each object model that
satisfies the conditionU < ε. A stable plane s ∈ S is represented
as normal vector �V ∈ R

3, and threshold ε indicates that the
object has stopped.

Dataset and deep learning model: The dataset D =
{(O,S)n}N1 represents the N set of object models O and
corresponding stable planes S as the annotations. The function
F : X → s denote a deep learning-based model that considers
point clouds X as the input and produces the most stable plane
s as the output.

Seen and unseen objects: The set of object models used for
training and testing the function F are denoted as Otrain, Otest.
If Otrain ∩ Otest = ∅, then objects Otrain are considered seen
objects while objects Otest are unseen objects for the model F .

C. Objectives

Our objective is to detect the most stable plane for placing
unseen objects from a single-view observation. We aim to de-
velop a function F : X → s that minimizes the instability of the
object U .

IV. LEARNING FOR UNSEEN OBJECT PLACEMENT

We address the challenges of the UOP task, which is difficult
to solve because of the need for a large-scale dataset for ap-
proximating stable planes and the complexity of the relationship
between point clouds and annotated planes. We present a novel
approach by introducing the UOP-Sim dataset to mitigate these
challenges; this dataset includes 17 K 3D object models and 69 K
labeled stable planes, and a UOP-Net neural network that can
detect robust stable planes from partial point clouds. We propose
a general and adaptable approach to the UOP task using these
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tools, which enables robots to accurately place unseen objects
in real-world scenarios.

A. UOP-Sim Dataset Generation

Searching stable plane candidates: We defined the movement
of the object at time step i as Mi in terms of its translation
and rotation change in the world coordinates to evaluate the
instability of the pose of the object in dynamic simulation. The
pose can be represented as H = [R|T] ∈ SE(3), where R,T
are rotation and translation matrix. We tracked the pose of the
object at each time step and calculated the difference between
the consecutive poses (1). Then, we took the average of these
differences over a certain period L to estimate the instability of
the object at a time step i (2). To ensure robust annotation, we
consider a range of discrete time step L rather than only single
time step i.

Mi = ||Hi −Hi−1||2 (1)

Ui =

{
1
L

∑i
j=i−L+1 Mj , if i >= L

1
i

∑i
j=1 Mj , otherwise

(2)

We generated 512 orientations by dividing the roll, pitch, and
yaw into eight intervals to explore a wide range of possible
poses for the object. The object was then placed on a table with a
random pose along the normal direction of the table. We dropped
the object on the table and recorded all poses in which it remained
stable (Ui < ε1) to identify stable planes that support the object.
We then used the density-based spatial clustering of applications
with the noise algorithm [24] to cluster the sampled poses. This
allowed us to identify stable planes by clustering the poses along
the z-axis; this represents the normal vector at the contact points
of a stable plane with a horizontal surface. Subsequently, we
masked the bottom 5% of height along the surface normal of
table to indicate areas that could support the stability of the
object. For the parallelizing annotation process, we built 64 table
models and sampled stable planes.

Inspection process for stable plane: Specific planes may not
be easily generalized because real-world environments cannot
be perfectly simulated. This can be a problem for spherical
model planes or the sides of a cylinder. We addressed the issue by
placing objects on flat tables with normal vectors of plane can-
didates and uniformly tiliting 10 degrees in 25 directions based
on the normal axis of table. We then estimated the movement
of the object across each time step and eliminated any planes
that did not satisfy the condition U less than ε2. This allowed
us to label stable planes that were robust for application to a
horizontal surface, as shown in the samples of the UOP-Sim
dataset in Fig. 2. The UOP-Sim contains a total of 17,408 3D
object models and 69,027 stable plane annotations. Furthermore,
our dataset contains both explicit and implicit planes, such as
a flat surface formed by four chair legs. Supplementary Fig. 1
contains additional sample images from UOP-Sim.

Simulation environment setting: We used PyRep [25] and
CoppeliaSim [26] to build a simulation environment for comput-
ing object instability (U ). For the physics engine, we employed
the bullet engine. Further, we used 3D object models from three

Fig. 1. Comparison of UOP-Net (Ours) and previous methods. Previous
studies for object placement used (a) full-shape object models [7], [8], (b)
completion modules [9], or (c) fitted primitive shapes [10], [11]. In contrast,
(d) the proposed UOP-Net directly detects stable planes for unseen objects from
partial observations. .

benchmark datasets (3DNet [27], ShapeNet [28], and YCB [29]),
which yielded a total of 17,408 models.

B. Uop-Net

Network Architecture: The UOP-Net is based on
DGCNN [30] architecture and JSIS3D [31] model. The
network architecture includes three EdgeConv layers which
are used to extract geometric features. These three EdgeConv
layers use three shared fully-connected layers with sizes 64,
128, and 256. A shared fully-connected layer with size 1024
was then used to aggregate information from the previous
layers. The global feature of point cloud was obtained using the
Max-pooling operation, and two branches are used to transform
the global features: one branch for semantic segmentation
(which predicts whether a point is stable or unstable), and
another branch for embedding instance features of stable
planes. Both branches use fully-connected layers with sizes of
512 and 256. Before the two branches, LeakyReLU and batch
normalization are applied to all layers.

A mean-shift clustering algorithm [32] is applied to the
predicted stable points for identifying the stable points, and
RANSAC [10] is used to fit planes onto the clustered points [11].
Stability scores for each plane are calculated by the element-wise
multiplication of semantic logits, predicted instance labels, and
number of points composing each plane. Then, the plane with
the highest score is output after fitting the planes and assigning
stability scores based on the number of inliers that constitute the
planes. The rotation matrix R is then determined by estimating
the angular difference between the predicted normal vector of
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Fig. 2. UOP-Sim dataset generation pipeline. The UOP-Sim dataset is a large-scale synthetic dataset that contains 3D object models (17.4 K) and annotations of
stable planes (69 K). The dataset is generated by dropping each object on a table in 512 different configurations and by sampling stable planes that satisfy (2). The
stable plane candidates are verified using a tilted table.

the stable plane and the gravity vector (negative table surface
normal).

C. Loss Function

L = λ1 ∗ LBCE + λ2 ∗ LDis, (3)

We trained UOP-Net using binary cross-entropy (BCE) loss
and discriminative loss (Dis). BCE loss encourages UOP-Net
to predict point-wise stability as either a point is stable or
unstable. We adopted the discriminative function from [31], [33],
originally designed for training instance segmentation tasks, to
encourage UOP-Net to learn stable plane instances. Through the
function, points corresponding to stable planes are embedded
closely, while points from different planes are embedded farther
apart in instance features. The hyper-parameter weights λ1 and
λ2 are set to λ1 = 10 and λ2 = 1 respectively.

V. EXPERIMENTS

A. Comparison With Traditional Method in Simulation

Datasets: We obtained a total of 152, 57, and 63 object
categories in the 3DNet [27], ShapeNet [28], and YCB [29]
datasets, respectively. We labeled the YCB object models in
the simulation, but they were excluded from the training set to
allow us to use the test set in both the simulation and real-world
experiments. We excluded objects that had no stable planes
(e.g., spherical objects) to ensure the quality of our dataset.
Then, we splited the dataset into training and validation sets in a
8:2 ratio. The training set contained 13,926 objects and 55,261
annotations, while the validation set contained 3,482 objects and
13,766 annotations.

Training Details: We trained UOP-Net using partial point
clouds sampled from the UOP-Sim dataset. During training,

2,048 points randomly sampled for each object and they un-
derwent various types of data augmentation techniques such as
rotation, sheering, point-wise jitter, and adding Gaussian noise
to improve the performance of the model in real-world scenarios.
The model was implemented using PyTorch [34] and trained on
an NVIDIA Titan RTX GPU with a batch size of 32 and a total
of 1,000 epochs. We employed early stopping with a patience
of 50 and used the Adam optimizer at a learning rate of 1e-3 to
prevent overfitting.

Baselines: We compared the performance of our method with
those of the following baselines:
� Convex hull stability analysis (CHSA) [7], [8]: The base-

line method for determining stable object poses involves
the calculation of the rotation matrix to allow an object
to rest stably on a flat surface. The center of mass of the
object is sampled, and the stable resting poses of the object
on a flat surface are determined using the convex hull of
the object. Then, the probabilities of the object landing in
each pose were evaluated, and the pose with the highest
probability was output.

� Bounding box fitting (BBF) [11], [18]: The method in-
volves fitting an oriented bounding box to the convex hull
of the object using principal component analysis (PCA) to
minimize the difference between the volume of the convex
hull and that of the bounding box. The object was placed
on a planar workspace with the largest area facing down.

� RANSAC plane fitting (RPF) [10], [11]: The approach
segments planes in a point cloud by fitting a model of the
formax+ by + cz + d = 0 to each point (x, y, z). Then, it
samples several points randomly and uses them to construct
a random plane while repeating this process iteratively to
determine the plane that appears most frequently.

Evaluation metrics: We used two metrics to evaluate the
performance of UOP-Net: object stability (OS) and success
rate of object placement (SR). We placed an object on a flat
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TABLE I
UOP PERFORMANCE OF UOP-NET AND OTHER BASELINES ON THE THREE BENCHMARK OBJECTS (PARTIAL SHAPE) IN THE SIMULATION

Fig. 3. Overall pipeline of UOP Method: UOP detects the most stable plane directly from single-view and partial point cloud. UOP-Net is trained on the UOP-Sim
dataset, and takes in a partial point cloud to predict the stable plane. The estimated stable plane is used to execute object placement based on the angle difference
between the normal vector of the plane and the negative gravity vector. .

table and used the output of the model to estimate its stability
for measuring OS. We considered only rotational motion when
we evaluated object stability because rotational motion is more
common than translational motion when an object placed in
an unstable state falls due to the vibrations. We evaluated the
performance of the model by placing the object 100 times; we
considered as a failure case if no planes were detected.
� Object Stability (OS): The metric quantifies the movement

of the object during a discrete time step when it is placed
on a horizontal surface using the predicted plane.

� Success Rate (SR): The metric indicates the percentage
of placements where the object remains stationary for a
minute with accumulated rotation under 10◦.

Discussion: Our simulation experiments compared UOP-
Net’s performance with baseline methods on partial shapes from
the 3DNet, ShapeNet, and YCB datasets. The results, detailed
in Table I , demonstrate UOP-Net’s superior performance in
scenarios involving single partial observations. This is further
illustrated in Fig. 4 , where the blue line indicates the enhanced
reliability of object placement using UOP-Net compared to other
methods.

For fully visible objects, the CHSA method showed optimal
results for stable placements, as shown in Table II. However,
UOP-Net outperforms CHSA when dealing with only partial

Fig. 4. Visualization of simulation results on YCB [29] objects. The right
graph depicts object stability per simulation time step; lower values are better.

TABLE II
UOP PERFORMANCE OF UOP-NET AND OTHER BASELINES IN THE

SIMULATION (WHOLE SHAPE)
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Fig. 5. Visualization of the shape features learned by the last layer of UOP-Net
backbone on YCB objects.

point clouds. This effectiveness is due to the limitations of CHSA
in handling incomplete data, where it struggles with the deter-
mination of an object’s center of mass and often misidentifies
truncated planes as stable placement options (Fig. 4).

The BBF method underperformed as it neglects the geometric
properties of objects and relies on placing objects on the largest
plane within the bounding box. This approach is unsuitable for
objects with complex geometries. While the RPF method outper-
forms BBF, it still falls short in reliably detecting stable planes
due to its limited approach in selecting frequently sampled
planes, which often leads to unsuccessful object placements.
UOP-Net, by contrast, demonstrates its ability to discern the
most stable planes from partial observations. This capability is
attributed to its training approach, which emphasizes predicting
planes based on visible parts.

Furthermore, UOP-Net’s versatility extends to both explicit
and implicit planes detection. It can identify planes that are
directly visible in the point cloud and those that are implied,
such as a plane formed by the four legs of a chair, contributing to
the overall stability of the object. This versatility stems from the
diverse training set of objects and planes UOP-Net was exposed
to, enabling it to generalize and accurately predict unseen objects
and planes, as depicted in Fig. 5.

B. Comparison With Learning-Based Method in Simulation

We compared the performance of UOP-Net, the Upright-
Net [20] and the CHSA method alongside the point cloud
completion method [36]. To ensure a fair comparison with
Upright-Net, we conducted the experiments on a subset of
UOP-Sim, where we used the same categorization scheme of
Upright-Net. The dataset was divided into three splits: seen
objects for training, seen objects for evaluation, and unseen
objects for evaluation. Each category included 40 objects for
training and 10 for evaluation. The categories are the following:
� Seen: Bed, Bench, Bottle, Bowl, Bus, Cabinet, Camera,

Cap, Car, Chair, Jar, Laptop, Mug, Printer, and Table
� Unseen: Basket, Helicopter, Lamp, Pot, Skateboard, Sofa

and Tower
For the completion method, we used the Pointr [36] that was

trained on our subset of UOP-Sim; we confirmed that this model
performs better than their pretrained model due to the difference
in input preprocessing. Table V shows each method’s object
placement success rate in simulations. The rate is the ratio of
successful placements to the total number of inference trials.
Each object underwent 60 trials.

TABLE III
UOP PERFORMANCE FOR NUMBER OF OBJECTS (500, 2,500, 5,000, AND

OVERALL UOP-SIM DATASET)

TABLE IV
UOP-NET PERFORMANCE FOR TWO DIFFERENT BACKBONES (POINTNET [35]

AND DGCNN [30])

TABLE V
THE PLACEMENT SUCCESS RATES OF UOP-NET, UPRIGHT-NET, CHSA WITH

AND WITHOUT COMPLETION (C: COMPLETION [36])

Fig. 6. Comparison with learning-based method (only CHSA, CHSA + com-
pletion, Upright-Net and UOP-Net).

Comparison with Upright-Net: Our proposed UOP-Net con-
sistently outperformed Upright-Net [20] under all conditions.
Upright-Net demonstrates comparable performance with the
whole point cloud input; however, its performance was signifi-
cantly lower than ours when the partial point cloud was input.
This is due to Upright-Net’s design, specifically constructed to
predict only the upright orientation from the whole point cloud
input. Consequently, it tends to fail when upright planes are
invisible within the input partial point cloud. On the contrary,
our UOP-Net was designed to detect all stable planes from the
partial point cloud, thus leading to better performance.

Comparison with CHSA + Completion: Our UOP-Net out-
performs CHSA in all cases except for seen objects provided
with a complete point cloud. While the completion method does
enhance CHSA’s performance, it still tends to underperform
compared to our method. This is primarily because the comple-
tion method often struggles to generate an accurate and detailed
point cloud (Fig. 6).
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C. Additional Experiments

We conducted experiments to evaluate the impact of the UOP-
Sim dataset size on UOP-Net’s performance. We compared its
performance when trained on datasets of 500, 2,500, 5,000
objects, and the complete UOP-Sim dataset. We utilized Object
Stability (OS) and Success Rate* (SR*) as evaluation metrics,
where SR* is defined as the number of successful stable object
placements divided by the number of successful inferences. As
shown in the table III, we observe a proportional increase in
both S and SR* as the number of training objects increases. In
other words, the stability detection performance of UOP-Net
improves with an increasing amount of training data.

Additionally, we conducted evaluation of UOP-Net with dif-
ferent backbones, PointNet [35] and DGCNN [30]. In Table IV,
though PointNet-based UOP-Net is a slight improvement in
Object Stability, Success Rate is better when employing the
DGCNN. Considering model efficiency, it shows that DGCNN-
based UOP-Net significantly outperforms PointNet.

D. Robot Experiments

Real environment setting: We conducted experiments using a
universal robot (UR5) manipulator and an Azure Kinect RGB-D
camera to evaluate the performance of our object placement
method in a real-world scenario. We used the MANet [37] object
segmentation method with a DenseNet121 [38] backbone to seg-
ment the target object and the gripper. We segmented the visible
region of the target object from the RGB image and cropped
the depth image using a mask. Then, we sampled the point
cloud from the depth image using voxel-down sampling [11]
and fed it to UOP-Net. The model predicted the most stable
plane and calculated the rotation value between the plane and
the table. Then, the UR5 robot placed the target object on the
table. We utilized the BiRRT algorithm [39] implemented with
PyBullet [40] and integrated it with collision checking in a
physics engine to ensure smooth planar motion.

Evaluation metrics: To ensure a fair comparison, we made
efforts to standardize object grasp configurations across different
methods. We employed the SR metric to quantitatively assess the
effectiveness of our proposed approach in real-world scenarios.
Throughout the experiments, we instructed the robotic system to
execute object placements onto surfaces predicted by the UOP-
Net model. The success of the placement was determined based
on visual confirmation of the object maintaining a stable, non-
sliding position on the predicted plane. Additionally, a consensus
was reached by three researchers through a collective major
vote to determine success or failure. We considered a placement
successful only when all three researchers unanimously judged
it as such. Conversely, if the model failed to identify any viable
stable planes, the trial was classified as unsuccessful. For each
distinct object, we conducted a series of 10 placement trials to
ensure a comprehensive evaluation outcome.

Results: We selected 12 objects from the YCB dataset. Ob-
jects with spherical shapes (e.g., apples), dimensions that were
extremely small, or small depth values were excluded from
the test set. Table VI indicates that our method outperforms
other baselines in terms of the success rate across all objects.

TABLE VI
UOP PERFORMANCE OF THE UOP-NET AND BASELINES ON YCB [29] IN THE

REAL WORLD

Fig. 7. Visualization of the real world results. (rows 1, 2: YCB objects, rows
3, 4 : novel objects).

Although real-world perceptions are noisy, UOP-Net provides
a stable plane that can be attributed to our model learning from
partial point clouds captured by a depth camera and corrupted
by noise. Other benchmarks (CHSA and primitive shape fitting)
performed extremely poorly because they could not obtain the
complete shape of the object in the real world and were unable to
respond to sensor noise. We evaluated our method on completely
new objects that did not have an available CAD model (a
dinosaur figurine and an ice tray, as shown in Fig. 7) to verify
further that our model can perform on unseen objects. UOP-Net
detected implicit planes (e.g., the four legs of the dinosaur) even
though the object shapes were complex.

VI. CONCLUSION

In this letter, we presented UOP-Net, a novel method de-
veloped to detect stable planes of unseen objects. We also
introduced an approach to annotate automatically stable planes
for various objects, and the large-scale synthetic dataset, called
UOP-Sim, was generated. Our dataset contains 17.4 K 3D
objects and 69 K stable plane annotations. The effectiveness of
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UOP-Net was demonstrated by achieving SOTA performance
on objects from three benchmark datasets, thus indicating its
accuracy and reliability in detecting stable planes from unseen
and partially observable objects.
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