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Abstract—This letter presents a novel extension of the control
barrier function (CBF) as the low-level safety controller for au-
tonomous mobile robots navigating in unknown environments. The
main challenges of implementing CBF in real-world situations arise
from the absence of a model or the lack of an exact one for the
environment. Additionally, online learning is needed for the robot to
maneuver in an unknown environment which leads to dealing with
the sampled data set size, memory, and computational complexity.
We address these challenges by designing an online non-parametric
LiDAR-based safety function using the Gaussian process (GP). It
is both efficient in data size and eliminates the requirement to store
previous data. Then, a CBF is synthesized using the proposed safety
function to rectify the safe control input. The effectiveness of the
LiDAR-based CBF synthesis for navigation in unknown environ-
ments was validated by conducting experiments on unicycle-type
robots.

Index Terms—Autonomous agents, collision avoidance, machine
learning for robot control.

I. INTRODUCTION

D EPLOYING autonomous systems in uncertain or un-
known environments poses a fundamental challenge.

These systems ranging from autonomous mobile robots and
drones to self-driving cars must navigate through unfamiliar
terrains and scenarios while ensuring safety constraints. The
main concern is enabling autonomous systems to perform their
designated task without compromising on safety. Consequently,
a robust safety framework is necessary for autonomous sys-
tems. Expanding this framework to sustain the well-being of
individuals, communities, and the environment paves the way
for the acceptance, integration, and widespread adoption of
autonomous systems.

A promising approach to principally encode safety by uti-
lizing/ensuring invariance of a set is via control barrier func-
tion (CBF) [1]. CBF is a powerful mathematical concept that
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achieves safety by ensuring that the system remains within the
safe set. CBF gained popularity in recent years due to its potential
to provide safety guarantees. It can be applied in various fields,
especially in robotics and autonomous systems [2], [3], [4].
The core objective of CBF is defining a barrier by a safety
function characterizing the safe set of the system. CBFs are
implemented using optimization techniques. One of their ad-
vantages is handling both input-dependant and state-dependant
constraints which provides the capability to include additional
safety constraints as required.

The traditional CBF necessitates an accurate model of the
system dynamics to guarantee safety in a known environment.
Specifically, CBF requires a candidate safety function of the
required relative degree and the nominal model of the system to
render safety. The safe set of the system is modeled as the super-
level set of a safety function. Obtaining the safety function is
challenging in many practical settings. It requires knowledge and
great effort to design the safety function in advance restricting
its application even for known environments [5]. Due to the
advancements in technology, computing power, and availability
of data, recent works have extended the application of CBF using
data-driven approaches. They enable autonomous systems to
learn and adapt. There are existing works that incorporate online
learning to CBF to compensate for unmodeled dynamics, model
uncertainty, and parametric errors [6], [7]. A relevant line of
research can be found in the class of safe reinforcement learning
(RL) that learns the safety certificate using Neural Networks
(Neural barrier methods) [8], [9]. In [10], the CBF is learned
using demonstration data. The certificate can also be learned
alongside the control policy [11]. However, certificate learning
requires certificate verification and is limited to offline training.
In [12], a neural network CBF is trained with replay memory
for obstacle avoidance in static and unknown environments that
takes the estimated distance error into account.

Recently, studies have proposed methods to extend CBF to
unknown environments. Srinivasan et al. [13] sample the envi-
ronment and classify the samples into safe and unsafe sets by a
support vector machine classifier to generate the desired barrier.
Bayesian learning [14] has been employed to update CBF as data
is observed. Bayesian inference predicts the outcome of unob-
served data by fitting a probability model to observed data if there
are any. Bayesian learning is a powerful framework particularly
when dealing with limited data and uncertainty. However, it is
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computationally demanding, especially as the complexity of the
model and data increases. Also, it requires careful consideration
of prior. GP [15] is a popular non-parametric Bayesian learning
method. To be more specific, it is a generalization of infinite
dimension Gaussian distributions. The GP-based functions of-
fer smoothness, flexibility, interpretability, stable and reliable
behavior, and mathematical convenience. In [16], online samples
of the environment are collected to train a sparse Bayesian clas-
sifier estimating the probability of collision and subsequently
utilized in CBF for developing a safe coverage control. Spar-
sification is employed within this methodology as it involves
consistently sampling the environment to train the classifier.
In [17], safety samples are collected online to model safety as
a non-parametric Gaussian process (GP). This model requires
some degree of familiarity with the environment as it builds upon
the suggested safety function. Both of the approaches in [16],
[17] are only applicable to static environments, as they are
constantly collecting data from the environment and suffer from
the computational complexity associated with large data sizes.
While studies have investigated probabilistic machine learning
in CBF, there has not been any GP-CBF formulation that uses
LiDAR-based sensor data directly being efficient in data size and
applicable to completely unknown dynamic environments. In
this letter, a novel online CBF synthesis is proposed for obstacle
avoidance in static and dynamic unknown environments using
LiDAR measurements. In particular, our main contributions are
the following.
� A novel GP-LiDAR-based safety function specifically de-

signed for obstacle avoidance in completely unknown dy-
namic environments is proposed.

� Contrary to previous works such as [12], [13], [16], [17],
the proposed GP-based safety function is efficient in the
number of samples and it does not require previously
sampled data to be stored.

� The proposed approach enables the robot to synthesize
CBF online irrespective of the shape and number of ob-
stacles. That is, the resultant safe set is not restricted to
convex unsafe sets.

� The validity of the proposed safety function and the syn-
thesis of CBF were confirmed through experimental verifi-
cation on mobile robots equipped with an onboard LiDAR
sensor.

The outline of the letter is as follows. In Section II, we review
the mathematical preliminaries used in this letter. In the next
section, the problem statement is described. A novel LiDAR-
based CBF is proposed in Section IV. Finally, the effectiveness
of the proposed algorithm is investigated through experiments
in Section V. The conclusions and future work are provided in
Section VI.

II. PRELIMINARIES

This section outlines the CBF and Gaussian process regres-
sion (GPR) to encode safety through Bayesian learning.

A. Control Barrier Function

Consider a nonlinear control-affine system P ,

ẋ(t) = f(x(t)) + g(x(t))u(t), (1)

where x ∈ X ⊆ Rn is the state of the system and u ∈ Rm is
the control input. The vector fields f and g are assumed to be
continuous, locally Lipschitz, and the origin is an equilibrium
point of P . Assume that the state space can be decomposed into
a safe set XS and an unsafe set XU such that XS ∪ XU = X . It
is additionally assumed that XS can be modeled as super-level
set of a continuously differentiable function h : Rn → R:

XS = {x ∈ Rn : h(x) ≥ 0},
∂XS = {x ∈ Rn : h(x) = 0},

Int(XS) = {x ∈ Rn : h(x) > 0}, (2)

where the boundary and interior of the set are defined by ∂XS
and Int(XS), respectively.

Definition 1: The set D is forward invariant if, x(0) ∈ D and
for all t ≥ 0, x(t) ∈ D.

The system remains safe if XS is forward invariant. The
CBF, defined in the following, gives the necessary and sufficient
conditions for forward invariance (safety) as described.

Definition 2 (CBF [1]): Given the dynamic system P as in
(1), the safe setS and the function h(x) as in (2), the function h(x)
is a CBF, if there exists a locally Lipschitz, extended class− κ∞
function γ (i.e., γ(0) = 0 and it is strictly increasing) such that
for any x ∈ XS ,

sup
u∈Rm

Lfh(x) + Lgh(x)u+ γ(h(x)) ≥ 0. (3)

B. Bayesian Learning: Gaussian Process Regression

GP is a flexible Bayesian regression method on an underlying
kernel that does not need to specify the basis function. In ad-
dition, it has straightforward calculations computable by linear
algebra. In the following, a brief review of GP regression is
presented.

GP is a collection of random variables with joint Gaussian
distribution over any finite subset of them. The GP is fully
defined by its mean function m(x) : X → R and covariance
function k(x, x′) : X × X → R written as

GP(m(x), k(x, x′)), (4)

where X ∈ Rr is the input domain. Usually, the mean function
is considered zero for simplicity. Note that the covariance ma-
trix of samples joint Gaussian distributions, determined by the
covariance function, must be positive definite. A popular choice
of kernel function is the squared exponential (SE) kernel,

k(xi, xj) = σ2
SEe

− 1
2 (xi−xj)

TL−2(xi−xj), (5)

with two parameters:L ∈ Rr×r the length scale matrix and σ2
SE

the signal scale.
Given a set of N data points with input xi and corre-

sponding output yi ∈ R, the training dataset consisting of X =
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Fig. 1. Problem setting: navigation of a mobile robot equipped with a LiDAR
sensor in an unknown environment with obstacles.

[x1, . . ., xN ]T ∈ RN×r and Y = [y1, . . ., yN ]T ∈ RN are con-
structed. The GPR prediction at query point x∗ is given by

y∗|X,Y, x∗ ∼ N (μ(x∗), σ2(y∗)) (6)

μ(x∗) = kT∗ K
−1Y (7)

σ2(y∗) = k(x∗, x∗)− kT∗ K
−1k∗, (8)

where N is the normal distribution, k∗ = [k(x∗, x1), . . . ,
k(x∗, xN )]T ∈ RN is the covariance vector between query point
x∗ and the training data setX , andK denotes theN ×N matrix
of covariance function evaluated at each pair of training point
data set X with one another, i.e., its element [K]ij = k(xi, xj),
i, j ∈ {1, . . ., N}. The μ(x∗) and σ2(x∗) are respectively de-
fined as the mean and variance of the predicted Gaussian distri-
bution.

III. PROBLEM STATEMENT

Consider a mobile robot given by the control-affine system P
in (1) where it is assumed that there is no constraints on control
input u. The state x =

[
p θ

]T
=

[
px py θ

]T ∈ X ⊆ R3

consists of the robot’s position p in x-y plane and its rotational
angle θ. For the sake of simplicity and clarity, the time depen-
dence of variables x and p has been omitted from the formulas
presented in this letter. It is assumed that the robot has access
to its state at time t. The mobile robot navigates in an unknown
environment consisting of both static and dynamic obstacles.
To this end, the robot is equipped with a LiDAR to detect
obstacles. Specifically, the noisy LiDAR’s depth measurements
are denoted by d(t) = [d1(t), . . . , dM (t)]T ∈ RM

>0, where M
is the total number of samples determined by the LiDAR’s
angular resolution θres. Assume that θres is sufficiently small
to detect objects in the surroundings from a distance. Each
LiDAR’s scalar observation di is bounded by dmin and dmax, the
LiDAR’s minimum and maximum detection range, respectively.
The position of the detected obstacle edge by the distance di is
denoted by poe,i. An example of the setting is shown in Fig. 1.

Next, a mapping function π : x ∈ X → p is defined to map
the robot’s state x to the robot’s position p. Given a goal position
pg provided by a high-level planner, we aim to design a safe

motion control u for ensuring that the robot reaches the goal
position pg without colliding with unknown obstacles. To this
end, assume that there exists a continuously differentiable but
unknown function h(π(x)) as defined in (2) whose super level
set encodes the safe regionsXS of the environment. It is assumed
that there is no a priori knowledge about the unsafe regions XU
except that the robot starts from a safe position π(x(0)) ∈ XS .
Furthermore, let unom be the nominal control input computed
by the operator-defined controller. Examples of such nominal
controllers include MPC, proportional (go-to-goal) control, and
others. The problem is then boiled down into the following.

Problem 1: Consider the affine control mobile robot in (1)
navigating in an unknown environment with obstacles. Train
a safety function synthesizing the CBF h(π(x)) with online
data d(t) from the LiDAR sensor to design a controller u(t)
that minimally deviates from unom(t) and ensures no collision
between the robot and the environment.

IV. LIDAR-BASED CBF SYNTHESIS

In this section, a new online CBF synthesis specifically
designed for guaranteeing safety in unknown environments is
proposed. The main challenge of designing CBF for unknown
environments is defining the safe set as the super-level set of
the function h(x). Due to the lack of prior knowledge about
the unsafe regions, the safety function is learned based on
LiDAR-sensor observations. Bayesian learning is used to extend
CBFs to unknown environments. We use GPR for learning the
safety function online using small data acquired by LiDAR at
each sampling instance. The proposed GP provides a smooth,
flexible, and adaptive model with analytical tractability that
captures all of the detected edges and is capable of modeling
all obstacles altogether as one safety function. In the following,
a LiDAR-based GP-CBF synthesis is presented to render the
system safe.

A. GP-Based Safety Function Synthesis

In this work, h(x) is directly modeled as a continuously
differentiable function of the minimum distance to the obsta-
cle, which is efficient and bounded in terms of the number of
sampled data points. This is contrary to the majority of common
approaches [13], [16], which learn a safety classifier based on
LiDAR sensor readings and/or continue collecting samples that
burden the computational complexity of GP [17]. This approach
is more closely aligned with the definition of a safety function
being differentiable and only includes local essential informa-
tion which elevates the robot’s perception and performance.
To clarify, the desired behavior as in (2) is achieved by only
collecting the obstacle edges with a sampling distance. The data
obtained at each time instance is exclusively utilized for safe
control computation at that particular moment. Consequently, in
our data collection approach, we specifically focus on gathering
only the essential information at each sample time, without
saving it for future reference which makes our approach efficient.
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The first step is to model safety as a function of position. We
formulate the safety function by the mean prediction of the GP ,

h(x) = μ(π(x)). (9)

To be efficient in the number of data points, the GP must
have a safe assumption unless contradicting data has been
sensed. This is delivered by assigning the fixed positive mean
function, m(π(x)) = 1. This method is novel since previous
works heavily depend on training rather than modifying the
GP prior. Consequently, the robot explores freely and heads
toward unknown areas as long as it is deemed safe. This safety
function design is simple, and most efficient in the number of
data points. It should be noted that the formulation does not
incorporate the variance since including it would require more
frequent sampling, contradicting the goal of efficient sampling.
Alternatively, a small tube of uncertainty is incorporated with
the same function as the variance of the GP without the high
computational cost. Additionally, note that considering a de-
terministic constant mean function is trivial because the usual
zero mean formulas (7) and (8) can be applied to the difference
between the observations and the mean value [15]. Accordingly,
the predictive mean in (7) becomes,

μ(π(x∗)) = m(π(x∗)) + kT∗ K
−1(Y −m(π(x∗))). (10)

and the predictive variance (8) remains unchanged. The squared
exponential kernel function (5) is chosen as it is smooth (in-
finitely differentiable), and a universal approximator [15]. Since
the kernel input data is the position p and no specific direction is
prioritized, the SE kernel is simplified by setting L = �I , where
� is a scalar length scale and I is the Identity matrix. In addition,
σSE is set to 1. This gives the kernel function

kSE(π(xi), π(xj)) = e−
1

2�2
‖pi−pj‖2 . (11)

Additionally, a noise term is added to account for uncertainty
and measurement errors as,

kN (π(xi), π(xj)) = σ2
NI, (12)

where σ2
N represents the noise variance. As a result, the follow-

ing kernel function is obtained,

kSE,N (π(xi), π(xj))

= kSE(π(xi), π(xj)) + kN (π(xi), π(xj)) (13)

resulting in the prior GP(1, kSE,N (π(x), π(x′))).
The last step to reach the desired behavior for the safety

function would be to sample the detected unsafe positions i.e.,
locations of points on the boundary of the unsafe sets. To this end,
only the positions of obstacle edges are collected for defining
the unsafe set to train the GP model. Specifically, after detecting
an obstacle edge by the kth light of the LiDAR sensor at time t,
the corresponding unsafe position (i.e., the position of the point
at the obstacle’s edge) poe,k(t) is used in the GP if it satisfies
the following condition,

min
j=1,...,N

‖poe,k(t)− xj(t)‖ > dsample, (14)

where dsample denotes the minimum sampling distance. Once
the sampling condition is satisfied, this new observation data

xi(t) = poe,k(t) is assigned with yi(t) = −1. Simply put con-
dition (14) avoids dense sampling. Note that dsample should be
chosen sufficiently small based on the GP hyperparameters to
avoid collision.

Remark 1: For the differentiability of the GP [18], the data
set must be non-empty. To address this if no obstacle is detected,
the nominal control input can be applied directly.

The forthcoming proposition aims to encapsulate the core idea
of GP-LiDAR-based safety function.

Proposition 1: Consider a GP-based safety function as in
(10) with a smooth differentiable kernel function proportional
to the reciprocal of Euclidean distance, i.e., k(xi, xj) ∝ ‖xi −
xj‖− 1

2 = d−1
i , the mean function m(π(x)) = 1, and a data set

consisting of unsafe positions xi = poe assigned with yi = −1.
The safety function formulated by the mean prediction of the
GP , characterizes safety based on d∗(t) as follows:

h(x) =

⎧⎪⎨
⎪⎩
1 if d∗(t) ≥ dsafe

1− 2ky(di(t)) if 0 < d∗(t) < dsafe

−1 if d∗(t) = 0,

, (15)

where d∗(t) denotes the closest distance to obstacles, that is

d∗(t) = min
i=1,...,M

di(t),

dsafe is a user-defined safe distance threshold determined by
the GP kernel function and hyperparameters, and ky(di(t)) =
kT∗ K

−11N : (0,∞) → (0, 1).
Proof: As defined by the proposition h(x) = 1 + kT∗

K−1(−1− 1) = 1− 2ky(di(t)). Near the boundary of the ob-
stacles, i.e., d∗(t) ∼ 0, GP returns μ(π(x∗)) ∼ 1− 2 = −1 as
the edges had been sampled. At positions that are far from
sampled points, i.e., d∗(t) ≥ dsafe, the kernel k∗ is close to
zero since no correlation is captured. Consequently, the GP
yields μ(π(x∗)) ≈ m(π(x∗)) = 1. Finally, for the interval 0 <
d∗ < dsafe, ky(di(t)) varies proportionally to the reciprocal
of Euclidean distance, exhibiting the same dependency as the
kernel function. �

As established in Proposition 1, the proposed safety function
maps the position of the robot to the range [−1, 1] based on its
distance from obstacles. An example of a color map of the local
safety function using LiDAR based on Proposition 1 is shown
in Fig. 2. In the following, a GP-based safety control according
to Proposition 1 is designed.

B. GP-CBF-Based Safety Control

Once the safety function has been characterized, a minimally
invasive safe controller can be calculated based on the admissible
control space of the CBF. The rectified control input u can be
realized as the following Quadratic program (QP):

u(t) = argmin
u∈Rm

‖u− unom(t)‖2 (16a)

Subject to: Lfh(x) + Lgh(x)u+ γ(h(x)) ≥ 0, (16b)

where the Lie derivatives of h(x) along the vector fields f and g

are denoted by Lfh(x) =
∂h(x)
∂x f(x) and Lgh(x) =

∂h(x)
∂x g(x)
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Fig. 2. 2D space is divided into a grid, and the safety function is computed
using a GP model, as described in Proposition 1, at each grid point. Subsequently,
the local safety function is visualized as a color map, where different colors
represent various safety levels. Specifically, green indicates p ∈ XS , white
represents the borderline safe areas, and red signifies p ∈ XU .

respectively. To summarize, real-time safety is ensured by solv-
ing (16) which ensures the forward invariance of the safe set.

The partial derivative ofh(x) in (16) with respect tox at query

point x∗ =

[
p∗
θ∗

]
is given by,

∂h(x)

∂x

∣∣∣∣
x=x∗

=
∂μ(π(x))

∂x

∣∣∣∣
x=x∗

=

[
Y TK−1 ∂k

∂p

∣∣∣∣
p=p∗

0

]T
,

(17)

where vector Y and matrix K are the dataset and kernel matrix,
respectively, as defined in Section II-B. The differentiability
of the kernel is required by (17). Note that the kernel kSE

is infinitely differentiable. Consequently, the kernel kSE,N is
infinite mean square differentiable if the data set is nonempty
according to sample path differentiability theorem [18]. The
kernels derivative in (17) can be calculated as

∂k

∂p

∣∣∣∣
p=p∗

=

⎡
⎢⎢⎣
dk1(p∗)

...

dkN (p∗)

⎤
⎥⎥⎦ , (18)

where dki(p∗) is given by

dki(p∗) = − 1

l2
kSE(p∗, xi)(p∗ − xi)

T . (19)

The validity of the proposed CBF (16) is discussed in the
following proposition.

Proposition 2: Given a safety function h(x) constructed as in
Proposition 1 for system (1) and assuming Remark 1, the safety
function h(x) is a valid CBF, the main QP (16) is feasible and
the inequality constraint (16b) is nontrivial.

Proof: Firstly, we show that the partial derivative of the safety
function exists and is non-zero. Following that, we guarantee
the existence of at least one acceptable input by verifying the
non-emptiness of the QP problem feasible set. As derived from
Sample Path Differentiability [18], the safety function is mean
square differentiable if the data set is nonempty, and as stated

in Remark 1 we only compute the derivative for detected edges.
To be more specific, in (17), Y is a vector of −1, matrix K is
the kernel matrix and the kernel evaluated between pairs that
are in the safe set XS lies within the range (0,1]. As a result, the
partial derivative of h with respect to the state vector can only
approach zero or reach values close to zero at the edges which
are in the unsafe set XU . This shows that the CBF constraint is
non-trivial. To show that the QP problem is feasible, we check
the feasibility set of the inequality constraints. As one Gaussian
process is trained to model detected obstacles altogether, there
is one inequality constraint. Consequently, for control affine
systems (1), the constraint Lfh(x) + Lgh(x)u+ γ(h(x)) ≥ 0
is a single linear inequality constraint that divides the space
into two and is always non-empty. Hence, since there is no
constraint on control input u, there always exists a control input
that satisfies constraints in (16b). �

Note that for general control affine system (1) adding con-
trol input constraints to the QP (16) may potentially lead to
infeasibility. As mentioned at the beginning of Section IV-A,
the data obtained at each time instance is exclusively utilized
for safe control computation at that particular moment. As a
result, the zero-super-level set changes as the data is updated.
To this end, we define a strictly increasing, unbounded switching
sequence {τk}∞k=1 starting at t0 (τ1 = t0), where τk is the time
of kth sequence of the measurements. Furthermore, we impose
the following assumption.

Assumption 1: During the data update at τk+1 the states stay
within the intersection of the zero-super-level sets corresponding
to times τk and τk+1.

The above assumption can be ensured in practice by having
a smaller sampling time (for example using a LiDAR with a
fast update rate). The following proposition, which provides
the solution to Problem 1, shows that the forward invariance
property is ensured for the switching zero-super-level set. This
class of invariance is also referred to as hybrid forward invariance
in [19].

Proposition 3: (Hybrid forward invariance) Given a safety
function constructed as in Proposition 1 for system (1) and
assuming Remark 1 and Assumption 1, any locally Lipschitz
continuous controller satifying (16) renders the switching zero-
super-level set forward invariant.

Proof: First, observe that updating the data set at each sam-
pling instance τk ensures that the safety function is locally
Lipschitz continuous and smooth, and the forward invariance
in ensured within each sampling interval [τk, τk+1), as shown
in Proposition 2. Furthermore, Assumption 1 ensures that the
system will be in the safe set after the switching. Hence, the
forward invariance of the system is guaranteed for the switching
zero-super-level set, which completes the proof. �

Algorithm 1 outlines the steps to obtain online GP-LiDAR-
based CBF steps. Note that due to the dynamic nature of the
environment and discretization, there is a speed upper limit
computable for a given sampling time and dsafe to ensure safety.

It is worth noting that our choice of observation yi allows us to
deal with an unknown dynamic environment without requiring
a candidate safety function for sampling. Also, the data size
is bounded by the maximum number of LiDAR samples M .
Solely utilizing the edges detected at that specific time with the
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TABLE I
COMPARISON TO PRIOR WORKS

Algorithm 1: LiDAR-Based Safety Control Using GP-CBF.
Initialization: System (1) is at a safe position:
x(0) ∈ XS .

Procedure:
1: Calculate unom(t) at query point x∗ = x(t).
2: X(t) = ∅ i.e., N = 0.
3: for i = 1 to M do
4: if (di(t) < dmax and (14)) then
5: N = N + 1
6: Collect xN (t) = poe,i(t), yN (t) = −1.
7: end if
8: end for
9: Determine h(x(t)) and ∂h(x(t))

∂x using (10) and (17).
Then, solve (16) to compute the rectified control input,
u(t).

sampling interval dsample makes our approach efficient in the
number of data points. A comparison with prior work on sample
efficiency is provided in the following subsection.

C. Comparison of Data/Sample Size

The size of the data set directly affects the efficiency of the
proposed CBF. To this end, we compare the data size of the
proposed LiDAR-based-GP CBF to other CBFs that use LiDAR
data to learn the safety function online. Table I presents a detailed
analysis and comparison. As presented in the table, the proposed
LiDAR-based CBF only processes a sparse subset of detected
edges of obstacles (poe) by enforcing the sampling distance.
This process is done in a single pass usage in comparison to
accumulative data gathering. In [13], a sparse set of safe (psafe)
and unsafe (poe) grid points over the domain with their labels
are collected accumulatively. Also, a sparse Bayesian classifier
is used in [16] accumulatively. The GP-based CBF proposed
in [17] collects safety metrics of the environment accumulatively
and also requires prior knowledge about the environment and
obstacles. In conclusion, our proposed LiDAR-based CBF is
more efficient in the long run and is applicable to unknown
environments.

V. EXPERIMENT

In this section, we confirm the effectiveness of the GP-CBF-
based safety control according to Algorithm 1 in a real envi-
ronment. The objective of the experiments is to verify the safe
rectification of the proposed LiDAR-based CBF by TurtleBot3

burger robot in an unknown environment with dynamic and static
obstacles.

A. Experiment Setup

The experiment environment consists of mobile robots, static
obstacles, and dynamic obstacles in a 5.3 m × 3 m field. Three
TurtleBot3 burger robots performed the experiment. The robot’s
speed limit is 0.15 m/s. The positions of the robots are obtained
by Vicon localization. All computations are done remotely on a
PC with an Intel i7 processor. The computed control input is sent
to each individual robot via Wi-Fi through ROS messages. The
update rate of the LiDAR data is 5 Hz. The angular resolution
of the LiDAR, θres, is set as 1◦ (M = 360).

1) Robot’s Dynamic and Nominal Controller: The dynamic
of the TurtleBot3 burger robot is given by⎡

⎢⎣ṗx(t)ṗy(t)

θ̇(t)

⎤
⎥⎦ =

⎡
⎢⎣v(t) cos(θ(t))v(t) sin(θ(t))

ω(t)

⎤
⎥⎦ (20)

where the control inputs are the longitudinal velocity input v(t)
and the angular velocity input w(t). The high-level planner, i.e.,
unom is a go-to-goal controller. To apply the control input, a vir-
tual leading point in front of the robot is controlled. Specifically,
near identity diffeomorphism transformation [20] given by,[

v(t)

w(t)

]
=

[
cos(θ(t)) sin(θ(t))

− 1
r sin(θ(t))

1
r cos(θ(t))

][
unom,x(t)

unom,y(t)

]
(21)

is applied, where r ∈ R>0 is the distance of the controlled point
from the center of the robot, unom,x and unom,y are computed
by the go-to-goal controller and later rectified by CBF.

2) Scenario. Online Obstacle Avoidance in an Unknown
Environment: The experiment comprises three concurrent im-
plementations, during which each TurtleBot aimed to indepen-
dently and safely reach its goal position in an unknown environ-
ment with obstacles. Consequently, to each TurtleBot the other
two are perceived as dynamic obstacles. The environment except
for the safe starting positions is unknown to the robots. Each
TurtleBot is equipped with a LiDAR sensor. The unsafe position
poe detected by the ith emitted laser light can be computed as,

poe =

[
poe,x

poe,y

]
=

[
px + di. cos(θ + i.θres)

py + di. sin(θ + i.θres)

]
. (22)

The GP hyperparameters are set as � = 0.17 (dsafe = 0.558 m),
and σN = 10−2. The LiDAR maximum detection range is
dmax = 1. The minimum sampling distance is set as dsample =
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Fig. 3. Three frames of the implementation instances; (d)–(f) the plot of the safety function color map for the TurtleBot3 burger with the red tag. The colored
lines in (a)–(c) shows the trajectories of the robots between each snapshot. The video recording of the experiment is accessible at https://youtu.be/T_68wJbRJgY.

TABLE II
DATA SIZE AND COMPUTATION TIME

0.05. Furthermore, function γ in (16) is assigned as γ(h) = h3.
The proportional gain of the nominal controller is set asPgain =
0.8.

B. Results and Discussions

The computational analysis of the proposed LiDAR-based
GP-CBF (the time it takes to acquire the data set, train the GP,
and estimate the safety function and its derivative) is shown in
Table II. Additionally, The computational analysis of LiDAR-
based QP-GP-CBF (the time it takes to acquire the data set,
train the GP, estimate the safety function and its derivative, and
solve the QP) is shown as well. The minimum computation
time is effectively 0.00 ms when no obstacle is detected because
the system immediately applies the nominal control input. The
number of data points detected and acquired in the GP is shown
as well. The number of data used in the GPR is smaller than
the data points detected due to the minimum sampling distance
(14) which promotes data sparsity. The TurtleBots start heading
toward their corresponding pg and successfully avoid collision
with static and dynamic obstacles. The GP is relatively fast
because of having a small dataset and no sparsification method is
required. Using online LiDAR observations, the LiDAR-based
CBF rectifies the nominal control to navigate safely in the
unknown environment. The red and blue robots detect each
other between 2.9 seconds and 9.8 seconds, whereas the red

and green robots detect one another starting from 9.7 seconds
and continuing until the conclusion of the experiment. Fig. 3
shows three time frames of the experiment in one plot. The plot
is accompanied by another plot that shows the sampled data, the
local safety color map, and the radius of the local color map
at the corresponding times of the red TurtleBot. Fig. 4 shows
the minimum distance of TurtleBots to the obstacles over time.
Note that the radius of the TurtleBot3 burger is 0.089 m. There
is a jump in the minimum distance plot of the blue TurtleBot
shown in Fig. 4 at t = 4 s when the red and blue TurtleBots
meet. After a thorough analysis of the video recordings and the
minimum distance plot of the blue and red TurtleBots, it became
evident that the observed phenomenon is simply a result of the
noise present in the LiDAR measurements. Specifically, we have
observed that LiDAR sensors tend to get noisy measurements
and are sensitive to reflective surfaces. Reflective surfaces result
in larger inconsistencies in the LiDAR readings. Additionally,
the noise usually intensifies when the robot has a relatively
larger rotational speed causing larger errors in sensed range
and accordingly on trained safety function. It is worth noting
the QP in (16) remains feasible unless the LiDAR senses zero
distance to a sampled obstacle edge which is a rare occurrence.
Additionally, the QP CBF is still effective but more cautious
since it tries to bring the state back to the safe set once it leaves
the set. This property is a direct result of the asymptotic stability
of the invariant set according to [21]. It is notable that the safety
controller ensures safe navigation even in light of the significant
noise present in the LiDAR measurements. In addition, since
the dataset is completely updated in the subsequent timestep,
the effect of noise is temporary and this can be seen in Fig. 4.
One optional way to deal with this issue is to have the anomaly

https://youtu.be/T_68wJbRJgY
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Fig. 4. Minimum distance to the obstacle sensed by LiDAR through experi-
ment. The minimum safe distance is indicated by a red dashed line. (a) Green
TurtleBot. (b) Blue TurtleBot. (c) Red TurtleBot.

detection on the LiDAR reading but we leave this as it is beyond
the scope of this letter.

Remark 2: To ensure safety with a slow update rate, a larger
dsafe is recommended by setting a larger � value in (11)
while navigating through narrow entrances requires opting for a
smaller �.

VI. CONCLUSION

In this work, first, we propose an online LiDAR-based local
safety function for unknown dynamic environments with an
optimum dataset without saving the data set for future reference.
Then, a LiDAR-based GP CBF is constructed upon the trained
safety function and the associated control synthesis is provided.
The effectiveness of the proposed method is confirmed through
implementations. In the future, we aim to add high-level planner
features like resolving dead-lock situations of CBFs to our
algorithm.
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