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JIST: Joint Image and Sequence Training for
Sequential Visual Place Recognition

Gabriele Berton"”, Gabriele Trivigno

Abstract—Visual Place Recognition aims at recognizing previ-
ously visited places by relying on visual clues, and it is used in
robotics applications for SLAM and localization. Since typically a
mobile robot has access to a continuous stream of frames, this task
is naturally cast as a sequence-to-sequence localization problem.
Nevertheless, obtaining sequences of labelled data is much more
expensive than collecting isolated images, which can be done in
an automated way with little supervision. As a mitigation to this
problem, we propose a novel Joint Image and Sequence Train-
ing (JIST) protocol that leverages large uncurated sets of images
through a multi-task learning framework. With JIST we also intro-
duce SeqGeM, an aggregation layer that revisits the popular GeM
pooling to produce a single robust and compact embedding from
a sequence of single-frame embeddings. We show that our model
is able to outperform previous state of the art while being faster,
using eight times smaller descriptors, having a lighter architecture
and allowing to process sequences of various lengths.

Index  Terms—Representation  learning, simultaneous
localization and mapping, visual information retrieval.

I. INTRODUCTION

OCALIZATION is a fundamental functionality for au-

L tonomous mobile robots, and one of its key ingredients is
Visual Place Recognition (VPR) [1], i.e., the task of matching a
current visual observation (an image or video stream) to previ-
ously visited places. For example, VPR is used for loop closure
detectionin SLAM [2], for re-localization in the kidnapped robot
problem [3] and also for pure localization when a map is already
available [4] and when GNSS measurements are precluded [5],
[6]. Additionally, VPR is used to select rough candidates for
precise 6-DoF pose estimation (i.e., visual localization) [4], [7].
Across these robotics applications, VPR is typically per-
formed using methods that process short sequences of images ac-
quired by cameras onboard the robot - what is called sequence-
to-sequence or seq2seq place recognition [8]. A recent trend
in this sense is to frame the seq2seq problem as a retrieval
task on learnt embeddings (sequence descriptors) that represent
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entire sequences rather than individual frames [9], [10], [11],
[12]. This new paradigm not only intrinsically captures the
temporal information in the video stream, but it is also more
efficient than individually matching each frame with previous
observations [11], [12]. However, the accuracy and robustness
achieved by sequence descriptors is bounded by the limited
availability of large datasets of sequences. Indeed, for the classic
image-to-image VPR (im2im [8]) the availability of massive
datasets has been instrumental in setting the latest state of the
art[13], [14], producing descriptors that generalize better and are
very compact'. Yet, due to difficulties in curating sequences [8],
[16], the largest dataset currently available for the seq2seq task
(Mapillary Street Level Sequences [8]) is 40 x smaller than the
largest datasets for image-to-image VPR [13], [17].

Given the correlation between the seq2seq and the im2im
tasks, we argue that it is possible to produce more effective
sequence descriptors by jointly training a model not only on
sequences, but also on the readily available massive datasets
for image-to-image VPR: on one hand, the im2im training from
huge-scale datasets would improve the model’s generalizability;
on the other, sequence-to-sequence learning would embed the
model with robustness to sequentially changing scenes and teach
it how to temporally aggregate frame-level information. To this
end, we propose a new training methodology that jointly uses
images and sequences and exploits a state-of-the-art architecture
originally developed for im2im VPR to first extract discrimi-
native embeddings from individual frames and then aggregate
them. While this new training method enables the model to
effectively learn also from large datasets for the im2im tasks,
it does not automatically solve the issue of large-dimensional
embeddings required by previous SOTA [12]. To address this
issue, in Section III-C we introduce a new aggregation layer
called SeqGeM, that revisits the popular generalized mean
pooling [18] by applying it along the temporal axis, resulting
in very compact descriptors and, consequently, speeding-up the
matching time (see Fig. 1). The combination of this training
method and SeqGeM takes the name of Joint Image and Se-
quence Training, or JIST.

To summarize, we bring the following contributions:

® We propose a novel multi-task training framework to lever-

age existing large scale datasets of image-to-image VPR
and improve upon the seq2seq task [8];

I This also entails a reduced latency, because the size of descriptors has a linear
correlation with the matching time of the retrieval [15].
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Fig. 1. Our multi-task training framework allows to surpass previous SOTA
in performance. Thanks to our novel layer SeqGeM, we are able to cut down the
matching time by an order of magnitude.

® Weintroduce the SeqGeM aggregation layer, which revisits
the popular generalized mean pooling [18] by aggregating
individual frames descriptors along the temporal axis and
resulting in compact and robust descriptors regardless of
the input sequence length;

® We show that, compared to previous SOTA, our pipeline
achieves better results and faster inference thanks to its
reliance on smaller dimensional descriptors.

II. RELATED WORKS

Sequence matching: Sequence matching, or frame-by-frame
matching, represents an established approach to seq2seq [19],
[20], and it operates by building a similarity matrix wherein de-
scriptors of single query frames are compared to database ones.
The best match is then determined by aggregating the scores
in the matrix under simplifying assumptions, such as constant
velocity or no stops [21], which makes it hard to generalize
to real-world applications. There is a rich literature on sequence
matching that tries to relax these assumptions by exploiting ego-
motion information or using complex methods [22], [22] and
graph-based frameworks [23], [24], [25]. Recently, SeqMatch-
Net [26] has also addressed the fact that these methods rely on
learned image-to-image descriptors trained without considering
the downstream procedure of score aggregation. Despite these
improvements, sequence matching can generally be expensive to
perform, as it requires each frame from the query to be matched
to each frame of all databases sequences, as discussed in [11],
[12].

Sequence descriptors: Sequence descriptor methods sum-
marize each sequence with a single embedding which can be
used for retrieving the most similar matches. This allows to
incorporate temporal clues directly into the descriptors and to
perform the similarity search directly on sequences rather than
frames, thus greatly reducing the matching time. Facil et al. [9]
first introduced the idea of sequence descriptors in VPR using
simple aggregation techniques such as concatenation, sum, or
processing via a LSTM network. [8] extended their benchmark
on the Mapillary Street Level Sequences (MSLS) dataset. A
non-learnable aggregation via discrete convolution was explored
by Gargetal. [10]. Alternatively, 1D temporal convolutions were
employed in SeqNet [11] to obtain a learnable aggregation of
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frame descriptors. Recently, [27] demonstrated a hyperdimen-
sional computing approach to systematically combine informa-
tion from multiple single-image descriptors. Considering the
architectural differences among these methods, [12] provides
a benchmark and taxonomy for seq2seq methods depending
on how the frame-level features are fused together, and then it
introduces the SeqVLAD aggregation layer that achieves SOTA
performance. A follow up work is found in [28].

Image-to-image place recognition on large databases: There
is a parallel body of literature in computer vision on image-
to-image place recognition, addressing it as a retrieval task
using global image descriptors. For years, the de-facto stan-
dard method has been NetVLAD [29], that also introduced
the training procedure with mining and triplet loss. However,
recently [15] has pointed out that the cost of mining triplets
is a major bottleneck that prevents these methods from scaling
to large datasets. This consideration inspired few recent papers
to pursue mining-free methods in order to enable training on
massive datasets. Firstly, CosPlace [13] provides a method to
split large dense datasets into non-overlapping classes, which
then allows for training to be performed with scalable loss
functions. Using a different approach, Ali-Bey et al. [30] pro-
vides a dataset that is already split into well-defined classes,
allowing to use standard retrieval losses without the need for
mining. MixVPR [14] uses a similar training approach, and
shows that well-designed architectures can provide a boost in
recall. Most recently, [31] introduces a novel reward function,
named Generalized Contrastive Loss, to dispense from hard-pair
mining.

This trend in the literature shows that a method that is able to
efficiently leverage large scale datasets can bring great benefits
for performances. In seq2seq VPR this has not been possible
because it is hard to obtain such large datasets. In this letter
we propose a training protocol for sequence descriptors that is
able to leverage the large amount of data readily available for the
im2im task, even though it does not contain sequences of frames.
Moreover, we show that our approach is able to improve upon
previous SOTA while reducing the cost of deployment.

III. METHOD

A. Problem Setting

We tackle the task of seg2seq VPR that is formally defined
in [8]: given a query sequence the system has to output a
sequence from the available database that matches the former.
Since the database sequences have GPS labels, this allows to in-
fer an estimate of the query’s position. A match is deemed correct
if any of the retrieved frames is within 25 meters [8] from any
of the query frames. The common recall@N metric [11], [12],
[15], [20] is used as an aggregate evaluation, and it represents
the percentage of queries that have at least one correct match in
the top-N candidates.

Our method builds on the idea that the task of seq2seq VPR
can be splitinto 2 learning objectives: (i) learn to extract features
that are distinctive for localization (i.e. ignore transient objects,
focus on static components, their style and relative position)
and (ii) model the temporal evolution of these salient features
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Fig. 2.

Overview of the JIST framework. At training time (left) we use two branches, one for sequences and one for single-images. Each branch has a separate

loss, while sharing part of their weights. The multi-task training allows to obtain discriminative frame-wise embeddings by exploiting the powerful representations
learned by the backbone and fully connected from single images. At test time (right) we only use the sequences branch, and we follow the standard image retrieval
pipeline: embeddings are extracted for both database and queries sequences, and then a prediction for database sequence that is most similar to the query is computed
through a kNN. Note that in a real-world scenario, the potentially expensive embeddings extraction for database sequences can be performed offline, making the

framework fast (more information on efficiency in Section IV-C).

within a sequence. In the spirit of deep learning, it is possible to
jointly acquire both capabilities in an end-to-end fashion from
a dataset of sequences [12]. However, we observe that for the
first objective we do not necessarily need sequences, but we
can exploit existing large-scale non-sequential VPR datasets to
embed into our model robustness to a large variety of scenar-
ios. Following this intuition, we devise our multi-task learning
framework.

B. Multi Task Framework: Overview

The typical descriptor extractor architecture for im2im re-
trieval is composed by a backbone and an aggregator of feature
maps (or tokens). For retrieval on sequences, there is an addi-
tional step to aggregate frame-level information [12]. In order
to leverage both im2im and seq2seq datasets, we need a unified
architecture with a frame-level aggregation layer able to process
both individual images and sequences. Thus, we propose a novel
double-branched architecture: one branch takes sequential data
as input, while the other takes single images (see Fig. 2). We
iteratively feed each branch with one batch of its corresponding
input, compute their respective losses, backpropagate through
the entire model and sum the gradients computed for each loss,
which are then used for optimization. In doing so, we ensure
that both branches share the same gradients and weights: in
practice this makes the backbone and fully connected layer
(FC) of the two branches identical, and allows joint optimiza-
tion on both losses in a Siamese-like fashion. Following, we
explain how the two branches work at inference and training
time.

C. Sequence-to-Sequence Branch

The sequence-to-sequence branch has the objective of ex-
ploiting all the frame-wise information extracted by the im2im
branch, via the shared backbone and FC layer, while learning
to aggregate temporal information from sequences into compact
descriptors. The input to this branch is formed by sequences x ;¢4
of frames, with 4., € RI*H>xWxC (where L is the sequence
length). The sequences are passed to a backbone B, which

extracts L X D dimensional features where the D depends on
the backbone. These features are then passed through an FC layer
F', which acts as a whitening transformation [18] and produces
L D’-dimensional descriptors (i.e. one descriptor per frame),
where D’ can be set to a chosen output dimension. At this point,
we need two more ingredients: firstly a sequence aggregation
module that combines these frames into a single vector (the
sequence descriptor); secondly, a loss function for the seq2seq
task.

Sequence aggregation: SeqGeM: The current SOTA sequence
descriptor from [12] is built using the SeqVLAD aggregator.
This module reinterprets the classic NetVLAD module [29] to
make it suitable for sequences. In a nutshell, given a set of
D’-dimensional input descriptors SeqVLAD produces a single
sequence descriptor vector of size K - D, where K is a parameter
indicating the number of clusters used to summarize the input
vectors. In practice, the implementation from [12] uses K = 64,
which significantly increases the size of the sequence descriptor
and, as a consequence, the matching time of the retrieval. To
mitigate this problem, [12] uses a PCA compression operation,
which nevertheless adds a post-processing computational over-
head.

For all these reasons, we propose a new aggregation module
called Sequential Generalized Mean (SeqGeM), which revisits
the popular GeM layer [18] to operate on sequences, by applying
its pooling operation along the temporal axis given a sequence
of single-image embeddings (see Fig. 3). Formally, the SeqGeM
layer is defined as

S: R RP

1 L—-1
[do,...del] — Ede (1)
=0

where p is a learnable parameter and d; is the descriptor of the
ith frame. Therefore, the sequence descriptor extraction process
is

fseq = S(F(B(seq))) (2)
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Fig. 3. Sketch of our proposed SeqGeM layer. Given D-dimensional feature
vectors from L frames, SeqGeM produces a single descriptor/embedding of
dimensionality D, which contains information from the whole sequence.

SeqGeM is implemented with differentiable operations, and
it has a few desirable properties: i) it natively produces low-
dimensional descriptors without requiring a PCA compression;
ii) it is learnable; iii) it has few parameters; iv) it is flexible w.r.t.
the length of input sequences, so that sequences of different
length can be compared to each other. Finally, SeqGeM is
purposefully designed to aggregate only the final descriptors of
each frame, instead of the frame’s feature maps, as in this way
itis able to (i) take advantage of the entire im2im branch, which
is trained on large amount of images, and (ii) take as input small
descriptors and produce small outputs, whereas usually methods
that take as inputs the feature maps (e.g. SeqVLAD) produce
large-dimensional sequence descriptors which increases mem-
ory and time requirements.

Seq2seq loss: Following best practices from the literature, we
use the popular weakly supervised margin triplet loss [29], which
takes a query, its positive (a sequence from the same place), and
a negative. For best results, negatives need to be mined, because
selecting random negatives would lead to trivial triplets (i.e.,
with loss 0), by selecting the negatives closest to the queries in
features space. Given triplets of query, positive and negative, the
weakly supervised triplet loss, used to train the seq2seq branch,
is defined as:

SquSeq Zmax 0, d seq? seq) - d( géq’ seq) + m))
3)
where fZ... [l Seq represent the features of a query, its posi-

tive and negative, m is the margin of the triplet loss, and d(-) is
the euclidean distance between two features.

D. Image-to-Image Branch

The second branch processes single images instead of se-
quences: given input images x;,, € R *"W*C the image branch
produces D’ dimensional local feature descriptors which can be
fed to the image loss. The local feature descriptors are computed
as

fim = F(B(xim)) “)

where the backbone B and fully connected layer F' are shared
with sequence-to-sequence branch (see Fig. 2). Finally, we
attach a loss L;,2;m for the image-to-image task, that back-
propagates through B and F'.

Im2im loss: Since our goal for this branch is to exploit huge
datasets of single images to learn robust representations, we
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resort to the CosPlace training protocol and loss [13] that is
the current state-of-the-art for large scale im2im VPR and was
designed to be used on the massive San Francisco eXtra Large
(SF-XL) dataset. Below we provide a summarized explanation
of the CosPlace training protocol, although we note that this is
not meant to be a thorough description and we refer the reader to
the original CosPlace paper [13] for a more detailed explanation.

The CosPlace training protocol is divided in two steps. In
the first step, the SF-XL dataset which contains images labeled
with UTM coordinates and heading angles is partitioned into
classes based on their position and orientation. This process,
that is performed once prior to the actual training, divides the
geographical area into small squared cells (10 x 10 meters) and
splits each cell into 12 classes along the orientation/heading (i.e.
each class is 30° wide), thus ensuring that all the images in a
single class view the same scene (by having similar position and
orientation). This division of the continuous label space in a finite
number of classes enables the usage of highly scalable losses for
large-scale image retrieval, such as the CosFace loss [32].

Therefore, the second step consists in training the model using
the CosFace loss on the obtained classes. However, naively using
all the classes would be problematic, because images in two
adjacent classes may have a very high visual overlap, thus po-
tentially containing the same scene seen from slightly different
points of view. Since this would lead to unstable gradients during
optimization, the training protocol only considers images from
a subset of classes chosen so that no two adjacent classes are
used at the same time. This subset is not fixed, but it is changed
iteratively during training, to allow the model to see all the
images in the dataset.

Summarizing, in this letter we denote as L;;,2,, the CosFace
loss applied according to the CosPlace protocol. However, we
want to remark that in principle our multi-task framework is
loss-agnostic, so the im2im loss can be easily swapped with
another one, for example if a more performing loss becomes
available.

E. Total Multi-Task Loss

Overall, the total loss of our multi-task framework is

»Cmultiftask = )\sezﬂseqﬁsetﬂseq + )\im2im£im2im (5)

where A seq25eq and Ajp,2im, are hyperparameters. The combina-
tion of this multi-task loss with architecture that includes the
SeqGeM aggregation makes our multi-task framework, which
we name Joint Image and Sequence Training, or JIST.

1IV. EXPERIMENTS
A. Experimental Setup

Datasets: To assess the soundness of the JIST multi-task
training framework, we use the following datasets:

® Mapillary Street-Level Sequences (MSLS) [8], is built from
various cities around world, split in non-overlapping training,
validation and test sets, and consisting of 393 k query sequences
and 733 k for the database (if we consider 5-frames sequences).
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As the original test set labels are not released by the authors, we
follow the splits defined in [12].

o Test set: Copenhagen, San Francisco

® Vul set: Amsterdam, Manila

® Train set: all remaining cities

Unless otherwise specified, experiments (train/val/test) are
performed on MSLS.

® MSLS Melbourne: is the subset of MSLS from the city of
Melbourne, and it is commonly used [11], [12], [26] to under-
stand the effect of training only on a single city as opposed to the
entire MSLS train set. When the model is trained on Melbourne,
the validation and testing are performed on the standard MSLS
val and test sets.

® San Francisco eXtra Large (SF-XL) [13] is a large-scale
(41 M images) im2im dataset covering the whole city of San
Francisco, and it is used as a training set for the CosPlace com-
ponent of the loss. Note that CosPlace requires camera heading
labels, meaning that most other datasets (MSLS included) can
not be used for training CosPlace.

® Oxford RobotCar [35] is a small dataset containing roughly
4 k queries and database sequences in each split. It contains
multiple traversals of the same path around the city of Oxford.
Laps are recorded in different times of the day, year, as well
as changing weather conditions, targeting robustness to domain
shifts. In the literature there is little consistency upon which
splits to adopt [10], [11], [26], thus as with MSLS we follow the
proposed one in [12].

® RobotCar Test set: queries: 2014-12-16-18-44-24 (winter

night); database: 2014-11-18-13-20-12 (fall day).

® RobotCar Validation set: queries: 2015-02-03-08-45-10

(winter day, snow); database: 2015-11-13-10-28-08 (fall
day, overcast).

® RobotCar Train set: queries: 2014-12-17-18-18-43 (winter

night, rain); database: 2014-12-16-09-14-09 (winter day,
sun).

Training: For training, we set Ajy,2im = 100 and Ageqo5eq =
10.000. The learning rate is set to 0.00001 and we use Adam [36]
as optimizer. We train our model for a fixed number of iterations,
namely 12.5 k. To speed up convergence and reduce carbon
footprint of our trainings, we initialize the backbone with the
open-source pretrained weights from CosPlace. Regarding our
architecture, we use a ResNet-18 [37] backbone which has an
output dimensionality D = 512. We keep the same dimension
after the linear projection D' = 512, except for experiments in
Table IIT where we show that our method works well also with
smaller descriptors. The parameter p of SeqGeM is initialized
to 3.

Evaluation: We use a standard kNN to find the predictions
for each query. As metric, we use the Recall@N, defined as the
number of queries that have at least one correct positives within
the first N predictions. A prediction is deemed correct if at least
one of its frames is less than 25 meters away from at least one
the query’s frames, following [8]’s definition of seq2seq. Unless
otherwise specified we use a sequence length of 5 following
previous work [12], although in Fig. 5 we show that SeqGeM is
able to produce robust descriptors even with different sequence
lengths. Given that in VPR it is logical to either train and test
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Fig. 4. Precision-Recall curves computed on MSLS test set for the most
relevant methods. All models are trained with a ResNet-18 backbone except
TimeSformer, which uses a custom backbone.

on different (non-overlapping) geographical areas [29], or to
consider the train and test sets to be geographically overlap-
ping [13], we compute results for both cases: results on MSLS
use geographically disjointed sets, whereas results on RobotCar
use the same area for training and testing.

Methods: We report results from a large number of methods
on the task of seq2seq VPR. Wherever available, we made use
of the authors official code for our comparisons. For methods
based on the traditional sequence matching, we compare against
three popular implementations: SeqSLAM [20], HVPR [11],
and SeqMatchNet [26]. We also compare to existing methods
based on sequence descriptors. Starting from the work of [8], we
test standard concatenation (CAT) of popular im2im descriptors
NetVLAD [29] and GeM [18] using different backbones. We
also compute results with Delta Decriptors [10], a non-learnt
pooling in this category. We compare against Fully-Connected
layers on top of flattened frame descriptors [9], varying the
feature extractor. Additionally, we test the learnable pooling
of SeqNet [11] and the previous SOTA represented by Se-
qVLAD [12]. Finally, we test a method that processes all frames
as a single entity from the first layers, namely the TimeS-
former [34].

For methods that produce huge descriptors, mostly due to
NetVLAD applied on each frame of the sequences, we fol-
lowed [12] and applied PCA for dimensionality reduction. It
is noteworthy in this sense that our proposed pipeline naturally
outputs compact descriptors (512-D) freeing ourselves from the
extra cost of applying PCA, while also achieving higher results
despite the lower dimensionality.

A few methods (HVPR, SeqMatchNet and SeqNet) could not
be trained on the whole MSLS due to large memory requirements
of their implementation (more than 256 GB of RAM), hence why
some results are missing. Finally, we clarify that official code
for Delta Descriptors and SeqSLAM do not train frame-level
descriptors and rely on pre-trained networks. In the table they
are highlighted with *.

B. Results and Discussion

To empirically assess the effectiveness of our proposed mod-
els against previous literature, we report a wide set of experi-
ments in Table I, and precision-recall curves for the most relevant
methods in Fig. 4.
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TABLE I
EVALUATION OF SEQUENTIAL DESCRIPTORS AND SEQUENCE MATCHING, ON SEQUENCES OF LENGTH 5: RECALL@ 1 ON VARIOUS DATASETS

Method Backbone Descriptor GPU Memory Extraction Matching ~ Train on Melbourne ~ Train on MSLS ~ Train on RobotCar Train on MSLS
Dimension  Occupation (GB)  Time (ms)  Time (ms) Test on MSLS Test on MSLS Test on RobotCar Test on RobotCar

SeqSLAM* [20] VGG-16 4096 - SL 2.68 39.8 500.1 459 459 34.7 34.7
HVPR [11] VGG-16 4096 - SL 2.68 39.8 0.9 51.0 - 56.8 -
SeqMatchNet[27] VGG-16 4096 - SL 2.68 39.8 500.1 44.8 - 519 -

Delta Descriptors*[10] VGG-16 4096 - SL 2.68 39.8 1.1 43.0 43.0 18.0 18.0
GeM + CAT (8] ResNet-18 256 - SL 2.04 10.6 0.3 66.7 76.8 75.4 26.4
GeM + CAT (8] ResNet-50 1024 - SL 2.25 29.5 1.8 63.4 68.6 81.3 14.1
NetVLAD + CAT + PCA [9] ResNet-18 4096 2.04 10.4 1.1 75.5 83.7 67.8 47.0
NetVLAD + CAT + PCA [9]  ResNet-50 4096 2.26 30.4 1.1 74.9 85.3 89.3 62.4
SeqPool + CAT [34] CCT384 384 - SL 2.01 15.6 0.5 69.9 77.8 774 42.6
SeqNet [11] VGG-16 4096 2.68 39.8 1.1 50.1 - 60.5 -
SeqNet [11] ResNet-50 4096 2.26 31.0 1.1 45.6 - 61.3 -
NetVLAD + FC [9] ResNet-18 4096 3.39 10.5 1.1 55.5 68.5 44.7 19.3
SeqVLAD + PCA [12] ResNet-18 4096 2.04 10.5 1.1 78.2 85.5 86.5 60.9
SeqVLAD [12] CCT384 24576 2.02 17.2 6.4 81.7 89.4 92.8 78.7
SeqVLAD + PCA [12] CCT384 4096 2.02 17.2 1.1 81.4 89.2 93.3 76.8
TimeSformer [35] - 768 2.34 135 0.2 73.8 81.5 74.9 46.8
JIST (Ours) ResNet-18 512 2.04 11.1 0.1 88.9 90.6 91.5 79.0

SL stands for sequence length, CAT indicates concatenation of descriptors, FC stands for fully connected layer. Extraction time is the time to extract descriptors/embeddings, and
matching time is the time to find the predictions given the descriptors given the test database of MSLS (with 13584 sequences). Both times refer to a single query. *Denotes a

non-trained method.
The best results in bold, second best are underlined.

TABLE I
ABLATION ON THE TWO COMPONENTS OF THE MULTI-TASK LOSS, ON MSLS

Aseq2seq ‘ 0 100 1000 10k 100k ‘ 10k 10k 10k 10k 10k
Aim2im | 100 100 100 100 100 | 0 1 10 100 1000
R@1 ‘ 87.6 884 894 906 904 ‘ 899 902 902 90.6 89.9
The best results in bold.
TABLE III

EFFECT OF DESCRIPTOR DIMENSIONALITY: JIST VS. SEQVLAD

Descriptor Dim. \ 64 128 256 512 4096
JIST(ours) 83.6 879 894 90.6 -
SeqVLAD + PCA | 834 856 86.7 877 892

The best result overall in bold, best per descriptor dimension
is underlined.

We summarize the findings from experiments as follows:

e JIST achieves excellent results with small-dimensional
descriptors, even when trained on fewer sequential data
(i.e. training on Melbourne);

® SeqVLAD achieves overall good results, but its recalls are
poor when trained on fewer data;

e Despite its strong results, JIST is extremely fast and uses
a simple model for inference;

e Extraction time depends mostly on the backbone, and
only slightly depend on the aggregation layer (e.g. CAT,
SeqGeM, FC);

® On all considered testing datasets, extraction is the bot-
tleneck, although for a bigger dataset matching would be
slower, as its speed linearly depends on dataset size;

® We empirically verified that matching time is linearly cor-
related to descriptors dimension for sequence descriptors
(i.e. pure retrieval) methods;

Computational cost: Besides being fast to train (less than 10
hours on a single GPU), JIST provides very efficient inference,
due to small descriptors and lightweight architecture. Specifi-
cally, we rely on a ResNet-18, which has only 11 M parameters,
leading to fast features extraction time.

Matching time is also small (8 times smaller than previous
SOTA), due to SeqGeM’s compact output: in fact the matching
time (i.e. time it takes to find the matching descriptors to the
query’s through a kNN) depends only on the descriptors’ dimen-
sion and the size of the database. Note that, as we scale to larger
datasets (with more sequences in the database), the bottleneck of
a VPR system at inference shifts from the extraction to matching,
making compact descriptors and fast matching an important
characteristic for large-scale deployment [15].

Ablation on the loss: In this paragraph we aim at understand-
ing how each component of the loss affects results, to justify
their use in training. In Table II we report results computed with
different weights for Ascq2seq and Ajm2im, with a ResNet-18 and
our proposed SeqGeM layer. We find that when any of the two
has a null effect on the back-propagated gradients, the results
are evidently lower, proving that both learning objectives are
beneficial to the task. Note that using As.425¢q = 0 means that
only the im2im loss is used (therefore SeqGeM is not trained, but
simply initialized to 3). The best results are shown with values
of Aseq2seq = 10.000 and A;p,2imm, = 100. Finally, we note that
the Lcq2seq has a stronger effect than the A;y,2im, as not using
the Lseq2s¢q leads to a 3% points in reduction with respect to the
best model. This effect proves the fact that while it is possible
to learn to extract salient features for localization using only
single images, a loss that instructs the model how to aggregate
temporal information is necessary.

Effect of descriptor dimensionality: Due to its importance
for seq2seq VPR, and for retrieval in general, we perform an
ablation on the dimensionality of descriptors. We find that JIST
allows trained models to perform astonishingly well even at
very low dimensions, reaching an impressive 87.9% with 128
dimensional descriptors, which is only 1.5% lower than previous
state of the art while being 192 times smaller. This practically
means that the 128D SeqGeM configuration requires only 512
bytes to store each sequence, allowing to store entire cities within
a single embedded device. More considerations on this topic of
real-world applicability are in Section I'V-C.
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Fig.5. Plot shows how different methods react to changes in the dimension of
test-time sequence length (i.e. number of frames). All methods are trained with
fixed sequence length of five.

TABLE IV
ROBUSTNESS TO THE INVERSION OF THE FRAMES

Method Backbone  Dim. Forw. Back. Diff
SeqSLAM* [20] VGG-16 4096 459 229 -50 %
Delta D.*[10] VGG-16 4096  43.0 11.7 73 %
HVPR [11] VGG-16 4096  51.0 28.5 -44 %
SeqMatchNet [27] VGG-16 4096  44.8 24.2 -46 %
GeM + CAT [8] ResNet-18 1280  76.8 67.8 -12 %
NetVLAD + CAT + PCA  ResNet-18 4096  83.7 79.9 -5 %
SeqNet [11] VGG-16 4096  50.1 42.0 -16 %
NetVLAD + FC ResNet-18 4096  68.5 65.1 -5 %
SeqVLAD + PCA ResNet-18 4096  85.5 852 04 %
SeqVLAD + PCA CCT384 4096  89.2 89.2 0.0 %
TimeSformer - 768 81.5 81.5 0.0 %
JIST (Ours) ResNet-18 512 90.6 90.6 0.0 %

The best (lowest) differences when inverting frames in bold.

Effect of sequence length: In Fig. 5 we investigate the effect
of changing the number of frames within sequences (sequence
length) at test time, without re-training the model, noting that
flexibility on processing sequences of arbitrary lengths (regard-
less of the length at training time) is a desirable property in
practical applications. Firstly, we note that only a small number
of methods can be applied to this scenario, i.e. those based on
CAT, SeqVLAD, SeqGeM and TimeSformer: others, like those
based on a fully connected layer, would need to be trained again
from scratch, as their number of parameters depends on the
sequence length.

Clearly, all methods benefit from longer sequences: with
more frames, descriptors become more informative, limiting
perceptual aliasing. Models trained with JIST outperform all
competitors, especially with very short sequences: this is ex-
pected behaviour, as the image loss allows to extract informative
features even from a single frame.

Effect of reversing frames: Robustness to frame ordering
is a desirable property in some realistic use-cases, because it
allows to reduce the number of sequences stored in the database.
Following [9], [11], [12] we assess each model’s robustness to re-
versing the frame ordering for queries sequences, while keeping
the database untouched, and report results in Table IV. SeqGeM
is inherently robust to frame-ordering, as well as SeqVLAD and
TimeSformer which processes the sequence in its entirety. On
the other hand, methods based on FC-layers, CAT or sequence
matching are the ones that suffer most in this scenario.

Ablation on aggregation layer: Given their importance in
aggregating features from multiple frames, in Table V we report
experiments performed with a number of pooling/aggregation
layers. This shows a number of desirable properties that are

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 9, NO. 2, FEBRUARY 2024

TABLE V
COMPARISON OF AGGREGATION LAYERS. RECALL@ 1 1S COMPUTED WITH
SAME TRAINING CONFIGURATION ON MSLS SPLITS

. Flexible w.r.t. Invariant to Output
Aggregation | Learnable length input seq.  frame order Dimensiponality R@l
Max Pooling N Y Y 512 89.4
Avg Pooling N Y Y 512 89.5

1D-conv Y N N 512 88.7
SeqVLAD Y Y Y 32768 89.7
SeqGeM Y Y Y 512 90.6

satisfied by SeqGem, as well as showing its superiority of results.
In particular, we note that the SeqGeM aggregator provides
the following characteristics: (i) learnable, (ii) flexible w.r.t.
length of input sequences, (iii) invariant to frame ordering,
(iv) lightweight, besides producing compact output and having
few parameters.

Note that the results from Table V are performed within the
JIST framework/pipeline, making these aggregations achieve
superior recalls w.r.t. most of the baselines from Table 1.

C. Considerations for Real-World Deployment

As the use of deep models for seq2seq VPR becomes
widespread, we investigate the feasibility of deploying such
models in the real world. We perform experiments on a Jet-
son Nano platform. Considering the scenario of a large city
like San Francisco, with 1600 kilometers of road, it would
require roughly 800 k sequences to map the whole city. Using
the previous state-of-the-art model, namely CCT384 [33] with
SeqVLAD [12], it needs ~ 36 GB (#sequences * descriptors
dimension * #bytes) of memory to store all the descriptors. More
compact representations (commonly compressed with PCA)
usually rely on 4096-D features [12], at the cost of a performance
penalty. With SeqGeM however, we are able to outperform pre-
vious state of the art with 512-D descriptors, which needs only
800k « 512 x 4B ~ 0.75 GB, and can be handled by a Jetson
Nano.

Given this setting, we analyzed the inference time on a Jetson
Nano: we found that extraction time for a sequence takes 276 ms
(i.e. with our ResNet-18; does not depend on the size of the
database). Matching takes 3.1 seconds with a vanilla KNN (on
the whole city of San Francisco). We note that previous works on
im2im VPR found that kNN can be sped up by up to 64 times with
negligible loss of recall [15] when using approximate/efficient
versions of it, like Inverted File Index with Product Quantiza-
tion [38], [39], leading to a potential processing speed of roughly
3 sequences per second (276 ms + (3100/64) ms = 324 ms),
whereas previous SOTA (with descriptors dimension 24576)
would process only 0.4 sequences per second. Even with PCA,
the throughput would still be limited to 1.4 sequences per second.

V. CONCLUSION

This work proposes a novel training algorithm that efficiently
exploits existing data sources to boost performance in sequence-
based VPR. We introduce a trainable temporal aggregation layer
designed to being flexible to input length and frame ordering,
all while guaranteeing compact descriptors. Through extensive
experimental evaluation we showcase the improvements that
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JIST achieves over previous SOTA, as well as robustness to
different conditions such as changes in frame ordering, sequence
length and different datasets. We empirically demonstrate that
our model is able to not only achieve better results, but also be
faster and lighter (in terms of RAM and GPU memory).

Limitations: Although sequence descriptors are a competitive
solution to obtain efficiently a coarse global localization estimate
even in very large environments, their use is intended when there
is the need to search in a large number of sequences (e.g., for loop
closure or to bootstrap the localization when lost). Furthermore,
we note that a limitation of the current JIST framework is that the
two losses require different format of datasets, where the im2im
branch is trained on large-scale single-image datasets whereas
the seq2seq branch requires continual sequences.

Future works: Possible directions for follow-up works may
explore different strategies for extracting knowledge from large
pre-trained models (e.g. distillation), generalizing our multi-task
framework to other tasks, or using more than two branches to
gather knowledge from other data sources.
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