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Bridging Human-Robot Co-Adaptation via
Biofeedback for Continuous Myoelectric Control

Xuhui Hu'"Y, Member, IEEE, Aiguo Song

Hanjie Deng

Abstract—This letter proposes a novel human-robot co-
adaptation framework for robust and accurate user intent recog-
nition, specifically in the context of automatic control in assistance
robots such as neural prosthetics and rehabilitation devices em-
powered by electrophysiological signals. Our goal is to incorporate
user adaptability early in the training phase to facilitate both
machine recognition and user adaptability, rather than relying
solely on brute-force machine learning methods. The proposed
framework is featured by applying biofeedback-based user adap-
tive behavior into model training, while the machine can adapt
to those changes through online learning. Specifically, this study
focuses on the recognition of two-degree-of-freedom simultane-
ous and continuous wrist movement intentions based on surface
electromyogram (sEMG) array signals, and the performance is
tested on twelve able-bodied subjects. The co-adaptive evaluation
experiment demonstrates the robust control of this method by
introducing SEMG electrode displacement as perturbations. Ex-
perimental results show that this method improves the completion
time of centre-out tasks by 13% compared to conventional methods
(Cohen’s d = 0.637), and debias 86% of the effect of electrode
shift perturbations. This study provides insights into the potential
for incorporating human adaptability into machine intelligence to
improve user intent recognition and automatic robot control.

Index Terms—Human-robot co-adaptation, myoelectric control,
EMBG, user intent recognition.

1. INTRODUCTION

ECODING user intent based on electro-physiological sig-
nals, then controlling assistance robots, such as neural
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prosthetics and rehabilitation devices, is an ideal solution for
intuitive control by disabled persons such as amputees [1]
stroke victims [2], and paralyzed individuals [3]. However, the
robustness of intent recognition based on electroencephalogram
(EEG) and surface electro-myogram (SEMG), has always been
a challenge for researchers due to the instability during signal
acquisition [4], [5], [6], the non-stationary randomness of the
signal itself [7], and differences in physiological characteristics
among individuals [8], [9], all of which may cause feature drift,
making it difficult for users to control robots with stability [10],
[11], [12].

In a recent study, He et al. [13] found that user adaptation
can effectively alleviate SEMG feature drift. This discovery has
prompted researchers to reconsider that rather than relying solely
on brute-force machine calculations to approach the limits of
user intent recognition, could we instead adopt a more user-
centered strategy by helping users adapt to machines? For this
reason, Barradas et al. [14] proposed the EMG space similarity
feedback to improve the consistency of users’ muscle synergy
features. Fang et al. [15] introduced a clustering feedback strat-
egy that provides users with real-time bio-feedback by visualiz-
ing the online SEMG signal input and the centroids of the training
samples. The results show that the final online recognition
accuracy exceeds the prior offline accuracy evaluated during
model calibration.

The routine training-and-testing protocol, which is well-
established in various machine learning based applications,
also dominates in current human-robot control studies [16].
However, there are certain limitations in effectively integrating
human adaptability with machine intelligence within such a
protocol. The challenges primarily stem from the methodologies
employed for constructing the training set and optimizing the
intent decoding model. To clarify this statement, consider three
common training set acquisition methods in myoelectric appli-
cations, i.e., visual cue training [17], mirror training [18] and
unsupervised pre-calibration training [19]. These methods pose
difficulties for users to confirm whether their intended gestures
align with the labeled gestures due to the lack of real-time feed-
back during data acquisition. This issue becomes especially pro-
nounced when attempting to label continuous and simultaneous
gestures. As a compromise, most training methods are limited
to label the gestures of single-degree-of-freedom [17], [19].

Users are required to passively generate movements according
to instructions, but cannot receive the feedback from the ma-
chine, thereby this phase is usually considered as an open-loop
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Fig. 1.

calibration, where without the feedback the user’s adaptability
is essentially excluded from the training set. In the testing phase,
while human adaptability can be fully engaged by multiple
biofeedback methods [14], [15], [20], it only makes people more
adaptable to the trained model, the myoelectric control model
itself does not integrate adaptability. As a result, machine intelli-
gence and user adaptability are isolated in the training and testing
phases respectively. Recently, Fang et al. [21] proposed an adap-
tive accelerated learning algorithm to aggressively compress
and update the intent decoding model in response to different
inputs. Moin et al. [22] used hyper-dimensional computing to
implement in-sensor adaptive learning and real-time inference
for hand gesture classification. These work aims to investigate
how to make the machine adapts to the user.

A more effective optimization process for human-machine
systems would be a bidirectional spiral of machine intelligence
and human adaptability. Such co-adaptive methodologies have
been increasingly used in myoelectric control, with researchers
proposing both supervised and unsupervised approaches. In the
supervised approach proposed by Hahne et al. [17], the machine
detects errors during intent recognition and updates the model
using recalibration data to incorporate user adaptability into
model training. Yeung et al. [23] proposed an unsupervised
approach based on non-negative matrix factorization (NMF)
that allows for seamless updates of real-time myoelectric con-
trol. Nevertheless, these studies still use traditional open-loop
calibration methods before incorporating user adaptability into
model fitness. Therefore, one of the goals of this letter is to
investigate whether human adaptability can be involved into the
training process beforehand to facilitate both machine recogni-
tion and user adaptability.

In this letter, we present a human-robot co-adaptation frame-
work featured by applying biofeedback-based user adaptive
behavior into model training, while the machine can adapt to
those changes online. Through incorporating user intent related
biofeedback into the training phase, the user adaptability is in-
volved earlier for model fitness. we take the myoelectric control
interface as an entry point and aim to recognize two-degree-of-
freedom (2-DOF) simultaneous and continuous motion intent
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Framework of (a) the training-testing protocol versus (b) the human-robot co-adaptation protocol.

of the wrist based on SEMG array signals. In the myoelectric
control experiment, we test the performance on twelve able-
bodied subjects. In order to clearly assess the contribution
of human adaptation and machine adaptation in this system,
we specifically design a co-adaptive evaluation experiment to
demonstrate the control robustness against disturbance quanti-
ties, which is simulated by introducing electrode shift of SEMG
array sensors. Finally, we compare the results with the conven-
tional training methods to highlight the potential implications as
well as the inherent limitations associated with the study.

II. METHODS
A. Human-Robot Co-Adaptation Training Framework

To begin with, the comparison between the traditional
training-and-testing protocol and the proposed co-adaptation
protocol is shown in Fig. 1, where users and machines are
presented as two objects with adjustable parameters in the
control loop and denoted by red and blue blocks, respectively. In
Fig. 1(a), users need to perform actions consistent with the preset
gesture instructions during the training phase to form a training
set. However, this process is considered as open-loop because
users cannot obtain feedback information to actively adjust
possible myoelectric feature drifts. After collecting multiple
rounds of the data, this training set will be used to complete
the fitting between input features and user intent labels. Then,
the model will go through testing phase where the user inputs
SEMG signals into the trained model and outputs the control
signals. Although the user can utilize model output as feedback,
the fixed model parameters limit the machine’s adaptability to
the user. As a result, the adaptability of the machine and the user
is separated in the training and testing phases, both of them have
only taken one step towards the optimal level without forming
co-adaptation.

This letter introduces a novel co-adaptation paradigm based
on closed-loop training data collection and online decoding
model updates, as shown in Fig. 1(b). Generally, it involves the
following iterative steps:
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1) Interactive Data Collection: New data is collected from
both the user and the machine through an interactive
interface, where the user can perform myoelectric control
and receiving biofeedback simultaneously. This interface
facilitates the exchange of information between the two
entities, forming a bidirectional closed loop.

2) Model Training and Updating: The collected data is then
used to update the training set, which is utilized to fit a new
intent recognition model. This updated model enhances
the system’s ability to accurately interpret and understand
user inputs.

3) Control Strategy Update: The newly fitted model is em-
ployed to update the control strategy of the interface.
This ensures that the interface becomes more adept at
responding to user inputs by incorporating the insights
gained from the updated model.

4) Tterative Process: The system then enters a cyclical pro-
cess, returning to step 1) where new data is collected based
on the refined control strategy. The iterative nature of this
process allows for continuous adaptation and improve-
ment of the system’s performance over time.

Unlike visual-cue training, this method allows the user to
actively interact with the machine during the data collection
phase, thus the user’s active adaptability is stored in the training
set. In summary, this paradigm fuses human adaptability with
myoelectric control by introducing bio-feedback in an interac-
tive interface, and through iteratively updating the intent recog-
nition model, the machine can also adapt to users. Eventually,
this framework contributes to a bidirectional spiral of machine
intelligence and human adaptability.

B. Continuous Myoelectric Control Interface

In this subsection, we will expound on the co-adaptation
framework for 2-DOF continuous myoelectric control of the
wrist. First, a two-dimensional centre-out cursor task under con-
tinuous myoelectric control is designed, as shown in Fig. 2(a).
It is through such an interactive task that enables closed-loop
SEMG acquisition, where the SEMG array sensors set around the
user’s forearm to implement the myoelectric control interface (as
shown in Fig. 2(b)). In this task, the user’s goal is to control a blue
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(a) Interface of the two-dimensional centre-out task. (b) The experimental setup for the myoelectric control interface.

cursor in the center of the screen to hit a red target that appears
in one of 16 evenly distributed positions around the cursor. Each
round of the centre-out cursor task consists of 16 trials, with
the target appearing once in each direction in a pseudo-random
order. The user needs to complete each trial as quickly as
possible by conducting the wrist flexion/extension (horizontally
movement of the cursor) or wrist adduction/abduction (vertically
movement of the cursor). Each trial is set to complete within five
seconds to avoid unnecessary time waste.

The Multi-Layer Perceptron (MLP) is a classical neural
network architecture used to solve classification or regression
problems. Using this model ensures that any improvements
come primarily from the co-adaptation method and not from the
influence of the neural network itself. Once the MLP performs
well, there is more confidence in applying more complex neural
networks. Here, the MLP is used to control the velocity of the
cursor movement by taking eight-channel SEMG signals as input
and outputting two continuous predictions for horizontal and
vertical motion speed. The hidden layer of MPL contains 50
neurons with a Rectified Linear Units (ReLUs) as activation
functions. Finally, ADAM optimizer with a learning rate of 0.001
was used for model fitting. To ensure fit quality, the amplitude
of both input features and motion intent labels were normalized
to the range of [0,1].

Correct data labeling of EMG feature is crucial for myoelec-
tric control. Meanwhile, the pre-calibration (e.g. as adopted by
Jiang [19] or Hahne [17]) during the training phase may be
insufficient to adapt to potential changes during online control.
Therefore, the idea solution to this problem is to accurately label
the user’s intent online. Inspired by the idea of “supervised
recalibration” based on the Brain-Machine Interface study by
Gilja et al. [24], we use the knowledge of the target and cursor
in the interactive interface to infer the user intent.

Specifically, Gilja et al. [24] introduce a method called “oracle
intent”, which assumes that users always seek to move straight
to the target from wherever the cursor is. Therefore, the ground-
truth user intent (i.e. oracle intent) was formed by rotating the
cursor decoded online (denoted as “Prediction” in Fig. 2(a)),
so that the velocity direction of the cursor is pointed straight at
the target (denoted as “Oracle” in Fig. 2(a)) [7]. As is shown in
(1), haty,rq; 1s a unit vector denoting the direction of the oracle
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intent, Tiargre aNd Teyrsor denotes target position and cursor
position in the coordinate system of the interface. However, the
previous studies only defined the cursor’s motion as a unit vector,
i.e. the cursor always moves at a uniform speed, so we further
optimized the above method to modulate cursor velocity as the
linear function of the SEMG array activation signals, which have
been adopted in our previous work [9], [25]. As is shown in (2),
we characterize the scaled value of the cursor speed in terms
of the algebraic sum of the root mean square (RMS) of the
sEMG array signals. Given bins of SEMG data and simultaneous
oracle intent, the parameters of the MLP could be updated in a
supervised fashion.

A Ltarget — Lcursor
Joral = 37— ()
||xtarget — Zcursor H
8
Yoral = Z RMS? : goral (2)

i=1

In summary, we use “oracle intent” to annotate user move-
ment (including motion direction and speed) in real-time during
centre-out tasks. Therefore, the collected data includes adaptive
features of users to cope with unintended cursor dysfunction,
realizing a closed-loop data collection for the training set. After
each round of data collection, the MLP model learns from the
training set and use the updated parameters for the next round
of myoelectric control. As a result, both machine adaptation and
user adaptation are utilized and mutually optimized towards an
optimal level.

C. Experimental Process Design

Twelve able-bodied participants (26A+3 years old) were re-
cruited to perform an online myoelectric control experiment,
each participant read and signed an informed consent form
before proceeding with the experiments. The experimental pro-
tocol was approved by the Ethics Committee of Jiangsu Province
Hospital (2020-SR-362). All experiments were conducted ac-
cording to the ethical guidelines for medical research involving
human participants (according to the Declaration of Helsinki).
The experiment consists of two parts: Firstly, in order to evaluate
the proposed method in terms of human-machine co-adaptation,
including the impact on perturbations and on the user’s learning
effect, we referred to Couraud et al. [26] and designed a co-
adaptation evaluation experiment. Then, we further designed a
controlled experiment to compare the differences between the
present approach and the traditional training-testing approach.
Throughout the experiments, MYO Armband (Thalmic Lab)
is adopted for SEMG array signal acquisition, with root mean
square value (RMS) used as the input feature of the MLP model.
Participants were seated calmly in a chair with their upper arms
relaxed and their forearms at a 90-degree angle with support at
the wrist.

All the participants perform the co-adaptation evaluation
experiment at first, which consists of three phases, namely
“Baseline”, “Co-adaptation” and “Post-effect”, as shown in the
Fig. 3, where the user is required to use co-adaptive method to
complete the following three sessions in turn:
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Fig. 3. Sequence of co-adaptation evaluation experiment.

1) “Baseline” phase: the user starts the interaction task under
initial experimental conditions, where the initial parame-
ters of the model are randomly given. The user updates the
interaction experiment through three iterations (denoted
as BC-1, BC-2 and BC-3) to form a baseline myoelectric
control model. The parameters of the fixed model were
then used as the baseline model and the performance
of the baseline was evaluated through three rounds of
experiments (denoted as BE-1, BE-2 and BE-3).

2) “Co-adaptation” phase: We refer to Yeung et al. [23]
by introducing an electrode offset perturbation in order
to test the adaptability to model changes. In this phase,
the MYO armband is rotated transversally such that the
sensor pod was shifted closer to the medial epicondyle
by the distance of one pod, then the subject is asked to
complete three iterations of the centre-out tasks based on
the baseline model. In the first round, the machine has
not yet been adapted to the user’s movements (as shown
in Fig. 1(b), “Round 17), so the solely user adaptability
can be evaluated. In the next two rounds, the machine
learns from the accumulated user adaptation data, allowing
for evaluating the co-adaptability between the user and
machine. If the model converges as the number of training
rounds increases, it can be concluded that the model is
able to adapt to the perturbation.

3) “Post-effect” phase: the perturbation is removed and
co-adaptation is turned off. This phase is divided into
six rounds, with the first three rounds using a fixed
“Co-adaptation model” learned in the previous “Co-
adaptation” phase to assess whether this model not only
adapts to the perturbation, but also maintains good control
robustness after the perturbation is removed. In the last
three rounds, a fixed “Baseline model” trained in the
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(a) Learning curve of the co-adaptation evaluation experiment. (Tips: the learning phase is marked with orange areas and the non-learning phase is marked

with green areas). (b) Boxplot of the task completion time on each experimental group.

“Baseline” phase (the same model used in BE-1 to BE-3)
is used to assess whether the user still performs as well as
it did before after a number of co-adaptation trials, and if
not, it would indicate that the user had been molded to be
more attuned to the “co-adaptation model”.

Secondly, we set up a control group using the traditional
training-and-testing framework to make a fair comparison with
co-adaptation method on the same interaction task. All the
subjects participated in the experiment without muscle fatigue.
We only compare them in the baseline phase because assessing
the impact of perturbations on traditional models may not be
meaningful, as the model performance is usually sensitive to
perturbations. In the control group, the myoelectric control
model was trained based on three rounds of open -loop data
acquisition, then the model is evaluated for three rounds of
center-out experiments. The training method for this control
group is based on our previous research [9], [25], which is
designed to match SEMG signals with continuous movement
intent of users, and then applied a training-testing framework
for model fitting.

D. Evaluation Metrics and Statistic Analysis

Task completion time and path tracking error are effective
metrics for evaluating the interaction performance. In this ex-
periment, we use these two metrics to comprehensively evaluate
the participants’ performance. The path tracking error is derived
by calculating the root mean square error (RMSE) between the
shortest path from the initial cursor position to the target position
and the actual cursor path.

To compare the differences between experimental groups,
we perform t-test and one-way analysis of variance (ANOVA)
with alpha equals to 0.01. To determine if user adaptation
was significantly expressed, we perform a one-sample t-test to
assess the relationship between task completion time and task
sequences. If the slope of the linear regression curve (which
represents the change in completion time as task sequence
increases) is significantly different from zero, indicating that
user adaptation is being expressed. In addition, Cohen’s d is used
to quantify the effect size of the difference between two groups.

III. RESULTS
A. Co-Adaptation Evaluation Experiment

Firstly, we illustrate the learning curve of the co-adaptation
evaluation experiment (as is shown in Fig. 4(a)), it can be found
that:

In the baseline phase, after three rounds of co-adaptive con-
trol, the task completion time for the first update compared
to the last update was significantly shorter (BC-2 vs. BE-1,
P<0.001), showing that the model was converging. There was
no significant difference between the completion times of BC-3
and BE-1 (P=0.1140), indicating that the model had completed
convergence after two rounds of data collection. In BC-2, the
learning curve slope fitted by linear regression is significantly
non-zero (Slop=-0.0438, F(1,15)=9.633, P=0.0073), suggest-
ing that users are adapting to the interface when the decoding
model has not been changed.

In the co-adaptation phase, it can be found that the influence
of electrode shift is significant (BE-3 vs. CA-1, P<0.001). As
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Fig. 5. (a) Box plot of the mean completion time for the experimental group

and control group. (b) The cursor tracking path error for 16 targets in the polar
coordinate system. (Tips: CA represents co-adaptive method, TT represents
training-and-testing method).

CA-1 does not incorporate machine adaptation, it can be found
that the users can barely improve the control effect through their
own adaptation. However, the task performance improved in the
next round, and the final performance returns to the status that
without perturbation (BE-3 vs. PI-3, P=0.0321), debiasing 86%
of the effect of electrode shift perturbations.

In the post-effect phase, the perturbations were removed.
However, the completion time for the first three rounds (PI-
1 PI-3) showed no significant difference (F(2,573)=0.3087,
P=0.7625), as well as being compared to the case where per-
turbations were present (CA-3). This suggests that the model
did not completely deviate from the initial baseline model in
adapting to the perturbations, but rather generalized so that the
model is compatible with both the presence and absence of
perturbations.

B. Co-Adaptation Versus Training-and-Testing

Section III-A verifies the reliable convergence of the co-
adaptation method and tests the model robustness in the presence
of perturbations, this subsection compares the proposed method
with the traditional Training-and-Testing method. In Fig. 5(a),
it shows the box plot of the mean completion time for the
experimental group (CA) and control group (TT). The statistical
results show that there is a significant difference between CA and
TT (P<0.001), with CA being 13% faster than TT on average
task completion time (CA: 1.51s; TT: 1.73 s, Cohen’s d=0.637).

In addition, Fig. 5(b) depicts a visualization of cursor tracking
path error for 16 targets in a polar coordinate system. The
polar angle is used to represent the direction of the target in
the interaction interface (Fig. 2(a)), and the radius of each data
point represents the tracking path error of that target. This type
of visualization can be useful for identifying any patterns or
trends in the tracking errors across different targets, as well as
for comparing the magnitude of errors between different targets
on the interface. Therefore, the closer the data points are to the
origin, indicating the smaller the path error for that target. The
dashed circle in this figure indicates the average path error of
the experimental group or control group. The results show that
the average path error of CA is smaller than that of TT, and the
path error of CA is more balanced in all directions.
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The reason for the difference in performance probably stems
mainly from the data acquisition process: the control group also
performed three iterations of data acquisition, but the difference
was that the calibration phase only performed open-loop data
acquisition for the four directions along the coordinate axes. In
contrast, the three rounds of data collection in the experimental
group were closed-loop, with the training set containing data
in all directions, which was more informative, and each round
included information about the user’s adaptation, so the results
show that the user’s adaptation was crucial to the closed-loop
data collection of the training data.

C. Trajectory Efficiency

Fig. 6 illustrates the trajectory of the cursor within the inter-
active interface during each learning phase. The first row shows
the co-adaptation process in the baseline stage: in BC-1, the
user has no control over the cursor’s move to the specified target
position as the weights of the intent decoding model are initial-
ized randomly, nevertheless, the user needs to keep the motion
intention pointing to the target for helping the machine to acquire
the correct user intent; the changes from BC-2 to BE-1 show
the process of the machine gradually adjusting the decoding
model and improving the myoelectric control performance. The
second row of the diagram shows the human-machine learning
process during the co-adaptation phase. CA-1 shows the cursor
trajectory based on the baseline model (the same model as BE-1)
when the electrode shift perturbation is involved, and it can be
seen that on the one hand the baseline model is incapable of
accurately mapping the user’s intention, so that most of the
cursor misses the target, and only in a few targets the motion
deviations can be compensated by human adaptation, indicating
the importance of model updating to accommodate possible
perturbations. However, in CA-2, the motion bias has been
effectively corrected. CA-3 completes another round of learning
with perturbations, while PI-1 removes the perturbations, but the
model is based on experimental data from CA-1 to CA-3, and
the results show that it still completes the target in all directions
successfully, suggesting that the model is compatible with both
perturbations and non-perturbations.

IV. DISCUSSIONS AND CONCLUSION

In this letter, we present a human-machine co-adaptive ap-
proach, which is characterized not only by incremental learn-
ing that allows the machine to continuously update its control
model, but also by bidirectional co-adaptive learning between
the human and the machine that takes advantage of the flexible
adaptability of the human.

Decoding user intent based on electrophysiological signals,
thereby controlling assistance robots, typically relies on data-
driven methods. These methods involve recording pairs of input
feature signals and corresponding user intent labels during the
data acquisition phase, followed by fitting a machine learning
model in the model training phase. However, the success of
machine learning prediction relies heavily on the repetitiveness
of the training set data belonging to the same class and the
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Fig. 6.

significant differences that from the non-related classes. There-
fore, the labeling quality of the training set data directly affects
the recognition accuracy. As mentioned in Section II-A, the
traditional open-loop data collection paradigm has difficulties
in confirming whether the underlying motion intentions of the
SEMG are consistent with the predefined commands. In contrast,
the key features of the proposed method lie in the following
aspects: 1) realizing a closed-loop data acquisition by incor-
porating user adaptation into the training set to improve the
quality of training set; and 2) supporting real-time updating
which enables the model to withstand possible disturbances and
improve the control robustness.

In Section III-A, we dedicated to demonstrate the bidirectional
human-machine co-adaptative procedure and the advantages
over the conventional training-and-testing protocol. In the co-
adaptation evaluation experiments, we visualize the learning
procedure and reveal the two key questions for the human-
machine co-adaptive system:

1) What should people do to promote co-adaptation? This
letter demonstrates that the user needs to provide high-
quality training data for model fitting in order to make
the machine better understand the user’s intents. Through
closed-loop collection, users can actively adapt their own
active motor intentions to the pre-defined labels, thereby
improving the quality of the training set data.

2) What should machines do to promote co-adaptation? This
letter demonstrates that the machine needs to constantly
update and converge towards stability in order to adapt to
changes that may be caused by the user’s own changes or
external disturbances.

Trajectory of the cursor within the interactive interface by (a) human-machine co-adaptation method versus (b) training-and-testing method.

The post- effect experimental results show that after the model
has adapted to the electrode shift, the control accuracy in the
unperturbed state is slightly lower than that in the baseline
phase. This shortcomings may be due to the fact that after
the “co-adaptation” phase, the model training data contains
both perturbed and unperturbed cases, and the existing MLP
framework is still difficult to achieve a better generalization
effect, which makes the co-adaptation model slightly worse than
that of the baseline model after the perturbation is removed.

Particularly, the experimental results also show evidence of
users adapting to the machine. For instance, the model is fixed in
BC-2, but as the trial increases, the completion time appears to
decrease (Slop=-0.0438, F(1,15)=9.633, P= 0.0073), suggest-
ing that the user is adapting to the current model. Also in PII-1 3,
when switching from the co-adaptation model to the baseline
model, the user’s task completion time also slowly decreases,
indicating that the user is gradually adapting to the process of
switching from one model to another.

It is worth noting that we will further refine the perturbation
evaluation experiments in the future. Specifically, the types
of perturbations during human-machine interface can be
classified into two categories: one is perturbations from the
machine, such as electrode offset (which has been analyzed
in this letter); and the other is perturbations from the user,
such as EMG feature shifts due to changes in arm posture
or load [10, 12, 22]. Therefore, comprehensively analyzing
both aspects is of grate significance. In this letter, we mainly
concentrate on showing the human-machine co-adaptation
process, while in the future we will add detailed analyses on
different types of perturbations. Moreover, we will further
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reveal whether users adapt their behaviour to the machine, if
so, what kind of adaptations would users make. The solution of
these questions will help to improve the fundamental research
on human-machine co-adaptive mechanisms.
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