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Abstract—For a multi-robot team that collaboratively explores
an unknown environment, it is of vital importance that the collected
information is efficiently shared among robots in order to support
exploration and navigation tasks. Practical constraints of wireless
channels, such as limited bandwidth, urge robots to carefully select
information to be transmitted. In this letter, we consider the case
where environmental information is modeled using a 3D Scene
Graph, a hierarchical map representation that describes both geo-
metric and semantic aspects of the environment. Then, we leverage
graph-theoretic tools, namely graph spanners, to design greedy
algorithms that efficiently compress 3D Scene Graphs with the
aim of enabling communication between robots under bandwidth
constraints. Our compression algorithms are navigation-oriented
in that they are designed to approximately preserve shortest paths
between locations of interest while meeting a user-specified com-
munication budget constraint. The effectiveness of the proposed
algorithms is demonstrated in robot navigation experiments in a
realistic simulator.

Index Terms—Communication constraints, semantic scene
understanding, graph spanner, multi-robot SLAM, multi-robot
systems.

I. INTRODUCTION

IN THE near future, robot teams will perform cooperative
tasks in a multitude of application scenarios, ranging from

exploration of subterranean environments, to search-and-rescue
missions in hazardous settings, to human assistance in houses,
airports, factory floors, and malls, to mention a few.

A key requirement for cooperative exploration and navigation
in an initially unknown environment is to build a map model
of the environment as the robots explore it. Recent work has
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Fig. 1. 3D Scene Graph of an environment (left) and compressed version
produced by D-Lite (right). The purple circles mark the terminal nodes: D-
Lite approximately preserves shortest-path distances between those locations of
interest.

proposed 3D Scene Graphs as an expressive hierarchical model
of complex environments [1], [2], [3], [4], [5], [6]: a 3D Scene
Graph organizes spatial and semantic information, including
objects, structures (e.g., walls), places (i.e., free-space locations
the robot can reach), rooms, and buildings into a graph with
multiple layers corresponding to different levels of abstraction.
3D Scene Graphs provide a user-friendly model of the scene that
can support the execution of high-level instructions by a human.
Also, they capture traversability between places, rooms, and
buildings that can be used for path planning.

To scale up from single- to multi-robot systems and to longer
missions and larger environments, a key challenge is to share
the map information among the robots to support cooperation.
For instance, the robots may exchange partial maps such that a
robot can navigate within a portion of the environment mapped
by another robot. However, the potentially high volume of data to
be transferred over a shared wireless channel easily saturates the
available bandwidth, degrading team performance. This holds
true especially when the wireless channel is also used to transmit
other information in the field —such as images or place recog-
nition information for localization and map reconstruction—
which further limits the bandwidth available for transmitting
map information in a timely manner [7], [8], [9], [10]. The
challenge of information sharing is particularly relevant when
the map is modeled as a 3D Scene Graph, since these are rich and
potentially large models if all nodes and edges are retained. On
the other hand, 3D Scene Graphs also provide opportunities for
compression: for instance, the robots may exchange information
about rooms in the environment rather than sharing fine-grained
traversability information encoded by the place layer; similarly,
for a large-scale scene, the robot may just specify a sequence
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of buildings to be traversed, abstracting away geometric in-
formation at lower levels. This is similar to what humans do:
when providing instructions to a person about how to reach a
location in a building, we would specify a sequence of rooms
and landmarks (e.g., objects or structures) rather than a detailed
metric map or a precise path.

Therefore, the question we address in this letter is: how can we
compress a 3D Scene Graph to retain relevant information the
robots can use for navigation while meeting a communication
budget constraint, expressed as the maximum size of the map the
robots can transmit? Besides multi-robot communication, task-
driven map compression can play a role in long-term autonomy
under resource constraints, where the robots might suffer mem-
ory limitations and retain only key portions of a large map. Such
a compression is also useful when it is desirable for the robots
to share essential information under privacy considerations by
sending only task-relevant data [11].

Related work: Graph compression is an active area of research
in mathematics, computer science, and telecommunications,
where it finds applications to, e.g., vehicle and packet
routing [12], [13], [14], and 3D point cloud compression [15],
[16], [17].

A prominent body of works simplifies a graph by carefully
pruning it to retain relevant information. For example, refer-
ences [13], [18] find efficient representations of huge web and
communication networks by heuristically selecting a few key
elements, while the work [19] prunes graphs while preserving
connectivity among nodes. Within the discrete mathematics
literature, graph compression has been studied with focus on
ensuring low distortion (or stretch) of inter-node distances.
For example, spanning trees and Steiner trees are the smallest
subgraphs maintaining connectivity in undirected graphs [20],
[21]. Graph spanners remove a subset of edges while allowing
for a user-defined maximum distortion of shortest paths [22],
[23], [24]. A special case are distance preservers [25] that prune
graphs but keep unaltered the distances for specified node pairs.
Emulators are tools that replace a large number of edges with a
few strategic ones to ensure small stretch of distances [26].

Related work in robotics focuses on graph compression to
speed up path planning and decision-making. Silver et al. [27]
use Graph Neural Networks to detect key nodes by learning
heuristic importance scores. Agia et al. [28] propose an al-
gorithm that exploits the 3D Scene Graph hierarchy to prune
nodes and edges not relevant to the robotic task. Targeting a
related application domain, Tian et al. [29] study computation
and communication efficiency of multi-robot loop closure, pro-
viding a strategy to share a limited number of visual features
in multi-robot SLAM, while Denniston et al. [10] introduce a
graph-based method to prune the multi-robot loop closures in
order to save on processing time. Larsson et al. [30], [31], [32]
propose algorithms to build hierarchical abstractions of tree-
structured representations, for instance enabling fast planning
on occupancy grid maps at progressively increasing resolution.

Novel contribution: In this letter, we tackle the challenging
problem of efficiently sharing 3D Scene Graphs for navigation
under hard communication constraints. We propose two greedy
algorithms, BUD-Lite and TOD-Lite (collectively referred to as
D-Lite), that leverage graph spanners to prune nodes and edges
from a 3D Scene Graph while minimizing the distortion of the
shortest paths between locations of interest (terminal nodes,
see Fig. 1). Compared to the literature, our algorithms (i) are
designed to retain navigation-relevant information, (ii) leverage

the hierarchical structure of the 3D Scene Graph for compres-
sion, and (iii) enforce a user-specified size of the compressed
3D Scene Graph. Our algorithms are computationally efficient
and apply to general 3D Scene Graphs. In contrast, related
works are either restricted to trees or involve mixed-integer
programming [30], [31]. Other pruning strategies do not directly
target path planning tasks [28]. Finally, most works tailored
to real-time compression do not allow for hard communication
constraints [28], [30]. The effectiveness of our algorithms is val-
idated through realistic simulated experiments. We show that the
proposed method meets hard communication constraints with-
out excessively impacting navigation performance. For example,
navigation time on the compressed graph increases by at most
8% after compressing the 3D Scene Graph to 1.6% of its size.

II. NAVIGATION-ORIENTED SCENE GRAPH COMPRESSION

Motivating scenario: We consider a multi-robot team explor-
ing an unknown environment. Each robot navigates to gather
information and builds a 3D Scene Graph (DSG) G = (VG , EG)
that describes the portion of the environment explored so far [1],
[2], [3], [4]. As robots are scattered across a possibly large area,
they exchange partial maps to collaboratively gather information
about the environment. In particular, a robot r1 may query
another robot r2 to get information about the area explored by r2.

Navigation-oriented query: We assume that the querying
robot r1 needs to reach one or more target locations T ⊂ VG
within the DSG G = (VG , EG) built by robot r2. Such locations,
for instance, may be objects or points of interest (e.g., the
building exits). Hence, r2 shall transmit its local map (i.e., nodes
and edges of its DSG) such that r1 can reach locations in T from
a set S ⊂ VG \ T of source locations. In practice, the latter may
represent physical access points (e.g., doors) at the boundary of
the area explored by r2 that are near r1, and may be estimated
by r2 based on the current location of r1. In the following, we
generically refer to sources and targets as terminals (or terminal
nodes), which for the sake of this work are assumed to be place
nodes in the DSG.

Communication constraints: Data sharing among robots oc-
curs over a common wireless channel. Because of resource
constraints of wireless communication, such as limited band-
width, robot r2 cannot transmit its entire DSG to robot r1.
Specifically, we assume that robots can send only a small portion
of their DSG each time they receive a share request. Hence,
queried robot r2 needs to compress its DSG G into a subgraph
G′ = (VG′ , EG′), with VG′ ⊆ V and EG′ ⊆ E, that contains at most
B nodes (where the budget B reflects the available bandwidth)
in order to comply with communication constraints, while at the
same time retaining information useful for robot r1 to navigate
between the terminal nodes.

Pruning 3D Scene Graphs: Assuming navigation-oriented
queries, the relevant information reduces to nodes and edges
describing efficient paths robot r1 can use to move across the
map. Specifically, the collection of all shortest paths between a
source s ∈ S and target t ∈ T is the least information ensuring
that navigation by r1 takes the shortest possible time, i.e., the
time a robot with full knowledge of the map would take.

However, transmitting all nodes in the shortest paths may
violate the communication constraint (see Fig. 6): this can hap-
pen with many terminals or if shortest paths have little overlap.
Hence, heavier pruning of the DSG might be needed to make
communication feasible. This means that information useful
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Fig. 2. Distortion of shortest path from s to t (thick red).

for path planning will be partially unavailable to the querying
robot’s planner. In other words, because the DSG G cannot be
fully sent, the distance (length of a shortest path) between a pair
of terminals in the transmitted graph G′ will be larger than the
distance between those same terminals in the original DSG. A
schematic example is provided in Fig. 2, where the length of the
shortest path between nodes s and t increases from 3 to 5 after
node and edge removal. For example, a robot may prune place
nodes within a room, or share only the room node as a coarse
representation of places. This requires less communication, but
the querying robot r1, which receives a coarser map, will be
forced to, e.g., take a longer detour across a room, instead of
traversing the original shortest path along a set of place nodes.
Mathematically, this means dG′(s, t) ≥ dG(s, t) for any s ∈ S
and for any t ∈ T , where dG(u, v) is the distance from node u
to node v in G.

Problem formulation: For the querying robot r1 to navigate
efficiently, the distance dG′(s, t) between s ∈ S and t ∈ T in the
transmitted graph G′ should not be much larger than the distance
in the original graph G. Hence, the queried robot r2 shall prune
G so as to minimize the distortion, or stretch, between shortest
paths in the original and compressed graphs, while meeting the
communication budget B. This can be cast into the following
optimization problem:

min
G′⊆G

β (1a)

s.t. dG′(s, t)≤ dG(s, t) + βW G
max(s, t) ∀(s, t) ∈ P (1b)

|VG′ |≤ B, (1c)

where W G
max(u, v) is the maximum edge weight on a shortest

path from u to v in G and P ⊆ S × T is the set of considered
source-target pairs. Constraint (1c) ensures that the amount of
transmitted information (number of nodes) meets the commu-
nication constraint, while constraint (1b) and cost (1a) encode
minimization of the maximum distortion incurred by the shortest
paths. The coefficient W G

max(s, t) in (1b) makes the distortion
computation meaningful for weighted graphs.

Problem (1) can be solved by means of integer linear pro-
gramming (ILP), see the technical report [33, Appendix A].
However, the runtime complexity of ILP solvers is subject to
combinatorial explosion, making this approach impractical for
online operation. Hence, we propose greedy algorithms that
require lighter-weight computation, based on graph spanners.
Background about these tools is given in [33, Section III].

III. 3D SCENE GRAPH COMPRESSION ALGORITHMS

We propose D-Lite, a compression method for DSGs to meet
communication constraints with attention to navigation effi-
ciency. We design two versions of D-Lite, which are initialized

with a spanner of the full DSG (Section III-B) and tackle the
compression problem from opposite perspectives.

The first algorithm, BUD-Lite (Section III-C), performs pro-
gressive bottom-up compression of the spanner computed dur-
ing initialization, exploiting the DSG abstraction hierarchy. In
contrast, the second algorithm, TOD-Lite (Section III-D), works
top-down expanding nodes with the spanner as a target.

A. Intuition and the Role of the 3D Scene Graph Hierarchy

Assume we want to design a greedy procedure that removes
nodes and edges in G while limiting the incurred path stretch.
To this aim, we crucially exploit the hierarchical structure of
the DSG. We refer to a node m that is adjacent to node n
in the upper layer as a child of n to stress the hierarchical
semantics of the DSG, and symmetrically call node n the parent
of m. The children of n in graph G are denoted by CG(n).
Also, the set EG(n) gathers all edges incident to n in G. The
DSG hierarchy allows us to see a node as a “compressed”, or
“abstract”, representation of its children. Hence, transmitting
n rather than CG(n) saves communication and conveys partial
spatial information about nodes in CG(n). For instance, let
CG(n) represent places inside a room and n the associated room
node. A robot that needs to reach a location t ∈ CG(n) (e.g.,
the door) in that room with no bandwidth constraints can be
provided with a sequence of places to reach t. Alternatively,
the robot can be given the room node n and it needs to explore
the room to find the target t: this extra exploration takes longer,
degrading navigation performance, but allows for compression
to meet communication constraints. The navigation time for
local exploration is encoded by the weights of edges connecting
non-finest resolution nodes or nodes at different resolutions
(layers). For our experiments, we derive such weights from the
full DSG as detailed in [33, Appendix B]. However, we argue
that a robot can estimate all weights on-the-fly (while building
the DSG) based on the actual navigation time it experiences.

The discussion above suggests a simple way to compress the
DSG: nodes in a layer can be progressively replaced by their
parent nodes in the layer above. Every time we replace nodes
with more “abstract” ones (rooms, buildings) the length of the
paths passing through those nodes increases, indicating longer
navigation. Hence, we can opportunistically select which nodes
to “abstract away” so as to achieve a small stretch in the paths
between terminals. In alternative, we can start with a coarse
representation (including only the highest abstraction level) and
expand it to reduce the stretch of the paths. We present these
two greedy strategies below and initialize both procedures by
computing a spanner of the given DSG, as explained next.

B. Building a DSG Spanner

The literature provides several algorithms to produce spanners
of an input graph given a user-specified stretch on the distance
between terminals. The spanner need not meet our budget con-
straint, hence we use it just as initialization for D-Lite. We
adapt the algorithm in [24, Section 5] to build a spanner of the
full DSG with additive path stretch. The procedure initializes
the spanner with a random selection of edges: to exploit the
DSG hierarchy, we modify the original algorithm by manually
adding cross-layer edges during the initialization. Also, once
the spanner is built, we retain only nodes and edges relevant
for navigation by removing all nodes that are not traversed
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Fig. 3. Illustration of the BUD-Lite procedure with source s and targets t1, t2.
At each iteration, place nodes in a shortest path between terminals are replaced
by a room node.

by shortest paths between terminals in the spanner just built.1

This greatly reduces the graph to be compressed, making our
compression strategies based on hierarchal abstractions more
efficient. We call this subroutine build_spanner. In the
interest of space, we defer more details to [33, Section III-B].

C. BUD-Lite: A Bottom-Up Compression Algorithm

The idea behind our first algorithm (BUD-Lite, short for
Bottom-Up D-Lite) is to iteratively compress the DSG spanner
produced by build_spanner. The mechanism is simple: we
progressively replace batches of nodes with their parents to
reduce size, while attempting to keep the stretch incurred by
the shortest paths between terminals low.

To gain intuition, consider Fig. 3 that illustrates three steps of
BUD-Lite on a toy DSG.2 Dashed edges and light-colored nodes
are part of the full DSG G and can be added to the compressed
DSGG′. The latter is marked with solid lines and brighter colors.
The first iteration of BUD-Lite parses the path from s to t1 and
abstracts away place nodes P3 and P4, which are replaced with
room node R2 that is a coarse representation of those places
(top right). Room R1 is skipped because it does not reduce
budget as compared to keeping P1. Place P2 is not removed
yet because it lies also on the path connecting pair (s, t2), while
P5 is still needed to connect (s, t1). Node P2 is removed at the
second round when the path from s to t2 is parsed and shortcut
through place node P1 and room node R2 (bottom right). The
final step parses the last portion of the path connecting (s, t1)
and abstracts away the remaining places P5 and P6 under rooms
R2 and R3 (bottom left). An example on an actual DSG build
from simulated data is shown in Fig. 4, where the room node is
used to abstract several places.

We formally introduce the compression procedure in
Algorithm 1. The compressed graph is initialized as the DSG

1We assume that the robot can compute shortest paths between terminals in
a reasonable time as compared to the overall compression procedure.

2While Fig. 3 considers only place and room layers for the sake of visualiza-
tion, our algorithm applies to DSGs with any number of layers.

Fig. 4. Initial (left) and final DSG (right). Terminal nodes (A, B, C, and D)
are in blue, place nodes in red, and the room node in green.

spanner G′ output by build_spanner (Line 1). In the fol-
lowing, the symbol LG

i refers to the nodes within the ith layer
of G. For example, LG

0 collects all place nodes of the full DSG
G. Also, Gst denotes the shortest path between s and t in G.
The external loop at Line 4 parses each layer LG′

i of G′, starting
from the bottom (i = 0) and moving to the upper layer LG′

i+1

after LG′

i has been compressed (Line 5). At each iteration of
the inner loop at Line 6, the algorithm checks if the shortest
path connecting terminals s and t in G′ is traversed by nodes in
layer LG′

i with the same parent node n ∈ LG
i+1 (Line 7): if this

is the case, such nodes with common parent are removed from
G′st and replaced (compressed) with their parent node n (Line
8).3 Such a compression in the graph causes a corresponding
stretch of the actual path followed by the robot, in light of the
discussion in Section III-A. The nested structure of Algorithm 1
looping over layers externally (Line 4) and over paths internally
(Line 6) stretches distances in a balanced fashion: after the
inner loop parses all paths once, each path traversed by nodes
in the finest layer is compressed by one coarse node (e.g., a
room node replacing place nodes), and such coarse nodes are
in the same layer for all compressed paths (e.g., during the first
iteration of the outer loop, places can be compressed to rooms
but not to buildings). This means that the additional stretch
is the same for all paths, on average: differences arise if the
paths traverse unbalanced locations, e.g., a path passes through
a large room (which yields high distortion) while one through a
small room (low distortion). To ensure paths are always feasible,
nodes are removed when they are unused (Lines 11 to 14). For
BUD-Lite to terminate, the budget B has to accommodate at
least minimal-cardinality paths between terminals, which we
assume holds true.

Performance bound: We now provide an analytical bound on
the worst-case stretch that is incurred by every shortest path
after running BUD-Lite. First, we provide two definitions that
are instrumental to the understanding of the bound.

Definition 1 (Ancestor): The (ith) ancestor aiG(n) of node
n ∈ LG

i0
is the unique node in layer LG

i , i > i0, that is connected
to n by a path composed of only cross-layer edges.

In words, the ancestors of node n are coarse representations
of n in upper layers. For example, the first two ancestors of a
place node are its room and building nodes, respectively.

Definition 2 (Diameter): For any node n ∈ VG , its diameter
diamG(n) is the maximum cardinality of all shortest paths con-
necting two children nodes of n in G, that is,

diamG(n)
.
= max {|Gc1c2| : c1, c2 ∈ CG(n)} , (2)

3For consistency of navigation, we do not compress terminal nodes in our
implementation, but this can be changed to accommodate the budget constraint.
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Algorithm 1: BUD-Lite.

where |Gc1c2| denotes the number of nodes in Gc1c2.
In words, the diameter of a node describes how “large” the

node is when expanded into its children in the layer below.
We now assume the following bounds on quantities associated

with the original DSG G. Recall that any edge (m,n) ∈ EG with
m,n ∈ VG is assigned a weight W G(m,n).

Assumption 1 (DSG bounds): For any layer i ∈ {1, . . . , L},

W i
max

.
= max

{
W G(m,n) : m,n ∈ LG

i

}
,

W i−1,i
max

.
= max

{
W G(m,n) : m ∈ LG

i−1, n ∈ LG
i

}
,

ui
min

.
= min

{∣∣GaiG(s)aiG(t)∣∣ : (s, t) ∈ P
}
,

diami
min

.
= min

{
diamG(n) : n ∈ LG

i

}
. (3)

� W i
max is the maximum weight of edges in layer LG

i ;
� W i−1,i

max is the maximum weight of cross-layer edges be-
tween layers LG

i−1 and LG
i ;

� ui
min is the minimum cardinality of a shortest path between

the ith ancestors of every two connected terminals;
� diami

min is the minimum diameter of nodes in layer LG
i .

Equipped with the definition above, we can bound the distor-
tion on the compressed DSG G′ provided by BUD-Lite.

Proposition 1 (Worst-case BUD-Lite stretch): After k total
iterations of the innermost loop in Algorithm 1, the distance
between any two terminals in the compressed graph G′ is

dG′(s, t) ≤ 2

�max∑
i=1

W i−1,i
max +

(
u�max−1

min − αkdiam�max
min

)
W �max−1

max

+ αkW
�max
max , ∀(s, t) ∈ P, (4)

Fig. 5. Illustration of the TOD-Lite expansion procedure with one source s
and two targets t1 and t2. At each iteration, a room node is expanded and
replaced with its children place nodes. Adjacent nodes may be added to ensure
connectivity (e.g., P3 at first iteration).

where

αk
.
= 	 k

|P| −
�max−1∑
i=�0

ui
min
, (5)

�max
.
= max

{
� : k > |P|

�−1∑
i=�0

ui
min

}
, (6)

�0
.
= max

{
� : min

(s,t)∈P

(
dG(s, t) + βW G

max(s, t)
)

≥ 2

�∑
i=1

W i−1,i
min + u�

minW
�
min

}
. (7)

Proof: See the technical report [33, Appendix D]. �
In words, �0 is the index of the bottom layer in the initial

spanner G′ in Line 1 (excluding terminals); �max is the index
of the top (coarsest) layer reached by BUD-Lite after k total
iterations; αk is the number of nodes in the latter layer that have
been added to the compressed graph after k iterations. In the
bound (4), the first term is the stretch due to cross-layer edges
connecting the terminals to nodes in the upper layers, while
the other terms are the stretch due to the shortest path passing
partially across the coarsest layer LG

�max
(third term) and partially

across layer LG
�max−1 (second term).

D. TOD-Lite: A Top-Down Expansion Algorithm

This section presents our second greedy algorithm. Symmetri-
cally to the bottom-up approach of Algorithm 1, the idea behind
TOD-Lite (short for TOp-down D-Lite) is to exploit the DSG
hierarchy by expanding node children to iteratively increase
spatial granularity of the compressed graph (Fig. 5).

The idea of TOD-Lite is depicted with a toy example in Fig.
5, where room nodes R1, R2, and R3 are progressively replaced
with their respective children (place nodes). The initial condition
(top left) contains the minimum set of nodes that guarantee
connectivity between terminals, and it features coarse spatial
abstractions through the retained nodes.
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We formally describe TOD-Lite in Algorithm 2. During ini-
tialization, Algorithm 2 builds a spanner G′

target of the DSG
with build_spanner, which is used as target for the final
compressed graph G′ (Line 1). Then, it populates a “hierarchical
spanner” H (Line 2): this is simply a graph obtained from the
original DSG G by keeping the spanner G′

target plus nodes and
edges encountered starting from G′

target and going up the DSG
hierarchy all the way to the top layer. Elements unrelated to the
ancestors of G′

target are removed. For example, if G′
target is made of

place nodes, H includes G′
target, the room nodes associated with

those places (with cross-layer edges), and possibly nodes above
in the hierarchy, e.g., the buildings containing those rooms.
Graph H is used to expand nodes from coarser to finer layers, as
explained next. The expansion priority is given by the number
of paths that traverse a node (Lines 3 to 7): this way, expanding
a node with high priority restores the spatial resolution of many
paths (i.e., those traversing that node).

The main phase is an iterative top-down expansion through
the hierarchical spanner H. The output graph G′ is initialized
with terminal nodes and paths that connect them under minimal
communication budget: these are obtained by connecting each
source-target pair to their common ancestor at minimal distance
through cross-layer edges (Lines 8 to 12). Then, starting from
the top layer LG′

L and going down one layer at a time (Line 13),
each node in G′ is expanded (Lines 15 to 17) till such operation
is infeasible (Line 18). In particular, if a node n ∈ G′ has a set
of children CH(n) in the hierarchical spanner H, then Line 16
removes n from G′ and Line 17 adds to G′ nodes in CH(n) and
their incident edges EH(CH(n)).

Expanding nodes gradually restores the geometric granularity
of the DSG spanner, because a spatially coarse representation
(e.g., room node) is replaced by a group of nodes with fine
resolution (e.g., place nodes). This expansion comes at the price
of heavier communication burden. Nonetheless, using the hier-
archical spanner allows us to narrow the expansion procedure
to a small set of navigation-relevant nodes, both saving runtime
and helping meet communication constraints.

Note that, with enough communication resources, TOD-Lite
would exactly output the target spanner G′

target. Under limited
budget, some nodes in G′

target cannot be expanded, e.g., a room
may be used as a coarse representation of its places.

E. Discussion: BUD-Lite vs. TOD-Lite

BUD-Lite compresses the DSG in a more granular fashion
compared to TOD-Lite: that is, it adds distortion to paths more
slowly, because it compresses a limited portion of one path at
a time. On the other hand, the expansion strategy of TOD-Lite
restores all children of a parent node at once. This difference
makes BUD-Lite generally slower but able to reach a final graph
size closer to the budget, whereas TOD-Lite is typically faster
but retains fewer nodes and leads to more distorted paths.

Those differences make the two strategies suited to differ-
ent scenarios. For instance, a map that includes both large
and small rooms may cause TOD-Lite to get stuck after ex-
panding the nodes with the largest number of children, while
the path-wise compression of BUD-Lite is less sensitive to
heterogeneous maps. On the other hand, to compress a large
but homogeneous map with many relevant locations, one may
use TOD-Lite to favor compression speed against a slightly
worse result.

Algorithm 2: TOD-Lite.

IV. EXPERIMENTS

This section shows that our method retains information for
efficient navigation while meeting the communication budget
constraint. We also show that the algorithms run in real time.

A. Experimental Setup

Besides benchmarking D-Lite against the solution to (1) (la-
bel: “Optimum”) found via integer linear programming (ILP),
we also adapt and compare the compression strategy introduced
in [30] (label: “IB”), as discussed below.

Q-Tree search adaptation: The compression approach in [30]
builds on the Information Bottleneck (IB) [34]. This approach
aims to find a compact representation T of a random variable X
by solving a relaxed version of the IB problem,

min
p(T |X)

I(T ;X)− βI(T ;Y ), (8)

where I(T ;X) is the mutual information between T and X and
I(T ;Y ) represents the information that T retains about a third
variableY that encodes relevant information aboutX . Parameter
β can be seen as a knob to trade amount of relevant information
retained in T for compression rate.

To adapt this approach to navigation-oriented DSG compres-
sion (since the Q-tree does not encode connectivity within a
layer of the scene graph), we define a uniform distribution p(x)
over the place nodes. Next, we associate Y with shortest paths
between terminals: if place xi is on the shortest path yj , then
p(yj |xi) = 1. From the place layer, we build X by propagating
p(x) and p(y|x) to upper layers by a weighted sum (cf. [30]). We
manually add the terminals if they are not automatically added,
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Fig. 6. Comparison on distortion (top row) and number of nodes after compression (bottom row) for BUD-Lite and TOD-Lite against computing the shortest
paths (SP) and pruning all nodes that are not on them. The dotted lines mark the communication budget.

TABLE I
SUMMARY OF RESULTS

and in view of (1) we use the number of nodes as a stopping
condition besides the one in [30].

Simulator: We showcase the online operation of D-Lite in the
Office environment of the uHumans2 simulator (Fig. 1) [35],
with 4 scenarios featuring different distances between naviga-
tion goal and starting position of the robot.

The queried robot r2 sending the compressed DSG is given
potential locations the querying robot r1 may come from. The
places closest to these source locations along with the place clos-
est to the navigation goal are the terminals of D-Lite. In the short
and medium sequences, r1 gets two putative source locations,
hence three total terminals. In the two long sequences, r1 gets
three putative source locations, hence four total terminals. For
all sequences, we choose 60 nodes as communication budget,
which is 1.6% of the original DSG.

Upon receiving the compressed DSG, robot r1 finds the
place node s closest to its location and computes the shortest
path on the compressed DSG from s to the place node t that

represents the goal. Robot r1 treats the nodes along the shortest
path as navigation waypoints. We combine waypoint following
with the ROS navigation stack for local obstacle avoidance: the
latter is needed to allow navigation in the areas where low-level
geometric information (i.e., places nodes) has been abstracted
away during the DSG compression.

B. Results and Discussion

Comparison with baselines: The results on the four scenarios
are documented in Table I. We show the compression time
(label: “Comp”), the nominal (label: “Nom”, computed from
the compressed DSG) and simulated (label: “Mis”, computed as
the actual time r1 takes to reach its destination in the simulator)
mission times, and the size of the compressed DSG (upper
bounded by the budget B), all averaged across three runs.4 The
two best results for each row are in bold.

The combinatorial nature of problem (1) makes the ILP solver
impractical in robotic applications: for the long runs, the calcu-
lation of Optimum did not finish within an hour.

In all scenarios, robot r1 reaches the goal using the com-
pressed DSG output by D-Lite. The simulated mission time is
at times faster on the compressed graph compared to the full
DSG because the former has fewer waypoints: a sparser list
of waypoints in a less cluttered space can actually yield faster
navigation. The different performance of BUD-Lite and TOD-
Lite is due to the different abstraction mechanisms, whereby
the path-wise node compression in the former yields finer gran-
ularity and usually better performance. Discrepancies between
nominal and simulated mission times are due to local navigation,
whose exploration time is difficult to estimate a posteriori from
the full DSG. D-Lite always outperforms IB in terms of both

4The nominal mission time is computed by projecting the waypoints found by
r1 in the compressed DSG onto the full DSG, calculating the total path length
of traversing through those on the full DSG, and dividing by the maximum
velocity of the agent. In other words, it is the theoretical navigation time on the
original DSG and measures quality of compression. Note that we do not directly
use the compressed DSG to estimate the nominal time because the cross-layer
edge weights would be different and likely smaller in value compared to those
calculated on the full DSG, see [33, Appendix B].
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nominal and simulated mission times. Specifically, the naviga-
tion planned on the compressed DSG produced by BUD-Lite is
only a minute longer than the optimal path on the original DSG.
IB is also unable to find a compressed DSG that preserves the
necessary connectivity for the long1 case.

Ablation study: We compare distortion and number of nodes
on the shortest paths between terminal nodes, for increasing
number of terminal nodes and increasing budget constraints
in Fig. 6. The shortest paths are optimal in terms of naviga-
tion performance (no distortion, top row), but easily violate
the communication constraints (exceeding the budget, bottom
row). On the other hand, BUD-Lite and TOD-Lite trade-off the
path lengths between the terminal nodes to meet the budget
constraint, and as we relax the latter, the distortion decreases.
For the case with a budget of 150 nodes (last column), BUD-Lite
and TOD-Lite obtain the same results, since the initial spanner
already satisfies the budget constraint.

A study on the runtime of D-Lite and a comparison of BUD-
Lite against the bound (4) are provided in [33, Section V-B].

V. CONCLUSION

Motivated by collaborative multi-robot exploration, we pro-
posed a method to compress 3D Scene Graphs under commu-
nication constraints. Our algorithms can accommodate a sharp
node budget while retaining navigation performance. Realistic
simulations validate the effectiveness of our approach.
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