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Online 3D Edge Reconstruction of Wiry Structures
From Monocular Image Sequences
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Abstract—Three-dimensional (3D) reconstruction of wiry struc-
tures from vision suffers from thin geometry, lack of texture, and
severe self-occlusions. We propose an online 3D edge reconstruction
framework that uses monocular image sequences to reconstruct
the wiry structures whose skeletons are mainly straight as com-
monly found in the real world. To reconstruct such structures in
an efficient manner, we employ straight edges constructed from
points as underlying primitives of the representation. This is to
address the harsh geometric nature of wiry objects (e.g., severe
self-occlusion) and also to avoid a typically expensive line matching
process. Specifically, we first construct sparse 3D points by tracking
feature points, while simultaneously refining the camera poses via a
robust maximum a posteriori (MAP) inference. These sparse points
are then used to generate edge candidates and the belief of each can-
didate is updated in a Bayesian fashion using a likelihood evaluated
on the image observation. Finally, we take the set of 3D edges with
beliefs greater than a threshold and apply a post-processing step
to reject false edges. We experimentally validate our framework
using real-world wiry objects and demonstrate a manipulation
task using the reconstruction. The proposed framework exhibits
superior performance over state-of-the-art algorithms for the class
of wiry structures and the potential to be easily used for subsequent
robotic tasks.

Index Terms—Multi-view stereo, structure from motion, edge
reconstruction, monocular vision, wiry objects.

I. INTRODUCTION

V ISION provides abundant opportunities for perception in a
variety of applications such as hand tracking [1] and three-

dimensional (3D) reconstruction. Especially, 3D reconstruction
is a way to understand environments and it poses an impor-
tant, yet, challenging problem in robotics and computer vision
research. It is especially challenging for wiry structures which
are not easily captured even with commercial depth cameras (see
Fig. 1), and the image is a promising sensing modality to capture
the wiry appearance. However, the reconstruction using images
is still not straightforward since the wiry objects are low-textured
and frequently self-occluded.
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Fig. 1. Snapshots of (a) a point cloud and (b) an image of IKEA Kungsfors
dish drainer captured with RealSense D435i. The wiry structures are visible in
the image but they do not appear in the point cloud.

The 3D reconstruction of such wiry structures based on im-
ages can be addressed from many perspectives, and these can be
categorized mainly into four distinct classes with respect to the
representation each approach adopts: points, lines, curves, and
implicit representation.

1) Point Reconstruction: In this method, points are extracted
from images, matched, and triangulated into the 3D space, as
done in most structure from motion (SfM) approaches [2], [3].
The points are favorable due to their easy matching based on
visual appearance and straightforward evaluation of the repro-
jection residual. This class of methods produces a 3D point
cloud, which, yet, is usually very sparse and thus not typically
informative enough to fully reconstruct low-textured scenes
(e.g., wiry structures) which are of our interest. To achieve a more
informative model, a dense point cloud can be generated using
subsequent dense reconstruction algorithms such as multi-view
stereo (MVS) [4], [5]. However, this is inefficient in memory
and time because a massive number of points and a significant
amount of time are required.

2) Line Reconstruction: Lines contain richer information than
points and thus can represent the scene in a more compact way.
Most of the approaches use line segments extracted from images
whose correspondences are established to reconstruct 3D lines.
But their correspondences are hard to establish using the appear-
ance because they have unstable endpoints and line descriptors
are costly to compute and match. As a result, many studies avoid
visual matching of lines and call upon other correspondence
cues (e.g., epipolar geometry from camera pose estimates [6],
[7]). However, the use of line segments detected in images is
disadvantageous for scenes of our interest (i.e., wiry structures)
because the line segments are often severely fragmented, re-
sulting in unsuccessful matching. An alternative approach was
utilized in [8] where a 3D wireframe was reconstructed using
points and edges connecting them. Although the overall direc-
tion shares some similarities, our proposed framework differs
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from it, particularly in that we offer a systematic methodology
that produces 3D points and constructs scored edges from the
points, yielding a probabilistic 3D edge inference. More pre-
cisely, [8] relied on 2D graphs of edges and vertices detected
in images, and evaluated their three-dimensional validity using
counts and some heuristic rules based on vertex types.

3) Curve Reconstruction: Curves are general representation
primitives that can fully depict arbitrary scenes, but as for lines,
they are hard to match and most of the approaches in this class
exploit epipolar geometry. Wire arts were reconstructed in [9]
from images with known camera poses, and a depth sensor was
additionally utilized in [10]. An optimization framework was
introduced in [11] where camera poses and sample points of
curves were jointly optimized. In [12], curves were matched with
the additional guidance of sparse points from SfM. Despite their
capability to reconstruct general scenes, these works require
segmentation masks [9], [10], [11], and their computation is
typically expensive since general curves can only be handled by
a sampled set of points on them.

4) Implicit Representation: These approaches adopt neural
networks to perceive 3D scenes given multi-view 2D images,
where the networks themselves are the implicit representations.
Most of the methods train either a neural radiance field (NeRF) or
a neural signed distance function (SDF) on images with known
camera poses, which can render images in novel views [13],
[14]. However, the implicit representation requires additional
processing to be used for other tasks (e.g., another neural net-
work to obtain manipulation actions or conversion to an explicit
form such as a mesh). The methods also typically involve offline
learning with a large number of images that requires high-end
GPUs and takes a huge amount of time.

In this letter, we propose a novel online 3D edge recon-
struction strategy for wiry structures that uses monocular image
sequences. We employ lines as primitives of the reconstruction
for a compact and informative representation, yet, we adopt
straight edges connecting points rather than lines detected in
images. This is to circumvent difficulties coming from the
geometric nature of the wiry structures (e.g., line segments
fragmented by severe self-occlusion) and the methodology so
devised would obviate the typically expensive and challenging
line matching process. Specifically, we first construct sparse 3D
points by tracking feature points, while simultaneously refining
the camera poses via a robust maximum a posteriori (MAP)
inference. These sparse points are used to generate 3D edge
candidates, and the belief of each being a real 3D edge is
updated in a Bayesian fashion with a likelihood evaluated on the
image observation. Then we take the set of edges with beliefs
greater than a threshold and a post-processing is applied to
filter out false edges. The proposed algorithm is experimentally
validated using real-world wiry objects with a camera mounted
on a robot manipulator, and we demonstrate a manipulation task
using the reconstruction. This shows that our framework is able
to effectively produce a more complete representation of wiry
structures than state-of-the-art methods, rendering it promising
for a variety of robotic tasks.

Our framework is advantageous over existing algorithms in
that: 1) the reconstruction is more informative than sparse point-
based methods; 2) it is more efficient in time/memory than dense
point/curve-based methods; 3) it circumvents the challenging
line matching and is robust to self-occlusion unlike line-based

Fig. 2. Overall architecture of our proposed 3D edge reconstruction frame-
work of wiry structures.

methods; 4) it does not require segmentation which is needed
in many curve-based methods; and 5) it can be easily used for
subsequent robotic tasks (e.g., household manipulation) without
laborious offline learning and high-end hardware, in contrast to
implicit representation methods.

The rest of the letter is organized as follows. In Section II,
detailed methods of the framework are described. Section III
presents the experimental evaluation results on various wiry
objects and a manipulation demonstration. Finally, Section IV
concludes the letter and suggests future research directions.

II. METHODS

In our setting, a camera is mounted on a platform (e.g., robotic
manipulator) equipped with sensors (e.g., joint encoder) so that
the camera pose can be estimated. We assume that camera
intrinsic parameters are known, which can be easily achieved
using the manufacturer-provided interface or through an offline
calibration process beforehand. The overall architecture of our
method is illustrated in Fig. 2. Our method is composed of
two components: 1) sparse 3D point generation; and 2) edge
inference. In the first component, 2D feature points are detected
and tracked, and 3D points corresponding to these 2D points
in multiple views are obtained while refining the camera poses
simultaneously. The second component runs in the backend and
is triggered when it is not running and there is a new image and
pose measurements processed in the first component. Using the
new information, edge candidates are generated by connecting
the feature points, and the beliefs of them being real edges are
updated in a Bayesian way. After the algorithm is terminated,
the obtained edges are inspected in a post-processing step, where
the edges are projected onto selected images saved during the
algorithm operation and the ones that are not likely are rejected.
We would like to note that by considering edges generated from
points, we can circumvent a burdensome process of line segment
matching required in other works on line reconstruction.

A. Sparse 3D Point Generation

For the initial image of the sequence, we extract feature
points on it using image gradient-based methods (e.g., [15]),
with the distances between them greater than a certain value.
Then the points are tracked in subsequent images via optical
flow (e.g., [16]). Using the feature correspondences obtained
from the tracking, we formulate a maximum a posteriori (MAP)
inference as a joint optimization to generate 3D points from
the feature points and to correct the camera poses. To regulate
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Fig. 3. Feature points detected in images of wiry objects. The red points are
fake points artificially created by self-occlusion.

the computational load, we confine the estimation in a sliding
window of size Nw to optimize for the last Nw,opt camera poses
and the related 3D points while leaving the rest of them fixed to
the previously optimized values.

In case there are many incorrectly tracked features, the opti-
mization is corrupted, which leads to inaccurate results. This is
especially significant for wiry structures since there frequently
occurs a severe self-occlusion that creates many fake points,
as depicted in Fig. 3. These points do not actually correspond
to physical 3D points, thus they must be excluded from the
optimization for correct results. To exclude them, we need to
identify them from the inconsistency of their correspondence
given the accurate camera poses (i.e., the fake points would not
triangulate to a single point). In turn, the camera poses can only
be precisely estimated given the right feature correspondences.
Since we know neither the right feature correspondences nor the
accurate camera poses, we estimate both simultaneously using
an expectation-maximization (EM) algorithm [17] for the MAP
inference as a means of robust estimation. This is achieved
by introducing a latent variable (z in (1)), which indicates
whether each feature point is a good feature to be included in
the optimization.

The MAP inference is as the following equation

Θ = argmax
Θ

p(Θ|x) = argmax
Θ

∑
z

p(z,Θ|x) (1)

where Θ = [X,T ], X = {Xi ∈ R
3 | i = 1, 2, . . . , Npts} is the

set of 3D points, T = {Tt ∈ SE(3) | t = 1, 2, . . . , Nt} is the
set of camera poses, x = {xit ∈ R

2 | i = 1, 2, . . . , Npts, t =
1, 2, . . . , Nt} is the set of feature points (xit is the point on the
t-th image corresponding to Xi), and z = {zit ∈ {0, 1} | i =
1, 2, . . . , Npts, t = 1, 2, . . . , Nt} is the set of latent variables
with zit associated to xit (zit = 1 if xit is a good feature). Using
independence relations, p(z,Θ|x) is factorized as

p(z,Θ|x) = p(x|z,Θ)p(z|Θ)p(Θ)

p(x)

∝ p(x|z,Θ)p(Θ)

=
∏
i,t

p(xit|zit,Θ) ·
∏
t

p(Tt) (2)

where each term is modeled as follows:
1) The conditional probability p(xit|zit,Θ) is defined as

p(xit|zit,Θ)=

{
1
A exp

(
− δit‖π(Xi,Tt)−xit‖2

2σ2
x

)
, zit = 1

η, zit = 0
(3)

where π(Xi, Tt) ∈ R
2 is the projection of the 3D point

Xi on the image with the camera pose Tt, δit ∈ {0, 1} is
an indicator of the existence of the corresponding feature
of Xi on the t-th image (δit = 1 if exists), σx ∈ R is
the standard deviation related to the uncertainty of the
feature tracking, A = σx

√
2π is the normalizer, and η is a

constant. It implies that if the feature is a correctly-tracked
one, the probability is greater with a smaller reprojection
error; otherwise, the probability is just uniform (i.e., no
implication).

2) The prior probability p(Tt) is modeled as

p(Tt) =
1

σT

√
2π

exp

(
−‖Tt − T est

t ‖2
2σ2

T

)
(4)

where T est
t ∈ SE(3) is the current best-estimated camera

pose (i.e., measured camera pose in case it has not been
optimized before, and previously optimized pose other-
wise) and σT ∈ R is the standard deviation related to the
measurement accuracy.

To solve the MAP inference, we adopt the EM algorithm that
iterates over E- and M-steps detailed below.

1) E-Step: We estimate the distribution of z using the old
parameter Θold from the last M-step to evaluate the expectation
of the log-likelihoodEz∼p(z|x,Θold)[log p(z,Θ|x)]. The distribu-
tion p(z|x,Θold) is factorized as

q(z) := p(z|x,Θold) =
∏
i,t

q(zit) (5)

where q(zit) := p(zit|xit,Θ
old) ∝ p(xit|zit,Θold). Thus we

can calculate the distribution using the conditional distribution
defined in (3) as follows.

q(zit = 1) =
p(xit|zit = 1,Θold)

p(xit|zit = 0,Θold) + p(xit|zit = 1,Θold)

=

1
A exp

(
− δit‖π(Xi,Tt)−xit‖2

2σ2
x

)
η + 1

A exp
(
− δit‖π(Xi,Tt)−xit‖2

2σ2
x

) (6)

2) M-Step: Here, we solve for the new parameter Θnew that
maximizes the expectation of the log-likelihood evaluated in the
E-step using the distribution q(z) in (5) as follows.

Θnew = argmax
Θ

Ez∼q(z)[log p(z,Θ|x)]

= argmax
Θ

∑
i,t

Ezit∼q(zit)[log p(xit|zit,Θ)]

+
∑
t

Ez∼q(z)[log p(Tt)]

= argmin
Θ

∑
i,t

q(zit = 1)

2σ2
x

δit‖π(Xi, Tt)− xit‖2

+
∑
t

1

2σ2
T

‖Tt − T est
t ‖2 (7)

The M-step boils down to a weighted bundle adjustment
(BA) with a prior on camera poses, and the entire EM algo-
rithm falls into the form of iteratively reweighted least squares.
This formulation offers robustness to camera pose uncertainties



7482 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 11, NOVEMBER 2023

and incorrect feature tracking, and can be easily solved with
off-the-shelf optimization tools since it is basically a weighted
least squares problem. The solution is guaranteed to converge
to a stationary point, but it is not guaranteed to converge to
the global optimum. There could be certain hard cases for the
algorithm to find the optimal solution (e.g., when many fake
feature points coincidentally agree with the same 3D structure),
but it rarely happens in practical cases. The MAP is better suited
to challenging scenes of our interest over other robust estimation
methods such as RANSAC because our method directly provides
joint optimization of 3D points and camera poses from multiple
images and also allows us to straightforwardly incorporate prior
knowledge of the camera pose. Robust kernels (e.g., Huber
loss) are also not sufficient for the settings considered here
because they just weight down the outliers heuristically rather
than excluding them.

In practice, we anneal σx by decaying them with a constant
ratio τ to prevent getting stuck in a bad stationary point. To
regulate the computational complexity, we limit the number of
iterations of the EM algorithm and of the optimization in the
M-step. The initial values of new (i.e., not optimized before)
variables are set to the measured camera poses and 3D points
triangulated from the measured relative pose. Note that this
initialization of variables, with the introduction of prior on
camera poses, allows the scale to be recovered even though we
only use monocular vision. After the optimization, the optimized
points whose reprojection errors are all smaller than a threshold
rmax (e.g., 2[px]) are considered acceptable points. For points
with large errors, if such points had been acceptable before, they
are determined to have lost good track and are excluded from
future optimizations. But if such a point had been optimized
more than a certain number of times (e.g., 4), it is still regarded
as acceptable and included in the edge inference using the 2D
point projected on the image. Otherwise, if it had been optimized
less, it is marked as unacceptable and excluded also from the
edge inference. Unacceptable points are excluded from future
optimizations because they arise from either fake feature points
created by self-occlusion or wrong feature tracking, which can
lead to incorrect results. To save resources and gather more
information, points that are either unacceptable or sufficiently
optimized are removed from the feature points to track. For each
new image, we take the neighborhood of the current feature
points and the projected points of the 3D points acceptable so far,
and extract additional feature points outside this neighborhood.
The number of additional feature points is constrained to limit
the number of acceptable points and consequently the number
of edge candidates to evaluate the likelihood of.

Here the major parameters are σx, σT , η, τ , and rmax. First,
the suitable values of σx and σT do not vary much for each
target scenario but can be tuned to adjust the relative significance
of reprojection/prior costs. Second, η has a trade-off (i.e., if
it becomes larger, there is a greater chance of overfitting and
rejecting too many points; and if it becomes smaller, more bad
feature tracking may not be excluded) but we found that there
is little need to adjust by scenario. Third, the inadequate decay
rate τ can degrade the reconstruction by leading the solution
to suboptimal solutions, and we found that 2 is a good starting
point. Finally, rmax also has a trade-off (i.e., if it becomes larger,
more feature points are tolerated that can hinder camera pose and
3D point estimation; and if it becomes smaller, the reconstruction
becomes more accurate but many of the points can be rejected)

Fig. 4. Misleading appearance of a single image. The red points are actually
unconnected (left) but look connected due to the occlusion (right).

but the optimal value does not vary much for each case and can
be set to a constant.

B. Edge Inference

As we have generated 3D points, now we infer the edges that
connect them using the 2D images. Since a single image can
be misleading (e.g., an unconnected set of points could appear
to be connected by occlusion as shown in Fig. 4), we fuse the
information from multiple images of different views. We achieve
this via the Bayesian inference by incrementally updating the
beliefs of the connections of two points being real edges. First,
we take current acceptable feature points that are successfully
tracked. Then the corresponding 3D points of these points are
projected on the current image and we generate edge candidates
by connecting these projected points. Although we can generate
n(n− 1)/2 candidates fromnpoints, we only make connections
of lengths smaller than a predefined value lmax [px] because in
many cases long edges can be replaced with multiple shorter
edges.

The belief of each candidate is a conditional probability of
being a real edge given observations and is updated as

p(e|I0:t′) =
p(e|I0:t′pre

)p(It′ |e)
p(It′ |I0:t′pre

)
(8)

where e ∈ {0, 1} is the indicator of being a real edge (i.e., 1 if
it is and 0 otherwise), It′ is the t′-th image observation, t′pre is
the previous image index, It1:t2 is the image observations with
indices from t1 to t2, p(e|I0:t′pre

) is the previous belief, p(It′ |e)
is the likelihood of the t′-th observation, and p(It|I0:t′pre

) is the
normalizer (=

∑
e p(e|I0:t′pre

)p(It′ |e)).
The likelihood of an edge candidate is evaluated using line

segments detected in the image. First, if the length of the
candidate is shorter than a threshold, the likelihood returns 0.5,
which does not affect the belief value. To consider the thickness
of the wiry structures, we look into an edge band of the candidate
depicted in Fig. 5 to calculate the likelihood. We consider the
edge band with margins εi [px] as illustrated in Fig. 5, and each
margin is calculated as

εi = Tmaxf/di, i = 1, 2 (9)

where Tmax [m] is the maximum thickness that is assumed to
be known, f [px] is the focal length of the camera, and di [m]
is the depth of the endpoint. The margins are determined in
inverse proportion to the depths of endpoints because the farther
the endpoint is, the smaller the thickness appears. Among the
line segments contained in the edge band, we reject ones whose
projections on the edge candidate do not lie on the candidate even
partially (see the right side of Fig. 5). If the edge band contains
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Fig. 5. Edge band of an edge candidate (left) and the line segments in the edge
band (right). In the right figure, among line segments in the band (yellow and
gray), the segments whose projections on the edge candidate do not intersect
with the candidate are rejected (gray).

no line segments, a small constant (e.g., 0.05) is returned as the
likelihood value.

Then we evaluate how likely are the survived segments when
the candidate is a real edge by defining a metric s.t.,

p(It′ |e = 1) = min{2.5p̄(It′ |e = 1) + 0.05, 0.99} (10)

p̄(It′ |e = 1) =

[
Nls∑
i=1

(1− tanh2(100max{| sin (θi − θref)|

− sin(θthk), 0})) · (1− 0.8 (δdsti )2) · li

]

· r
3
occ · (1− 0.9 mini(δ

dst
i )2)∑N

i=1 li
(11)

where Nls is the number of line segments in the edge band,
θi is the angle of the i-th line segment, θref is the angle of
the edge candidate, θthk = atan2(max{ε1, ε2}/2, lref) is the
tolerance of the angle discrepancy to account for the thickness of
objects and different depths of two endpoints, lref is the length
of the candidate, δdsti is the minimum distance of the segment to
the candidate, li is the length of the i-th line segment, rocc is the
ratio of the length of union of line segments with respect to ρlref

thresholded below 1, and ρ is a discount rate on the candidate
length. The likelihood is set above a small positive value because
line segments could be erroneously not detected (e.g., highly
cluttered and occluded environments) and once a zero likelihood
is returned, there is no chance of restoring a nonzero belief. For
the likelihood of not being a real edge, p(It′ |e = 0), is defined
as

p(It′ |e = 0) = max{1− p(It′ |e = 1), 0.5} (12)

which is designed to be greater than 0.5 because candidates that
are not real edges may look like edges by occlusion. When the
algorithm is terminated, we take the set of 3D edges with beliefs
greater than 0.9, and a post-processing step to be described in the
next subsection is performed to organize the final reconstruction
of the scene. We would like to note that although using line
segments to evaluate the likelihood works in general settings, it
is not the only way and we can use any likelihood evaluation
module that reasonably predicts the likelihood (e.g., neural
networks working directly on images).

Some parameters are introduced in the edge inference, includ-
ing lmax and ρ. First, lmax should be large enough to generate
edge candidates while it sacrifices computational load when it
is too large. And ρ is introduced to tolerate fragmented line

Fig. 6. Experiment setup. A camera (RealSense D435i) is mounted on a
gripper (Franka Hand) attached to the end effector of the robotic manipulator
(Franka Emika Panda). The target objects are put on the table.

segments and is relevant to the degree to which self-occlusion
occurs (i.e., the more occlusion, the smaller ρ should be). These
two parameters may be tuned for each target scenario for the
best performance while the rest of the parameters can be set to
constant values.

C. Post-Processing

When a point tracking is lost, false edges connected to the
point which have looked like real edges mistakenly survive.
To reject these edges and also to integrate more information,
a post-processing step is introduced. During the operation, we
accumulate the number of points that have lost track and check
if it exceeds 10% of the number of the current feature points that
are being tracked. If exceeded, we store the index of the current
frame and if nothing is stored until the operation ends, we store
the index of the last frame. Then at the end of the operation,
we project the reconstructed 3D edges on the initial image and
the images corresponding to the stored indices, evaluate their
scores using the likelihood metric, and reject low-scored edges.
The threshold used to reject edges is relevant to how accurate
the reconstruction should be (i.e., the larger, the more accurate
the edges are) and it is empirically tuned to a constant for all
of our experiments in Section III. We also check if occlusion
takes place for each edge, and do not reject it if it is occluded
by other edges. We repeat this process until there is no change
because there can be erroneously accepted edges occluded by
other rejected edges.

III. EXPERIMENTAL RESULTS

The experiment setup is shown in Fig. 6. The camera mounted
on the gripper has its intrinsic parameters known, and the hand-
to-eye transformation is calibrated. The image resolution for all
evaluations is set to 1280× 720 because a state-of-the-art al-
gorithm to test, Line3D++ [6], requires high-resolution images.
The algorithm is implemented in C++ and is programmed to run
parallel where possible. The visual features are handled with
OpenCV (e.g., feature points are detected with Good Features
To Track [15], tracked with Lucas-Kanade optical flow [16],
and line segments are detected using LSD detector [18]). For
the MAP inference we use GTSAM [19], a graph optimization
library that is easy to use in vision problems, and Levenberg–
Marquardt solver is adopted in the optimization. The evaluations
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Fig. 7. Wiry objects for the experimental evaluations.

presented in this section are all done on a desktop with an AMD
Ryzen 5 3600 6-core 3.59[GHz] CPU, a 16[GB] RAM, and
an NVIDIA GeForce GTX 1660 GPU. Datasets are obtained
for target scenarios and our algorithm is run online for every
dataset using ROS. The images and joint angle measurements
are logged for each loop on which other algorithms are run for
comparison.

A. Comparative Evaluation

The proposed algorithm is evaluated in comparison with
a dense point reconstruction algorithm, COLMAP [5], a line
reconstruction algorithm, Line3D++ [6], a curve reconstruction,
EdgeGraph3D [12], and an implicit method, NeuS [14]. The wire
reconstruction algorithms (e.g., [9]) are excluded here because
they require segmentation of objects which renders them not
suitable for a fair comparison. All algorithms are fed the same
images and camera pose estimates from the robot measurements.
Note that COLMAP and NeuS use a GPU while the other
methods use a CPU only, and the networks in NeuS are trained
for 300000 epochs in all scenarios.

We present evaluation results on wiry objects with known
geometric models (a tetrahedron, a hexagonal prism, a dodec-
ahedron, and a 2× 2× 2 cube) and practical objects (a wire
basket and a dish drainer) shown in Fig. 7. The four objects
with known models are made of tubular structures with circular
cross-sections of 3 [mm] in diameter and are manufactured with
a 3D printer. The results are depicted in Fig. 8. The points
from COLMAP represent the geometry to the level one can
recognize it, yet with many outliers. The lines from Line3D++,
with many incorrect lines, are not very successful in rendering
the geometry (e.g., it struggles to reconstruct the spokes of the
dish drainer where the dishes are placed) and many of them are
segmented into pieces. EdgeGraph3D generates a much more
compact point cloud than COLMAP but it still suffers to depict
the geometry in many cases. NeuS also struggles to reconstruct
objects in many cases, as the rendered views show. In contrast,
the reconstruction using our framework provides a model that
mostly describes the object geometry with few outliers. The
shortfalls of other algorithms can be attributed to several reasons:
1) thin geometry hinders the depth estimation of the structures;
2) line segments are fragmented into small pieces so that few
meaningful reconstructions are made from them; 3) the detected
line segments and curves are derived from the boundaries that
change as the view changes, making the problem quite ill-posed;
4) a small number of images with a relatively small range of

Fig. 8. Reconstruction results on wiry objects. The leftmost column contains
the plots of the reconstruction using the proposed framework. The follow-
ing columns contain the results using COLMAP [5], Line3D++ [6], Edge-
Graph3D [12], NeuS [14], respectively. The points of COLMAP are colored
using the image colors and the results of NeuS are rendered images given certain
viewpoints. Rotating views are available at: https://youtu.be/s1J9GVYt7Fs.

viewpoints are used; and 5) inaccurate camera poses without
refinement deteriorate the reconstruction.

The number of parameters (i.e., 3#points for COLMAP and
EdgeGraph3D, 6#lines for ours and Line3D++, and #SDF net-
work parameters for NeuS) and the total execution times are
presented in Table I . For a fair comparison, we removed points
and lines of the reconstructions (i.e., ours, COLMAP, Line3D++,
and EdgeGraph3D) that are outside the tight bounding boxes of
the objects. As can be seen in the table, the proposed framework
reconstructs compact quantities of geometric primitives that ar-
ticulate the object geometry and works online with a fast enough
post-processing. We argue that running the reconstruction online
is beneficial in that we can lower computation and memory
requirements and access the reconstructed model anytime during
the scanning, bringing an opportunity for active sensing.

Although we have no accurate ground truths of the global
poses of the objects, we have the ground truth 3D CAD models
of the four objects manufactured with a 3D printer, which are
precise up to the accuracy of the 3D printer. We evaluate the
errors of the shapes by comparing the reconstructions to the
ground truth CAD models. First, we make all reconstructions
and the ground truth model into point clouds and then use an
iterative closest point (ICP) algorithm to align two point clouds.
For the reconstruction of NeuS, we sample points whose SDF
values are between ±1[mm] and for the rest, we sample a
sufficient number of points to uniformly cover the geometry
(e.g., 20000 points). After the alignment, the error is computed
for each point in the reconstruction as the distance to the closest
point in the ground truth, which represents the accuracy of the
reconstruction. Although the error can also be calculated for

https://youtu.be/s1J9GVYt7Fs
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TABLE I
NUMBER OF PARAMETERS AND TOTAL EXECUTION TIME (UNIT: [s]) FOR RECONSTRUCTION

TABLE II
SHAPE ESTIMATION ERROR (RMSE OF SAMPLED POINT CLOUD) OF EACH

CASE (UNIT: [mm])

each point in the ground truth, we do not report this because the
dominant source of error captured by this metric (e.g., missing
geometry) is already illustrated in Fig. 8. For COLMAP and
NeuS, to exclude points from other objects and the background,
we align only the points inside a tight bounding box of the object,
take points with errors smaller than 10[mm], and align those
points again. The root mean square error (RMSE) values are
presented in Table II , and our framework achieves the smallest
errors in all cases, which implies that we obtain more accurate
models with few outliers. Note that the error of the tetrahedron
reconstruction using NeuS is omitted because no meaningful
point cloud is obtained from the trained SDF.

B. Diverse Scenes

We study the generalizability and robustness of our frame-
work by evaluating on different object colors, a textured back-
ground, and natural/hand-crafted objects.

1) Object Colors: Since we use images converted to
grayscale, we experiment with three colors of dodecahedrons:
white, gray, and black. The results (Fig. 9(a)) show that when
the grayscale object color is similar to that of the background,
the reconstruction can face difficulties because feature points and
line segments are not extracted well. This is rather a fundamental
limitation of using images and could be alleviated by carefully
adjusting lighting conditions.

2) Textured Background: We print a painting and use it as the
background to test how the texture in the background influences
the reconstruction. The result in Fig. 9(b) shows that the hexago-
nal prism is still reconstructed and the texture of the background
is reconstructed as well, providing a holistic reconstruction of
the scene.

3) Natural and Hand-Crafted Objects: We also test our al-
gorithm on natural and hand-crafted objects: tree branches, wire
art, and handwriting. The wire art was handcrafted from a wire
with a circular cross-section of 1.5 [mm] in diameter and the
handwriting was written with a whiteboard marker on a piece
of paper. The results are presented in Fig. 9(c), (d) and (e),
which show that the proposed framework is able to tolerate

Fig. 9. Reconstruction results of diverse scenes: (a) three different object
colors (black, gray, and white from left to right); (b) textured background;
(c) tree branches; (d) wire art; and (e) handwriting. The figures on the top right
of (a)–(c) and on the left side of (b)–(e) are pictures of each scene.

non-perfectly straight structures of varying thickness and even
approximate curves.

C. Ablation Study

To highlight the necessity of our MAP inference presented
in Section II-A, we present ablation studies on the two prac-
tical objects. We compare the proposed inference with a joint
optimization in (1) with no latent variable z (i.e., standard BA
with pose priors). The computational budget is kept the same by
setting the total maximum number of iterations equal. For both
objects, the reconstructions from a simple joint optimization
without a latent variable have more missing points and lines as
can be seen in Fig. 10.

D. Manipulation Demonstration

We demonstrate how our framework can enhance perception
for robotic manipulation tasks (e.g., [20]). A tableware manip-
ulation task is performed, where a robot scans a dish drainer
and places two dishes in their respective target slots on the wiry
dish rack. For the demonstration, the robot is installed with a
gripper and an FT sensor (ATI Gamma) for admittance control.
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Fig. 10. Lines and points of the wire basket reconstruction (a) from the
proposed; and (b) from a joint optimization with no consideration on the latent
variable. The lines are in black and the points are in red.

Fig. 11. Snapshots of a robotic tableware manipulation task. Two dishes are
successfully placed in a row in the designated slots of the drainer.

We exploit the motion planner used in [21] to place dishes, and
the experiment snapshots are presented in Fig. 11. This can only
be possible with our framework which accurately estimates the
configuration of the wire spokes of the rack and, consequently,
the target slot for each dish.

IV. CONCLUSION

In this letter, we propose an online 3D edge reconstruc-
tion framework that recovers scenes with wiry structures from
monocular image sequences. For a compact and informative
representation, we employ lines as primitives of the reconstruc-
tion, but rather than lines detected in images, we adopt straight
edges connecting points. This not only enables circumventing
a line matching process but also is advantageous for address-
ing the wiry nature of target scenes because line segments in
these scenes are generally fragmented into pieces due to severe
self-occlusion. We first detect feature points and track them
on the image sequence to construct sparse 3D points while
simultaneously revising the camera poses via a robust MAP
inference. A set of edge candidates is generated by connecting
the feature points and the belief of each candidate is updated
in a Bayesian manner using a likelihood metric evaluated on
image observations. For the final reconstruction, we obtain a set
of probable 3D edges with beliefs greater than a threshold, and a
post-processing step is executed to reject false edges. The frame-
work is experimentally validated on the reconstruction of wiry
objects with a camera mounted on a robotic manipulator and
is proven to offer a more efficient and complete reconstruction
compared to state-of-the-art approaches. As our demonstration

on a manipulation task shows, the resulting reconstruction can
be easily utilized in subsequent robotic tasks.

Although our framework successfully recovers the 3D lines of
the structures, our work, as presented here, is not so suitable for
reconstructing general curves. By extracting appropriate anchor
points on curves, we may better reconstruct general structures
and enhance the quality of the resulting model. Additionally, the
likelihood calculation in the edge inference may be a bottleneck
if the target geometry is more complex. To address this, switch-
ing the likelihood estimator to a neural network is a promising
direction to speed up the process and also to optimize the metric.
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