
IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 11, NOVEMBER 2023 6971

VBOC: Learning the Viability Boundary of a Robot
Manipulator Using Optimal Control

Asia La Rocca , Matteo Saveriano , Senior Member, IEEE, and Andrea Del Prete , Member, IEEE

Abstract—Safety is often the most important requirement in
robotics applications. Nonetheless, control techniques that can
provide safety guarantees are still extremely rare for nonlinear
systems, such as robot manipulators. A well-known tool to ensure
safety is the viability kernel, which is the largest set of states from
which safety can be ensured. Unfortunately, computing such a set
for a nonlinear system is extremely challenging in general. Several
numerical algorithms for approximating it have been proposed in
the literature, but they suffer from the curse of dimensionality.
This letter presents a new approach for numerically approximating
the viability kernel of robot manipulators. Our approach solves
optimal control problems to compute states that are guaranteed to
be on the boundary of the set. This allows us to learn directly the
set boundary, therefore learning in a smaller dimensional space.
Compared to the state of the art on systems up to dimension 6, our
algorithm resulted to be more than 2 times as accurate for the same
computation time, or 6 times as fast to reach the same accuracy.

Index Terms—Control system security, optimal control, robot
control, robot learning.

I. INTRODUCTION

THE computation of viability kernels is a topic of great
importance in the field of safe control of constrained dy-

namical systems. The viability kernel is the set of states from
which a dynamical system can remain within a predefined set of
safe states. Knowing the viability kernel, it is straightforward to
design safe controllers; it is therefore a very powerful tool for
safety-critical applications. Unfortunately, except for the case of
linear dynamics and linear constraints [1], [2], computing these
sets is extremely challenging.

The classical method for the computation of these sets, known
as the Viability Kernel Algorithm [3], consists in gridding the
state space and approximating the viability kernel using recur-
sive inclusions. Due to the grid-based discretization of the state
space that is performed, the complexity and memory require-
ments of this algorithm scale exponentially with respect to the
state dimension (problem known as the curse of dimensionality).
The problem has then been approached with many different tools
such as viability theory [4], theory of barriers [5], approximate
dynamic programming [6], or simulated annealing [7].

Manuscript received 28 April 2023; accepted 23 August 2023. Date of publi-
cation 11 September 2023; date of current version 19 September 2023. This letter
was recommended for publication by Associate Editor V. Modugno and Editor
J. Kober upon evaluation of the reviewers’ comments. This work was supported
in part by the PRIN Project DOCEAT under CUP Grant E63C22000410001 and
in part by European Union through NextGenerationEU project iNest under ECS
Grant 00000043. (Corresponding author: Andrea Del Prete.)

The authors are with the Industrial Engineering Department, Univer-
sity of Trento, 38123 Trento, Italy (e-mail: asia.larocca@unitn.it; mat-
teo.saveriano@unitn.it; andrea.delprete@unitn.it).

Digital Object Identifier 10.1109/LRA.2023.3313921

One of the most relevant directions is given by the approaches
based on reachability analysis, exploiting the connection be-
tween viability kernels and reachable sets [8]. Reachability
analysis consists in inferring the set of all states that are back-
ward/forward reachable by a constrained dynamical system
from a given target/initial set of states. For nonlinear systems,
examples are given in [9], [10], [11], using interval arithmetic,
or in [6], [12], [13], using dynamic programming (level set
approaches based on the solution of the Hamilton-Jacobi PDE).
These algorithms try to accurately define the set boundary, but
they suffer from the curse of dimensionality, restricting their
application to small systems.

In recent years, an improvement in the field has been brought
by function approximators, such as Neural Networks (NNs),
which allow to represent complex sets in a more memory-
efficient way with respect to gridding [12], [13], [14]. These
algorithms require less memory to run and store the resulting
approximation, which represented one of the main bottlenecks
of previous approaches.

Another recent trend consists in the use of Reinforcement
Learning, as in [15], where the authors exploit Q-learning to
compute reach-avoid sets. This method allows to compute a safe
under-approximation of these sets, but its applicability is still
limited due to the need to discretize the action space.

A promising approach consists then in data-driven meth-
ods that rely on the feasibility of Optimal Control Problems
(OCPs). In [16] the authors approximated the forward invariant
region of nonlinear systems using Support Vector Machines
(SVMs). Their algorithm solves OCPs for initial conditions
well distributed over the state space, and uses the feasibility
results to train a classifier. This approach is applicable to a wide
range of nonlinear systems, but it becomes intractable for large
state spaces, since it requires too many samples to get good
approximations.

A promising way to reduce the computational burden of data-
driven methods is Active Learning (AL), a machine learning
framework to iteratively select new data samples that are the
most informative or representative. In a first study [17], the
authors proposed an iterative algorithm to select the points
nearest to the frontier of the learned SVM classifier to improve
its accuracy. However, the approach is still hardly scalable
because the number of samples in large dimensions can still grow
exponentially; moreover, nonlinear SVMs training complexity
scales more than quadratically with the number of samples.

Overall, the computation of viability kernels remains an active
area of research, with ongoing efforts to develop more efficient
and scalable algorithms. In this letter we propose a new approach
for the approximation of viability kernels of robot manipulators.
Instead of computing the set boundary by iteratively approaching
it (as in Active Learning or Hamilton-Jacobi methods), we

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0009-0002-1568-6618
https://orcid.org/0000-0002-9784-3973
https://orcid.org/0000-0003-1275-2851
mailto:asia.larocca@unitn.it
mailto:matteo.saveriano@unitn.it
mailto:matteo.saveriano@unitn.it
mailto:andrea.delprete@unitn.it

6972 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 11, NOVEMBER 2023

directly compute states that are exactly on the boundary. We
then use these states to train an NN that approximates the
set. The main advantage of this approach is that it requires
significantly less samples than other data-driven methods. While
our approach is tailored to robot manipulators (or any fully-
actuated multi-body system), many of our theoretical results
hold for any smooth dynamical system. Our tests on systems
with 2, 4 and 6 dimensional states show that it leads to faster and
more accurate approximations than state-of-the-art approaches.

II. PRELIMINARIES

A. Notation
� ∂V denotes the boundary of the set V;
� int(V) denotes the interior of the set V;
� X \ V denotes the set difference between X and V;
� {xi}N0 denotes a discrete-time trajectory given by the

sequence (x0, . . . , xN);
� x+ denotes the next state, whenever x is used to denote the

current state.

B. Problem Statement

Let us consider a discrete-time dynamical system with state
and control constraints:

xi+1 = f(xi, ui), x ∈ X ⊂ Rn, u ∈ U ⊂ Rm, (1)

where X and U are the closed and bounded sets of feasible
states and control inputs. Our goal is to compute a numerical
approximation of the viability kernel V , which is the subset
of X starting from which it is possible to keep the state in X
indefinitely. Mathematically, we can define V as:

V � {x0 ∈ X | ∃{ui}∞0 : xi ∈ X , ui ∈ U , ∀ i = 0, . . . ,∞}.
(2)

In the following, we assume that V is closed.
Assumption 1: We assume that f(·) be differentiable with

respect to x, which implies:

||eig(∂xf(x, u))|| <∞ ∀x ∈ X , u ∈ U , (3)

where the function eig(·) returns the eigenvalues of the given
matrix.

Assumption 1 implies that our method cannot handle non-
smooth systems, such as a robot that makes contact with a
perfectly rigid environment. However, contacts can sometimes
be modeled as visco-elastic, recovering then differentiability.

C. Backward Reachability vs Viability

Our goal is to approximate V , which is the largest control-
invariant set [1] (i.e., a set inside which you can remain in-
definitely). However, for many applications (e.g., ensuring re-
cursive feasibility of MPC [18], or designing a safety filter for
a Reinforcement Learning algorithm [19]) we could settle for
just any sufficiently large control-invariant set. Control-invariant
sets can be computed using N-step backward reachability, i.e.,
computing the set of points from which a given set can be reached
in N steps. In certain cases, backward reachability can also be

used to compute V , and in the following we assume that this is
the case.

Assumption 2: Let us define S as the set containing all the
equilibrium states of our system:

S = {x ∈ X | ∃u ∈ U : x = f(x, u)}. (4)

We assume that the ∞-step backward reachable set of S is
equivalent to V . In other words, that a state is viable if and
only if from that state you can reach an equilibrium state.

We argue that this assumption is satisfied for most robot
manipulators, which are our main focus. However, even if this
assumption were not satisfied, our approach could still be used
to compute control-invariant sets.

D. Data-Driven Learning

A state-of-the-art approach to numerically approximate back-
ward reachable sets is to sample states xsample ∈ X and verify
whether, from there, it is possible to reach the target set [20], S
for our application. This can be done by solving an OCP like the
following one:

maximize
{xi}N0 ,{ui}N−10

1

subject to xi+1 = f(xi, ui) ∀ i = 0, . . . , N − 1

xi ∈ X , ui ∈ U ∀ i = 0, . . . , N − 1

x0 = xsample

xN = xN−1 (5)

where N ∈ N is the time horizon, which must be sufficiently
large to allow the system to reach, if possible, an equilibrium
state from xsample. If a solution of this problem is found, then
we know that xsample ∈ V , and the whole state trajectory is in
V . Otherwise, we can assume that xsample �∈ V , even though
this is not necessarily the case because a solution may exist even
if the solver was unable to find one. While potentially impactful,
this issue is typically neglected by assuming that the solver can
find a solution if one exists. This information is then used to
train a classifier (e.g., SVM or NN) to distinguish viable and
non-viable states.

This approach scales badly because it requires a dense sam-
pling of X to accurately approximate V . To reduce complexity,
it has been coupled with Active Learning (AL), a technique to
choose the most informative or representative values of xsample.
A first study on the application of AL for the computation of
viability kernels was done in [17], where the authors proposed
an algorithm based on iteratively testing the nearest points to the
frontier of the currently learned SVM classifier. More advanced
AL algorithms for reachable sets approximations can be found
in [21], [22].

Instead of iteratively approaching ∂V , the next section
presents an approach to directly compute states that are exactly
on ∂V .

III. VIABILITY-BOUNDARY OPTIMAL CONTROL (VBOC)

To find states that are exactly on ∂V , we solve a modified
version of OCP (5), where the initial state x0 is not completely

ROCCA et al.: VBOC: LEARNING THE VIABILITY BOUNDARY OF A ROBOT MANIPULATOR USING OPTIMAL CONTROL 6973

fixed, but it is optimized through a cost function:

maximize
{xi}N0 ,{ui}N−10

a�x0

subject to xi+1 = f(xi, ui) ∀ i = 0, . . . , N − 1

xi ∈ X , ui ∈ U ∀ i = 0, . . . , N − 1

Sx0 = s

xN = xN−1, (6)

where a ∈ Rn is the cost vector, S ∈ Rns×n and s ∈ Rns are
the initial constraint matrix and vector, with ns being their size.
While the role of a is straightforward, the use of S and s to
partially constrain x0 will become clear in Section IV-B. Let us
now prove that the initial state of any locally-optimal solution
of (6) is on ∂V .

Lemma 1: Let us consider a locally-optimal state trajectory
{x∗i}N0 computed by solving (6). Let us assume that PSa �= 0,
where PS � (I − S†S) is a null-space projector of S. Then, if
N is sufficiently large to allow reaching S from any viable state,
we have:

x∗0 ∈ ∂V.
Moreover, for any sufficiently small value ε > 0:

x̃0 � x∗0 + εPSa /∈ V.
Proof: We split this proof in two cases: when x̃0 /∈ X and

when x̃0 ∈ X . In the first case, x̃0 /∈ X implies x̃0 /∈ V . More-
over, we know by definition of (6) that x∗0 ∈ V . Since x̃0 and x∗0
can be arbitrarily close, then we can inferx∗0 ∈ ∂V . In the second
case (x̃0 ∈ X), we can prove this lemma by contradiction. We
suppose that x∗0 �∈ ∂V , which implies x̃0 ∈ V for a sufficiently
small ε, and we show that this leads to the conclusion that x∗0 is
not a local optimum. If x∗0 �∈ ∂V then we know that x∗0 ∈ int(V).
Together with the fact that x̃0 ∈ X , this means that x̃0 ∈ V for
any sufficiently small ε > 0. It is easy to verify that x̃0 satisfies
the initial conditions of (6), indeed:

Sx̃0 = Sx∗0 + εSPSa = Sx∗0 = s, (7)

where we have exploited the fact thatSPS = 0. If x̃0 is viable, by
the assumption that N be sufficiently large, it must be possible
to satisfy also the terminal conditions of (6), i.e., to reach an
equilibrium state. Finally, x̃0 gives a better cost for (6) than x∗0
because:

a�x̃0 = a�x∗0 + εa�PSa > a�x∗0, (8)

where we have exploited the fact that a�PSa > 0 because all
null-space projectors (as PS) are positive semi-definite and
PSa �= 0 by assumption. In conclusion, since using x̃0 as initial
state it is possible to satisfy all the constraints of (6), while
achieving a better cost, this implies that {x∗i}N0 be not a local
optimum. Therefore, if {x∗i}N0 is a local optimum, it must hold
that x∗0 ∈ ∂V and x̃0 /∈ V . �

Lemma 1 ensures that using problem (6) gives us trajectories
that always start from ∂V . However, the remaining N states
(from x∗1 to x∗N) could belong to int(V). Ideally, we would like
to compute trajectories that are entirely on ∂V . While this is not
guaranteed, we argue that often some parts of {x∗i}N1 are on ∂V ,
and we provide a simple method to check when this is the case.
To this aim, we start by showing that, under certain conditions,

a viable state trajectory that starts on ∂V , remains on ∂V as long
as these conditions are met.

Lemma 2: Given a state x ∈ ∂V , a control u ∈ U , and a state
direction d ∈ Rn, ||d|| = 1, such that for any sufficiently small
ε > 0:

x̃ � x+ ε d ∈ X \ V, (9)

then we have that:

x+ = f(x, u) �∈ int(V). (10)

Proof: Since x̃ is in X but not in V , any state reachable from
x̃ cannot be in V; therefore we can write:

x̃+ = f(x̃, u)

= f(x, u) + ε ∂xf(x, u)d+O(ε2)

= x+ + ε ∂xf(x, u)d+O(ε2) �∈ V. (11)

Since ε can be arbitrarily close to zero, and the eigenvalues of
∂xf(x, u) are bounded (Assumption 1), this implies that x̃+

can be arbitrarily close to x+. Since x̃+ �∈ V , we can infer that
x+ can either be outside V , or on its boundary, but not in its
interior. �

To better understand assumption (9), let us introduce a Corol-
lary, which is a special case of Lemma 2. This Corollary states
that if a trajectory starts on ∂V , it cannot reach int(V) before
reaching ∂X .

Corollary 1: Given a control u ∈ U and a state x ∈ ∂V sat-
isfying the following assumption:

x �∈ ∂X , (12)

then we have that: x+ = f(x, u) /∈ int(V).
Proof: This corollary is a special case of Lemma 2 be-

cause (12) implies (9). Indeed, if x ∈ ∂V and x �∈ ∂X , then
there must exist a direction d ∈ Rn in which x can be perturbed
with an arbitrarily small magnitude ε, so that it leaves V without
leaving X , which is what (9) states. �

Lemma 2 states something similar to Corollary 1, but clari-
fying that actually reaching ∂X is necessary but not sufficient
to reach int(V). The real condition to be met is indeed (9). The
next Theorem exploits Lemma 2 to suggest a simple method to
verify whether the optimal states {x∗i}N1 , computed by solving
(6), are on ∂V .

Theorem 1: Let us consider a locally-optimal state trajectory
{x∗i}N0 computed by solving (6). Let us assume that PSa �= 0,
where PS � (I − S†S) is a null-space projector of S. Let us
assume thatN is sufficiently large to reachS from any state inV .
Consider the following definition of a perturbed state trajectory:

x̃0 = x∗0 + εPSa,

x̃i+1 = f(x̃i, u
∗
i). (13)

Let us assume that for any sufficiently small ε > 0 we have:

x̃i ∈ X i = 0, . . . , k − 1, (14)

for a certain time step k ∈ [0, N]. Then we have:

x∗i ∈ ∂V i = 0, . . . , k. (15)

Proof: The key idea of this proof is to iteratively apply
Lemma 2 to show that x∗i+1 ∈ ∂V , starting from the knowledge
that x∗i ∈ ∂V , u∗i ∈ U , and x̃i ∈ X \ V . We initialize the proof
by exploiting Lemma 1, which states that x∗0 ∈ ∂V and x̃0 /∈ V .

6974 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 11, NOVEMBER 2023

Considering also assumption (14) and the obvious fact that
u∗i ∈ U , ∀ i, we have all the conditions to apply Lemma 2 for
i = 0. Lemma 2 tells us only that x∗i+1 /∈ int(V). However, since
all the optimal states must be viable by definition of (6), we
can infer x∗i+1 ∈ ∂V . To iterate the application of Lemma 2 we
need to show that x̃i+1 ∈ X \ V . Assumption (14) ensures that
x̃i+1 ∈ X . The fact that x̃i+1 /∈ V is instead a consequence of
x̃i ∈ X \ V because, by definition of V , we cannot reach V from
the outside without violating a constraint. �

Theorem 1 provides us with the theoretical foundations to
design an iterative algorithm for numerically approximating
V in Section V. However, before we do that, the next section
analyzes an interesting property of viability kernels of robotic
manipulators, which we exploit to customize our algorithm.

IV. VIABILITY FOR ROBOT MANIPULATORS

Let us introduce the dynamics of a robot manipulator with nj

DOFs, using an unconventional form for the velocity term [23]:

M(q)q̈ + q̇�C(q)q̇ + g(q) = u, (16)

where q, q̇, q̈ ∈ Rnj are the joint positions, velocities, and ac-
celerations, M ∈ Rnj×nj is the positive-definite mass matrix,
C(q) ∈ Rnj×nj×nj is the 3D tensor accounting for Coriolis and
centrifugal effects, and g(q) ∈ Rnj are the gravity torques. We
assume that q, q̇, and u are bounded:

q ∈ Q � {q ∈ Rnj |qmin ≤ q ≤ qmax},
q̇ ∈ Q̇ � {q̇ ∈ Rnj |q̇min ≤ q̇ ≤ q̇max},
u ∈ U � {u ∈ Rnj |umin ≤ u ≤ umax}, (17)

where we assume that q̇min < 0 and q̇max > 0.
Assumption 3: Let us assume that the robot is sufficiently

strong to compensate for gravity in any configuration:

g(q) ∈ U ∀ q ∈ Q. (18)

In the following lemma we show that, for this class of systems,
V is star-convex with respect to the joint velocities. In other
words, if a state (q, q̇) ∈ V , then all states (q, α q̇) ∈ V for α ∈
[0, 1].

Lemma 3: Let us consider a manipulator with dynamics (16)
and constraints (17). Under Assumption 3, its viability kernel is
starred with respect to the joint velocities.

Proof: If a state (q0, q̇0) ∈ V , it means there exists an infinite-
time feasible trajectory starting with that state: (q(t), q̇(t)) ∈ X ,
∀ t ≥ 0, with q(0) = q0 and q̇(0) = q̇0. We now prove that all
the states (q0, αq̇0) are viable ∀α ∈ [0, 1] by showing that the
time-scaled trajectory q̃(t) � q(αt) is feasible. To prove this,
we exploit the time-scaling property of manipulator trajecto-
ries [23]. The time-scaled trajectory trivially satisfies the joint
position and velocity limits, so we only need to prove that it also
satisfies the control constraints. The time-scaled joint velocities
and accelerations are:

˙̃q(t) = αq̇(αt), ¨̃q(t) = α2q̈(αt). (19)

Substituting these expressions in the dynamics (16) we get:

α2(M(q)q̈ + q̇�C(q)q̇) + g(q) = ũ(α), (20)

where we expressed the control inputs ũ as a function of α.
Since the original trajectory q(t) is feasible by assumption, we
know that ũ(1) ∈ U . Moreover, by assumption (18), we know

Fig. 1. Star-convex set, with two possible examples of choices ofa. The orange
parts of the set boundary cannot be discovered by any choice of a.

that ũ(0) ∈ U . Finally, by convexity of U , we can infer that
ũ(α) ∈ U , ∀α ∈ [0, 1], proving the feasibility of the time-scaled
trajectory and the viability of (q0, αq̇0). �

A. Star-Convex Viability Set Representation

In general, V can be encoded with a non-parametric classifier,
such as a feedforward NN φ(x) : Rn → R, which takes as input
a state x and gives as output a binary label (viable, unviable). To
train such a classifier, both positive (viable) and negative (unvi-
able) examples are needed. However, so far we have focused on
computing viable states on ∂V , which are therefore all positive
examples. We could use the perturbed states x̃i(ε) (described in
Theorem 1) as negative examples, but choosing the proper value
of ε could be hard. A too small value could lead to positive and
negative samples that are too close, making the training of the
classifier extremely difficult. On the other hand, a too large value
could lead to poor classification accuracy. To avoid these issues,
we suggest to exploit that our samples are on ∂V , and that V is
star-convex (Lemma 3) to encode V differently.

Rather than using a classifier, we could encode V with a
function φ(q, d) : Rnj ×Rnj → R that takes as inputs the joint
positions q, the joint velocity direction d (with ||d|| = 1), and
computes the maximum viable joint velocity norm. In other
words, if γ = φ(q, d), then (q, γd) ∈ ∂V . With this represen-
tation of V , we have transformed the classification problem into
a regression problem and we no longer need unviable states to
learn V .

B. Uniform Data Distribution

Solving instances of OCP (6) we can compute viable trajec-
tories that are guaranteed to start from ∂V . However, to use
these trajectories to learn V , they need to cover its surface as
uniformly as possible. This could be hard if V is non-convex
(which is in general the case), since just maximising a�x0 for
uniformly random directions a would not ensure a complete
coverage of ∂V (e.g., see Fig. 1). In this case, the resulting
initial state distribution would depend on the shape of the set

ROCCA et al.: VBOC: LEARNING THE VIABILITY BOUNDARY OF A ROBOT MANIPULATOR USING OPTIMAL CONTROL 6975

and it could result in an accumulation of data on sharper areas
of the set boundary and absence of data in other areas.

Ensuring a uniform coverage of ∂V does not seem possible
without knowing its shape. However, our main concern is to
ensure a uniform coverage of the input space of our set rep-
resentation φ(·), which is the space of joint angles and joint
velocity directions. This is achieved by simply fixing q0 and the
direction of q̇0 to uniformly random values qinit and d, while
maximizing ||q̇0||. This is obtained by choosing:

a =

[
0

d

]
, S =

[
I 0

0 I − dd�

]
, s =

[
qinit

0

]
, (21)

which leads to a cost that is orthogonal to S, ensuring the
satisfaction of the assumption of Lemma 1 (PSa �= 0).

This choice ensures a uniform distribution of the initial states.
However, our method also exploits other states of the optimal
trajectories to train the NN, whose distribution depends on the
system dynamics. Using the strategy described above, we have
observed an accumulation of data at lower velocities, where the
trajectories converge to satisfy the terminal constraint. Empiri-
cally, we have observed that initializing one joint position at one
of its bounds leads to a better coverage of ∂V , because it allows
for longer extreme trajectories. The other joint positions are
still uniformly randomized, as the initial joint velocity direction.
Finally, to avoid trivial instances of the OCP, we ensure that the
initial velocity direction of the joint that starts at its bound points
away from it (e.g., if q0[i] = qmax

0 [i] then q̇0[i] < 0).

V. ALGORITHMIC IMPLEMENTATION

This section presents the implementation of our algorithm,
summarized by the pseudo-code in Algorithms 1 and 2.

Our approach is to generate trajectories that are, at least
partially, on ∂V . OCP (6) returns indeed a trajectory that, even if
only locally-optimal, is guaranteed to start from ∂V . However,
this is true only if the horizon N is sufficiently long. To ensure
this is the case, we solve (6) with an increasing value for N ,
starting from a (reasonable) initial guess, until a�x∗0 converges.
Algorithm 1 describes this procedure.

To well approximate V using these states we use the data
generation approach described in Section IV-B (lines 3–6 of
Algorithm 2).

After solving OCP (6) (line 7 of Algorithm 2), we must check
which optimal states belong to ∂V and can therefore be added
to the dataset D. By Lemma 1, we know that x∗0 ∈ ∂V , and,
therefore, we can add it to D (line 8). Moreover, we know that
all viable states on ∂X are also on ∂V (simply because V ⊆ X),
so we could add them to D. However, because V is starred with
respect to q̇ (see Section IV-A), we only add the states on ∂Q̇
(line 9). At position limits there could be multiple states on ∂V
with the same joint position and velocity direction, but different
velocity norms, therefore these states would be conflicting in our
starred-set representation and should be discarded. To check if
other states are on ∂V , we exploit Theorem 1. We compute the
perturbed states x̃i as long as they belong to X (lines 10–13),
and we add the associated optimal states to D (lines 14–15),
discarding the states on ∂X because they have already been
considered (line 9).

If the perturbed trajectory leaves X at x̃j−1, the associated
optimal state x∗j−1 must be on ∂X and, therefore, Lemma 2 tells
us that the rest of the state trajectory could belong to int(V). To

Algorithm 1: Viability-Boundary Optimal Control
(VBOC).

Require: Constraint sets X and U , Dynamics f(·, ·),
Number of DOFs nj , Time horizon Nstart, Time horizon
increment n, OCP (6), Initial joint positions qinit, Initial
joint velocity direction d
1: a, s, S ← (21)
2: N, γ ← Nstart, 0
3: repeat
4: {x∗i}N0 , {u∗i}N−10 ← OCP(X ,U , f,N, a, S, s)
5: γprevious, N ← γ,N + n
6: γ ← a�x∗0
7: until γ > γprevious
8: return{x∗i}N0 , {u∗i}N−10 , N, a

check if this is the case, we exploit again Lemma 3, which tells us
that the states on∂V , except for those at joint position limits, have
maximum velocity norm for that position and velocity direction.
So, when the optimal trajectory leaves ∂X , say at x∗j /∈ ∂X (line
18), we solve another OCP (6), fixing the initial position and
velocity direction to those ofx∗j (lines 19–22). If this OCP returns
the same initial velocity norm of x∗j , then this proves that x∗j ∈
∂V . If instead the OCP returns a higher initial velocity norm, it
means that x∗j was in int(V), but it gives anyway a new trajectory
starting from ∂V that can be used in place of the previous one
(lines 23–26). In both cases, x∗j can be added to D (line 27) and
the whole process can continue.

VI. RESULTS

To study the performance of our algorithm (VBOC) we test
it with 2, 4 and 6-dimensional systems. We compare VBOC
with two state-of-the-art algorithms, focusing the compari-
son on the data-generation part, which is our main contribu-
tion. The chosen algorithms are: i) the approach presented in
Section II-D relying on an informative-based Active Learning
(AL) algorithm [22], and ii) a Hamilton-Jacoby Reachability
(HJR) algorithm [13]. HJR is an approximate dynamic pro-
gramming algorithm that computes the solution of the HJI PDE
through recursive regression (since we are interested in infinite-
time backward reachability, we discard the time dependency).

We evaluated the accuracy of the results by generating a test
set using only the initial states obtained by calling Algorithm 1
with fully random initial position and velocity direction, to
obtain well distributed samples on ∂V (using the whole state
trajectories would result in a higher density of samples at low
velocities). On this set of N points, we measured the Root Mean
Squared Error (RMSE), defined as:

RMSE =

√√√√ 1

N

N−1∑
i=0

(
||q̇i|| − φ

(
qi,

q̇i
||q̇i||

))2

, (22)

where φ(·, ·) is the NN trained by VBOC. For AL and HJR,
the trained NN is instead a classifier. Therefore, to measure the
RMSE, we numerically identify (via binary search) the classifier
boundary for the given joint positions qi and velocity direction
q̇i/||q̇i||.

In the tests we have run VBOC with Nstart = 100, ε = 10−2
and solver tolerances equal to 10−3.

6976 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 11, NOVEMBER 2023

Algorithm 2: Compute States on ∂V .

Require: Constraint sets Q and Q̇, Number of DOFs nj

Number of trajectories K, Perturbation parameter ε, Time
horizon Nguess

1: D ← []
2: for k = 0→ K do
3: q ← RANDOMUNIFORM(qmin, qmax)
4: i← RANDOMINTEGER(0, nj)
5: q[i]← RANDOMCHOICE([qmin[i], qmax[i]])
6: d← RANDOMVELOCITYDIRECTION(i, q)
7: {x∗i}N0 , {u∗i}N−10 , N, a← VBOC(q, d,Nguess)
8: insertx∗0 in D
9: for l = 1→ N do

10: if q̇∗l ∈ ∂Q̇ insertx∗l in D
11: x̃0 ← x∗0 + εa
12: for j = 1→ N do
13: if x̃j−1 ∈ X then
14: x̃j ← f(x̃j−1, u∗j−1)
15: if x∗j /∈ ∂X insertx∗jinD
16: else
17: x̃j ← x̃j−1
18: if x∗j /∈ ∂X then
19: γ ← a�x∗j
20: d← VELOCITYDIRECTION(x∗j)
21: q ← JOINTPOSITIONS(x∗j)
22: {x∗i}Nj , {u∗i}N−1j ,∼, a ← VBOC(q, d,N − j)

23: γnew ← a�x∗j
24: if γnew > γ then
25: for l = j + 1→ N do
26: if q̇∗l ∈ ∂Q̇ insertx∗l inD then
27: insertx∗jinD
28: x̃j ← x∗j + εa
return D

We have used fully-connected NNs composed of 3 layers with
ReLU activation functions. All algorithms are implemented1

in Python, using ACADOS [24] for solving the OCPs and the
PyTorch [25] implementation of Adam [26] for the NNs training.
The tests are performed on a computer with 32 AMD Ryzen9
5950x processors and a GeForce RTX 3060 GPU. The OCPs are
solved in parallel on 30 cores and the NNs training is performed
with CUDA on the GPU.

A. Tests on a 2D System

The tested system is a simple pendulum, a model with a single
swinging link connected to a fixed base through a revolute joint.
The system has a 2-dimensional (2D) state space x = [q q̇]�
and a 1-dimensional (1D) control input u. The joint positions,
velocities and input constraints are in the form (17) and are set
to π ± π/4 rad,±10 rad/s, and±3 Nm, respectively. With a 2D
system, the computation of V is actually simpler than explained
in Algorithm 2 since its boundary does not require sampling to be
explored. It is sufficient to generate two trajectories with initial
positions fixed at the two extremes qmin/qmax. The used NN
has 100 neurons in the hidden layer. The algorithm converged

1Our code is available at github.com/idra-lab/VBOC.

Fig. 2. Viability kernel for the single pendulum. The background color repre-
sents the set learned using VBOC. The black and blue dots represent the training
data from the two generated trajectories. The axis limits correspond to the joint
position and velocity limits.

TABLE I
RMSE COMPARISON FOR THE 2D SYSTEM

in 13 s and the resulting V approximation and the training data
are shown in Fig. 2.

To highlight the improvement with respect to the other state-
of-the-art approaches, we compare the computational time and
RMSE obtained using the same solver and NN complexity. AL
and HJR have been executed on a grid with 1002 samples.
Table I shows the results. VBOC results to be faster and more
accurate because the other approaches, having to sample the
state space and train the NN multiple times due to their iterative
structure, require more time to obtain good approximations. HJR
performed worse than the others because, at each iteration, it
relies on the NN trained at the previous iteration; this leads to
an accumulation of the approximation error.

B. Tests on a 4D System

The tested system is now a double pendulum, an open kine-
matic chain with two swinging links and two planar revolute
joints. The system has a 4D state space x = [q1 q2 q̇1 q̇2]

� and
a 2D control input u = [τ1 τ2]

�. The state constraints of each
joint are the same of the previous test, the input constraints are
now ±10 Nm.

In these tests we decided to compare the RMSE evolutions
for the three algorithms while learning. VBOC, as presented
in Algorithm 2, is not incremental, but we can easily make it
incremental by alternating between data generation and training.
At each iteration we computed a batch ofK = 1000 data points.
The AL algorithm is executed it on a grid with 604 samples and
batches of 1000 points. For HJR, to converge in a reasonable
amount of time (58 minutes), we had to use a smaller number of
samples: 204. For VBOC and AL we have used NNs with 300
neurons in the hidden layer. For HJR instead, since the NN is

ROCCA et al.: VBOC: LEARNING THE VIABILITY BOUNDARY OF A ROBOT MANIPULATOR USING OPTIMAL CONTROL 6977

Fig. 3. Comparison between the RMSE evolution for the 4D system.

TABLE II
RMSE COMPARISON FOR THE 4D SYSTEM

here used inside the OCPs, we observed that it performed better
using only 100 neurons due to the reduced complexity of the
OCPs.

Fig. 3 shows the RMSE evolutions over time, where we can
see that VBOC reaches higher accuracies much faster than the
other algorithms. At each iteration, HJR has to solve an OCP for
each point and to train an accurate NN. Even if the OCPs have
a shorter (1-step) horizon, the higher number of OCPs and the
training of the intermediate NNs limit the number of samples
that can be used and, consequently, the final accuracy. AL and
VBOC point instead at minimizing the number of solved OCPs,
which allows them to be more efficient. Table II reports the final
RMSE error for the three algorithms, which is 3.4 times larger for
AL than for VBOC. Moreover, Table II also reports the RMSE
of VBOC on the training set, which is only slightly better than on
the test set, highlighting a good generalization capability of the
trained NN. Finally, looking at the cumulative error distribution
in Fig. 4 we can see that VBOC not only resulted in a smaller
average error (RMSE), but also in a lower number of errors
above any given threshold.

C. Tests on a 6D System

To test the scalability of VBOC, we applied it also to a triple
pendulum, which has a 6D state space x = [q1 q2 q3 q̇1 q̇2 q̇3]

�
and a 3D control input u = [τ1 τ2 τ3]

�. The state and input
constraints are the same as the previous test. For this system
we compare only VBOC and AL, since the curse of dimension-
ality of HJR resulted to be already too relevant. Indeed, HJR
converged with an extremely high RMSE (4.0 rd/s) because we
had to execute it on a grid of only 126 points to make it converge
within 6 hours.

Table III shows that the final RMSE obtained by VBOC is
2.2 times smaller than the one obtained with AL. Fig. 5 shows

Fig. 4. Cumulative error distribution for the 4D system at then end of the
training. This plot shows how many test samples (y axis) obtained a prediction
error (x axis) below a certain value.

TABLE III
RMSE COMPARISON FOR THE 6D SYSTEM

Fig. 5. Comparison between the RMSE evolution for the 6D system.

that the RMSE achieved by AL after 6 hours is comparable to
that achieved by VBOC after less than 30 minutes. Even though
the RMSE of VBOC on the training set is comparable to the
one obtained for the 4D system, errors on the test set are larger,
highlighting a lack of generalization. Smaller errors could be
achieved by letting the algorithms run for more iterations, and/or
using larger NN structures.

VII. CONCLUSION

This letter presented a new algorithm (VBOC) for the ap-
proximation of the viability kernel of robot manipulators. Differ-
ently from state-of-the-art approaches, VBOC computes directly

6978 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 11, NOVEMBER 2023

states on the boundary of the set, leading to more accurate results
in a data-efficient manner. The set boundary has indeed a smaller
dimension than the set itself, so VBOC scales more favourably
than algorithms that explore the entire state space. VBOC is
theoretically guaranteed to provide data on the boundary of
the set, requiring only local optimality of the OCP solutions.
Moreover, contrary to many state-of-the-art methods, VBOC
does not need to rely on the ability of the OCP solver to
correctly detect unfeasible problems, which makes it robust to
numerical errors. Additionally, since the trained NN introduces
some approximation errors due to its intrinsic inability to exactly
represent the set, the OCPs complexity can be reduced by
relaxing the solver tolerances to be only slightly more accurate
than the expected error on the set approximation.

Despite all of this, many issues still remain open. For in-
stance, scalability is still a major concern, since the algorithmic
complexity still scales exponentially. To address this, we could
use customized NN structures that embed our prior knowledge
on the shape of V (e.g., we know that the maximum viable
velocity is null when a joint is at its bound). Moreover, even
if our tests have focused on joint-space constraints, we plan to
extend VBOC to Cartesian-space constraints, e.g., for obsta-
cle avoidance. Another interesting challenge is the use of the
learned sets as terminal constraints in MPC (or safety filters in
Reinforcement Learning). Since these sets are approximations
of V , they are only approximately control invariant, so recursive
feasibility cannot be guaranteed in general. Therefore, we plan
to investigate algorithmic approaches to use these sets, while
maintaining strong guarantees of safety. Finally, while the theory
in Section III holds for any differentiable system, our algorithm
is specifically designed for star-convex sets; its extension to more
generic cases is currently being investigated.

REFERENCES

[1] F. Blanchini, “Set invariance in control,” Automatica, vol. 35,
pp. 1747–1767, 1999.

[2] A. D. Prete, “Joint position and velocity bounds in discrete-time acceler-
ation/torque control of robot manipulators,” IEEE Robot. Automat. Lett.,
vol. 3, no. 1, pp. 281–288, Jan. 2018.

[3] P. Saint-Pierre, “Approximation of the viability kernel,” Appl. Math. Op-
tim., vol. 29, pp. 187–209, 1994.

[4] J.-P. Aubin, Viability Theory, 1st ed., C. I. Byrnes, Ed. Berlin, Germany:
Springer, 1991.

[5] F. Rußwurm, W. Esterhuizen, K. Worthmann, and S. Streif, “On MPC
without terminal conditions for dynamic non-holonomic robots,” IFAC-
PapersOnLine, vol. 54, no. 6, pp. 133–138, 2021.

[6] P.-A. Coquelin, S. Martin, and R. Munos, “A dynamic programming
approach to viability problems,” in Proc. IEEE Int. Symp. Approx. Dynamic
Program. Reinforcement Learn., 2007, pp. 178–184.

[7] N. Bonneuil, “Computing the viability kernel in large state dimension,” J.
Math. Anal. Appl., vol. 323, pp. 1444–1454, 2006.

[8] I. M. Mitchell, “Comparing forward and backward reachability as tools for
safety analysis,” in Proc. Int. Conf. Hybrid Systems: Computation Control,
2007, pp. 428–443.

[9] D. Monnet, J. Ninin, and L. Jaulin, “Computing an inner and an
outer approximation of the viability kernel,” Reliable Comput., vol. 22,
2016.

[10] J. M. Bravo, D. Limon, T. Alamo, and E. F. Camacho, “On the computation
of invariant sets for constrained nonlinear systems: An interval arithmetic
approach,” in Proc. Eur. Control Conf., 2003, pp. 288–293.

[11] E. Zanolli and A. Del Prete, “Robust satisfaction of joint position and ve-
locity bounds in discrete-time acceleration control of robot manipulators,”
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., 2023.

[12] F. Jiang, G. Chou, M. Chen, and C. J. Tomlin, “Using neural networks to
compute approximate and guaranteed feasible Hamilton-Jacobi-Bellman
PDE solutions,” 2016, arXiv:1611.03158.

[13] V. Rubies-Royo and C. Tomlin, “Recursive regression with neural net-
works: Approximating the HJI PDE solution,” in Proc. 5th Int. Conf. Learn.
Representations, 2017.

[14] B. Djeridane and J. Lygeros, “Neural approximation of PDE solutions:
An application to reachability computations,” in Proc. IEEE Conf. Decis.
Control, 2006, pp. 3034–3039.

[15] K.-C. Hsu, V. Rubies-Royo, C. J. Tomlin, and J. F. Fisac, “Safety and
liveness guarantees through reach-avoid reinforcement learning,” 2021,
arXiv:2112.12288.

[16] Y. Zhou, D. Li, Y. Xi, and Y. Xu, “Data-driven approximation for feasible
regions in nonlinear model predictive control,” 2020, arXiv:2012.03428.

[17] L. Chapel and G. Deffuant, “SVM viability controller active learn-
ing,” in Proc. Kernel Machines Reinforcement Learn. Workshop, 2007,
pp. 193–200.

[18] L. Hewing, K. P. Wabersich, M. Menner, and M. N. Zeilinger, “Learning-
based model predictive control: Toward safe learning in control,” Annu.
Rev. Control Robot. Auton. Syst., vol. 3, pp. 269–296, 2020.

[19] K. P. Wabersich and M. N. Zeilinger, “Linear model predictive safety cer-
tification for learning-based control,” in Proc. IEEE Conf. Decis. Control,
2018, pp. 7130–7135.

[20] B. Djeridane and J. Lygeros, “Approximate viability using quasi-random
samples and a neural network classifier,” IFAC Proc. Volumes, vol. 41,
pp. 14342–14347, 2008.

[21] A. Chakrabarty, A. Raghunathan, S. D. Cairano, and C. Danielson, “Data-
driven estimation of backward reachable and invariant sets for unmodeled
systems via active learning,” in Proc. IEEE Conf. Decis. Control, 2019,
pp. 372–377.

[22] A. Chakrabarty, C. Danielson, S. D. Cairano, and A. Raghunathan,
“Active learning for estimating reachable sets for systems with un-
known dynamics,” IEEE Trans. Cybern., vol. 52, no. 4, pp. 2531–2542,
Apr. 2022.

[23] J. M. Hollerbach, “Dynamic scaling of manipulator trajectories,” in Proc.
IEEE Amer. Control Conf., 1983, pp. 752–756.

[24] R. Verschueren et al., “Acados—A modular open-source framework for
fast embedded optimal control,” Math. Program. Computation, vol. 14,
pp. 147–183, 2019.

[25] A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Proc. Conf. Neural Inf. Process. Syst., 2019.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. Int. Conf. Learn. Representations, 2014, pp. 14–17.

Open Access funding provided by ‘Universit? degli Studi di Trento’ within the CRUI CARE Agreement

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

