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Modeling of Muscle Wrapping Phenomenon: A
Geometric Method Based on Tangency Constraints

Iram Muñoz-Pepi , Nadia Garcia-Hernandez , and Vicente Parra-Vega , Member, IEEE

Abstract—Musculoskeletal simulations have become an essential
tool for surgical planning and clinical evaluation of movement.
Accurate simulations of muscle-tendon paths in musculoskeletal
models promote better predictions of muscle forces and, therefore,
joint torques. A precise description of a muscle-tendon unit be-
havior should consider the wrapping phenomenon around bones.
State-of-the-art muscle wrapping methods do not guarantee con-
tinuity along the path, which may result in unrealistic solutions.
Moreover, many use the well-known Newton-Raphson method,
discarding other methods to solve the problem. This article presents
a muscle wrapping formulation based on tangency constraints that,
unlike other methods, guaranteesC1 continuity along the path over
n parametric surfaces. We first test our formulation over one cylin-
der to compare the numerical efficiency considering the Newton-
Raphson and two Quasi-Newton (Broyden–Fletcher–Goldfarb–
Shanno and Broyden) methods under two cases: 1) wrapping state
all the time, and 2) from/to a wrapping to/from a non-wrapping
state. Results show that all yields well-posed solutions according
to the tangency constraints, and that Broyden’s method is the
fastest to converge. Finally, a simulation of muscle wrapping over
two cylinders was performed using Broyden’s method considering
the transition from/to a wrapping to/from a non-wrapping state,
resulting also in C1 muscle paths.

Index Terms—Tendon/Wire Mechanism, Modeling and
Simulating Humans, Muscle Wrapping, Muscle-tendon Path,
Geodesics.

I. INTRODUCTION

NOWADAYS, applications of simulations of the human
musculoskeletal system range from rehabilitation studies

to planning interventions [1] and are of great interest in biome-
chanics to evaluate movement driven by muscle dynamics [2].
The construction of accurate human musculoskeletal models
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Fig. 1. Snapshot (taken from OpenSim [2]) showing the lateral muscle-tendon
unit of the triceps head wrapping path over a cylindrical constraint surface (cyan
color) representing the anatomical elbow joint.

is essential for a better estimation of the force generated by
muscle-tendon units. Muscle force is often estimated from the
force-length-velocity properties of muscle fibers and the elastic
properties of tendons using Hill-type actuation models [3]; in
both upper [4] and lower [5] limb musculoskeletal models.
To better estimate the muscle-tendon force from the Hill-type
model, which also affects the assessment of joint moments, the
modeling of muscle-tendon behavior must consider the muscle-
wrapping phenomenon. This phenomenon occurs when a muscle
interferes with skeletal structures, such as bones, causing the
muscle-tendon to wrap around a rigid body. An example of
muscle wrapping is shown in Fig. 1, where the lateral triceps
head wraps around the elbow joint for a specific range of motion.
During the wrapping state, the muscle’s line of action is no
longer a simple straight line but a curved path over the wrapped
surface. Therefore, it is required to calculate the muscle-tendon
path during muscle-wrapping, which becomes a challenging
process. Henceforth, developing feasible algorithms that com-
pute muscle-tendon force involving the physiological muscle
wrapping phenomenon requires precise models and calculations
of the continuous muscle-tendon path, its length, velocity, and
moment arms.

Several works have implemented geodesic-based methods to
compute the shortest muscle-tendon path. Some have used a
discrete approach to improve the efficiency of simulations [6],
[7], but often at lower muscle velocity accuracy, in contrast to
the solution based on the continuous computation over different
surfaces [8]. Moreover, the solution is discontinuous for some
configurations at the connection points (between the curved
and straight line segments), causing a jerky motion in the mus-
cle path. This problem arises from the constraints formulation
subject to the geodesic’s normal and binormal vectors. All this
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highlight the need for new methods that work for different wrap-
ping surfaces to solve the problem of muscle-tendon wrapping
path discontinuity and the computation of muscle-tendon veloc-
ity. These will provide consistent and realistic muscle force.

This letter presents an efficient muscle wrapping method
that promotes a realistic computation of muscle path over n
parametric surfaces and the muscle velocity for accurate muscle
force estimation. The proposed method utilizes the local tangent
components of each geodesic to formulate tangency constraints,
thus ensuring continuity along the muscle-tendon path to avoid
non-realistic wrapping. Simulations were performed to first test
the proposed wrapping method over one cylinder and to compare
the efficiency of three different numerical methods. In this
simulation there were two scenarios: 1) wrapping over a cylin-
drical surface and 2) transitioning from/to wrapping a cylindrical
surface to/from non-wrapping (taking into account the cylinder
non-wrapping condition presented in [9]). A simulation of a
muscle-tendon wrapping over two cylinders was also performed
to show the scalability of the proposed wrapping method. For
this last simulation, the most efficient numerical method found
in the first test was used.

II. BACKGROUND

Most works on muscle-wrapping modeling have been ad-
dressed through finite element formulations assuming mass-
less wire models, showing high fidelity at a high computa-
tional cost [10], thus making integration with other non-finite
elements of biomechanical or dynamic models difficult. The
massless wire assumption neglects the muscle’s inertial param-
eters to facilitate addressing straight and curved-line segments.
These models are more computationally efficient but less accu-
rate for biomechanical simulation software, such as Anybody
(www.anybodytech.com), OpenSim [2], and Artisynth [11],
which integrate models and methods substantiated by experi-
mental data.

Some massless muscle wire models include cylinders, spheres
and ellipsoids, among others, to represent the bone surfaces of
the skeleton around which the muscle is wrapped. However,
general surface representations have been introduced through
a parametric-based approach using the geodesic path on con-
strained motion manifolds [12], [13]. The most straightforward
computation of the muscle-tendon path is the static via-point
representation [14], which requires the definition of a set of
constrained fixed points to pass through, connected by straight
lines, [15]. This method yields low-fidelity muscle-tendon
length and moment arms [16]. To overcome this limitation, [16]
introduced a dynamic via-point representation by defining a
joint-dependent set of points that considers the deflection of
muscle-tendon path around bone surfaces.

For a more accurate representation of a muscle-tendon path,
the skeletal structures in [17] are defined by geometrical shapes
that model the constraint (bony contour) where the muscle-
tendon wraps over. Although this method has been validated for
cadaver samples, it isn’t easy to obtain a subject-specific model
due to the need for data from a more extensive set of specimens.
The work in [9] follows a similar procedure, introducing the

obstacle-set method and facilitating the scaling of the parameters
for simpler geometries such as spheres and cylinders. However,
the essential muscle-tendon velocity still needs to be addressed.

State-of-the-art muscle wrapping methods use geodesic the-
ory to compute the shortest muscle-tendon path over tapered
cylinders and ellipsoids [12]. Compared to the hybrid approx-
imation technique used in Opensim, based on [18], the work
in [12] provides a smoother solution, where the accuracy is
compromised for specific joint configurations. Extension of [12]
includes discrete multi-object wrapping paths [19]; however,
depending on the resolution, the solutions may be less accurate
than continuous solutions. Multi-object iterative formulations
connect geodesics with straight-line segments, where geodesic
unit normal vectors are used to compute straight lines tangent to
the surface [13]. A disadvantage of this method is the need for
a unique tangent direction (tangency) constraint, which leads to
unfeasible solutions given the initial guess. Furthermore, its effi-
ciency is diminished when using the effective Newton-Raphson
method, with finite-differences Jacobians. Subsequent efficiency
improvements that compute the analytical Jacobian using a
single geodesic for a geometric obstacle were developed in [20]
and [8]. The latter shows an explicit analytical computation of
the muscle-tendon velocity. Unfortunately, due to the lack of
tangency constraints, the analytical expression of muscle-tendon
velocity needs to be corrected for some configurations, failing
to comply with the minimum length muscle-tendon path. Some
of these failing configurations may yield discontinuities at the
connections between straight and curved-line segments, repre-
senting unrealistic paths. Additionally, discrete formulations al-
low to increase muscle-tendon length and velocity accuracy [6],
[7], [21], but at the cost of increased computing time.

Consequently, novel methods are still needed to handle con-
tinuity along the entire path. Otherwise, incorrect computation
of muscle-tendon path [21], and its velocity will lead to wrong
muscle force production, regardless of using a state-of-the-art
force model, such as Hill’s. Such an anatomically consistent
wrapping method will provide a reliable preliminary tool for
biomechanical and human movement assessment and analysis.

III. MUSCLE WRAPPING MODELING OVER

PARAMETRIC SURFACES

A. Problem Statement

Let the muscle wrapping be modeled considering the i-th
muscle-tendon composed of n+ 1 straight-line segments (lSi)
connected by n curved segments (lGi ); thus, its total length can
be obtained as

liMT =

n+1∑
j=1

(
lSi

j

)
+

n∑
j=1

(
lGi

j

)
. (1)

Clearly, see Fig. 2, liMT varies according to the position of the
insertion (ai

n+1) and origin (bi0) points and the pose (i.e., position
and orientation) of the rigid bodies through which wrapping
occurs. To continue, we need to assume the following:

1) the muscle’s mass is negligible,
2) the muscle is taut at all time,
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Fig. 2. Muscle wrapping over a rigid body: The muscle’s origin and inser-
tion points are represented by bij−1 and ai

j+1, respectively, where wrapping
phenomenon occurs at the j-th surface.

3) the friction, between the muscle path and the wrapping
surfaces, is negligible.

Thus, assuming the induced Euclidean norm ‖ x ‖ of any
vectorx, the problem of computing (1) involves the computation
of n+ 1 straight-line lengths lSi

j
, n geodesic lengths lGi

j
and 2n

connection points ai
j , b

i
j that yields liMT ∈ C1:

B. Straight- and Curved-Line Segments Length

Consider the length of the straight-line segment given by
lSi

j
=‖ ai

j − bij−1 ‖. The curved-line segment lGi
j

is represented
by an arc length (s) parametrized curve, also known as unit
speed curve, r(s) = r(u(s), v(s)) : IR2 �→ IR3, for sai

j
≤ s ≤

sbij . Then, r(s) is a solution of the Euler-Lagrange equation [22]

d

du

∂f

∂v′
− ∂f

∂v
= 0 (2)

with f(u, v, v′) =
√
E + 2Fv′ +Gv′2, v′ = dv/du and E =

ru · ru, F = ru · rv , G = rv · rv , where subscript denotes
partial derivatives. Equation (2) describes a unique geodesic
determined by an initial point and its tangent. Hence, the curved
segment is parametrized by surface coordinates (u, v), their
derivatives with respect to arc length (u′, v′) that define the
geodesic direction, and arc length s. For the j-th surface, and
the i-th muscle, s takes the place of lGi

j
in (1).

C. Enforcing the Geodesic Unit Speed Constraint

A curve r(α) = r(u(α), v(α)) is parametrized by the arc
length if and only if

‖ r̄ (α) ‖= 1, (3)

where bar ( ·̄ ) notation refers to the differentiation with re-
spect to the parameter α. Condition (3) may not be fulfilled
during the integration of the geodesic’s differential equations,
even if the initial conditions satisfy (3). In such a case, notice
that when the curve r has not a unit speed, its tangent vector

r̄ at some point pi has two components of magnitudes ūpi

and v̄pi , hence r̄pi(α) = ruūpi + rv v̄pi , Therefore, to recover
unicity, let the two magnitudes of unit tangent vector tpi be

λpi =
ūpi

‖r̄pi‖ and μpi =
v̄pi

‖r̄pi‖ , which are then normalized by

Eλ2
pi + 2Fλpiμpi +Gμ2

pi . Finally, the normalized λpi and μpi

are treated subsequently as u′pi and v′pi [8], respectively, to yield
a unit speed curve that complies to (3).

D. Derivation of the Muscle-Tendon Velocity

The calculation of the time derivative of a straight-line seg-
ment length yields

l̇Si
j
= lSi

j
·
(
(0)ȧi

j − (0)ḃ
i

j−1

)
(4)

where left superscript (m) indicates an expression w.r.t Σm.
Consider the following integration for the time derivative of

a curved wrapping segment length

lGi
j
=

∫ α
bi
j

α
ai
j

‖ r̄ i
j (α) ‖ dα (5)

where r i
j

(
αai

j

)
= (j)ai

j and r i
j

(
αbij

)
= (j)bij . Taking the time

derivative of (5) yields

l̇Gi
j
=

d

dt

∫ α
bi
j

α
ai
j

‖ r̄ i
j (α) ‖ dα (6)

=
dα

dt

(∥∥∥r̄ i
j

(
αbij

)∥∥∥−
∥∥∥r̄ i

j

(
αai

j

)∥∥∥
)

(7)

From the minimum liMT length, i.e.∇αl
i
MT (α) = 0, one obtains

∂liMT

∂αai
j

=
ai
j − bij−1

‖ ai
j − bij−1 ‖ · r̄ i

j

(
αai

j

)− ∥∥∥ r̄ i
j

(
αai

j

)∥∥∥ = 0, (8)

∂liMT

∂αbij

=
ai
j+1 − bij

‖ ai
j+1 − bij ‖

· r̄ i
j

(
αbij

)− ∥∥∥ r̄ i
j

(
αbij

)∥∥∥ = 0. (9)

Rewriting (8) and (9), results in the following expressions

ai
j − bij−1

‖ ai
j − bij−1 ‖ =

r̄ i
j

(
αai

j

)
∥∥∥ r̄ i

j

(
αai

j

)∥∥∥ , (10)

ai
j+1 − bij

‖ ai
j+1 − bij ‖

=
r̄ i
j

(
αbij

)
∥∥∥ r̄ i

j

(
αbij

)∥∥∥ . (11)

Notice that (10) and (11) describe the tangency of the straight-
line segments onto the surface, that is, it specifies the direction
of vectors lSi

j
= tai

j
and lSi

j+1
= tbij , where

lSi
j
=

ai
j − bij−1

‖ ai
j − bij−1 ‖ . (12)

Now, substituting the differentiation w.r.t time of (j)ai
j and (j)bij

into the time derivatives of (8) and (9), respectively, the following
expressions are obtained

lSi
j
· (j)ȧi

j =
dα

dt

∥∥∥ r̄ i
j

(
αai

j

)∥∥∥ (13)
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lSi
j+1

· (j)ḃij =
dα

dt

∥∥∥ r̄ i
j

(
αbij

)∥∥∥ (14)

Substituting (13) and (14) into (7) yields

l̇Gi
j
=

(
lSi

j+1
· (j)ḃij

)
−
(
lSi

j
· (j)ȧi

j

)
(15)

and considering (0)ȧi
j =

(0)ċj +
(j)ȧi

j , and (0)ḃ
i

j =
(0)ċj +

(j)ḃ
i

j , where (0)cj and (0)ċj are the position and velocity, re-
spectively, of the origin of the j-th surface w.r.t Σ0. Thus, the
muscle-tendon velocity is obtained as follows

l̇iMT = lSi
n+1

· (0)ȧi
n+1 − lSi

1
· (0)ḃi0

+

n∑
j=1

(
lSi

j
· (0)ċj − lSi

j+1
· (0)ċj

)
(16)

where ȧi
n+1 and ḃ

i

0 are the velocities of insertion and origin
points, respectively. Equation (16) refers to the muscle-tendon
velocity when the orientation of Σj is equal to the orientation
of Σ0. Considering the surface’s rotational motion, the muscle-
tendon velocity can be expressed as

l̇iMT = lSi
n+1

· (0)ȧi
n+1 − lSi

1
· (0)ḃi0

+
n∑

j=1

(
lSi

j
· (0)ċj + lSi

j
· ω̂jRj

(j)ai
j

− lSi
j+1

· (0)ċj − lSi
j+1

· ω̂jRj
(j)bij

)
(17)

where Rj and ωj are the rotation matrix from Σ0 to Σj and
the angular velocity of the j-th surface, respectively. The sym-
bol (̂·) denotes the skew-symmetric matrix operator over a 3
dimensional vector.

E. From/to Wrapping to/from Non-Wrapping Condition

A major issue in wrapping phenomenon is to handle transition
to and from non-wrapping conditions. In the continuous domain,
as in our case, it implies enforcing continuity at surface’s contact
points, where straight and geodesic segments meet. Then, we
have the following result.

Proposition 1: Let insertion points ai
j+1(t), b

i
j−1(t),∈ Sj

connected by the continuous geodesic segment liMT ∈ C1,
for Sj the j-th smooth implicit surface ϕ(ψ)j = 0 of j-
th parametric smooth object. In virtue of tangency con-
straint is satisfied all over liMT , including at its anchoring
points ai

j+1(t), b
i
j−1(t), the infinitesimal continuous variation

δliMT → 0 (where straight- and curved-line segments coincide)
yields ai

j+1(t) → bij−1(t) ∈ C1 continuously.
Proof: It follows straightforwardly from L’Hôpital’s rule.

F. Tangency Constraint for a Unique Curved-Line Segment

In order to find the parameters u, v, u′, v′ and lG for the j-
th geodesic, let the tangency error function be modeled as a
constraint-based on (10) and (11), to enforce C1 continuity at

connection points ai
j and bij :

f(xi,j) =

⎡
⎣ lSi

j
− tai

j

lSi
j+1

− tbij

⎤
⎦ = 0 (18)

where

xi,j =
[
uai

j
vai

j
u′
ai
j

v′
ai
j

lGi
j

]T
, (19)

Now, in order to assess the numerical stability of the tangency-
based constrained solution, three numerical methods are pre-
sented.

IV. COMPUTATION OF WELL-POSED CURVED-LINE SEGMENTS

The numerical solution of the curved-line segment length
is assessed using the Newton-Raphson (NR) and two
Quasi-Newton Methods (Broyden–Fletcher–Goldfarb–Shanno
(BFGS) [23], and Broyden (BR) [24]); the later is considered to
reduce the computational cost of J(xi,j).

A. Newton-Raphson Formulation

The nonlinear tangency constraint (18) can be solved for xi,j
k

using the Newton-Raphson (NR) method by updating (19) as

xi,j
k+1 = xi,j

k − J−1
(
xi,j
k

)
f
(
xi,j
k

)
. (20)

The efficiency of the NR method relies mainly on the computa-
tion of the JacobianJ(xi,j) ∈ IR6×5, which depends on local and
neighboring curves when they exist. Notice that evaluation of
(18) needs both the computation of lSi

j
and tai

j
; moreover, given

that J is a non-square matrix, the pseudo-inverse J# ∈ IR6×5 is
used based on its regularization with a parameter λ > 0, given
by

J#λ =
(
JT J+ λI

)−1
JT . (21)

Then, (20) becomes in the following update rule

xi,j
k+1 = xi,j

k − J#λ
(
xi,j
k

)
f
(
xi,j
k

)
. (22)

B. Broyden–fletcher–goldfarb–shanno Formulation

The objective is to minimize the tangency error squared norm

f(xi,j) =
∣∣∣∣f(xi,j)

∣∣∣∣2
2
, (23)

by updating (19) asxi,j
k+1 = xi,j

k + αkdk, forαk the stepsize and
dk the descent direction. This latter vector dk is determined by
solving Bkdk +∇f(xi,j

k

)
= 0, where matrix Bk stands for an

approximation to the Hessian matrix at iteration k, and∇f(xi,j
k )

is the gradient at xi,j
k . The Hessian is computed by a rank-two

update

Bk+1 = Bk +
yky

T
k

yT
k sk

− Bksks
T
kB

T
k

sTkBksk
(24)

for sk = xk+1 − xk, and yk = ∇f(xk+1)−∇f(xk), and the
inverse of the approximated Hessian matrix is obtained using
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the Sherman–Morrison formula

B−1
k+1 =

(
I− sky

T
k

yT
k sk

)
B−1

k

(
I− yks

T
k

yT
k sk

)
+

sks
T
k

yT
k sk

, (25)

Notice that the evaluation of B−1
k is avoided by initializing it

with the identity matrix so that the first iteration is the gradient
descent, then the subsequent iterations improve the estimation
of xi,j . Stepsize αk is determined using the next Procedure 1 to
minimize f along the ray xi,j

k + αkdk, [25].
Procedure 1 (Backtracking line search algorithm): Once the

descent direction is obtained, αk is determined by checking the
Armijo condition

f
(
xi,j
k + αkdk

) ≤ f
(
xi,j
k

)
+ aαkd

T
k∇f

(
xi,j
k

)
(26)

for a positive constant a < 1, and dT
k∇f

(
xk

)
represents the

directional derivative of f alongdk, while stepsizeαk = bαk−1,
for positive constant b < 1, starting from a large stepsize α0.

C. Broyden Formulation

The roots of (18) are found by updating vector xi,j
k as

xi,j
k+1 = xi,j

k + βkpk (27)

where βk is the stepsize, and pk is the quasi-Newton direction
obtained by solving the linear system of equations Lkpk +
f
(
xi,j
k

)
= 0, withLk as an approximation to the Jacobian matrix

evaluated at xi,j
k , and updated using

Lk+1 = Lk + θk
(zk − Lkuk)u

T
k∣∣∣∣uk

∣∣∣∣2 (28)

whereuk = xi,j
k+1 − xi,j

k , zk = f
(
xi,j
k+1

)− f
(
xi,j
k

)
, and param-

eter θk is chosen such that |θk − 1| ≤ θ̄, with θ̄ ∈ (0, 1) and
Lk+1 is non singular. The stepsize βk is determined by an
Approximate Norm Descent Line Search [26], described in the
next procedure.

Procedure 2 (Derivative-free line search algorithm): Given
η, σ1, σ2 > 0 and ρ, ϑ ∈ (0, 1), let βk = ϑik for ik the smallest
non-negative integer such that∣∣∣∣f(xi,j

k + βkpk

)∣∣∣∣ ≤ ∣∣∣∣f(xi,j
k

)∣∣∣∣
−σ1

∣∣∣∣βkpk

∣∣∣∣2 + ηk
∣∣∣∣f(xi,j

k

)∣∣∣∣ (29)

and ηk is a positive sequence satisfying
∑∞

k=0 ηk ≤ η <∞.

Notice that if
∣∣∣∣f(xi,j

k + pk

)∣∣∣∣ ≤ ρ
∣∣∣∣f(xi,j

k

)∣∣∣∣− σ2
∣∣∣∣pk

∣∣∣∣2, then
βk := 1, otherwise, for i = 0, 1, . . ., check the inequality (29)
with βk = ϑik successively.

V. DYNAMIC SIMULATIONS

Simulations were performed in MATLAB R2020b on an Intel
Core i5-10500H @2.50 GHz with 16 GB RAM running 64-bit
Windows 10 Pro. The MATLAB code used in this letter, and
simulation videos, can be downloaded at https://github.com/
irammunoz/Muscle-tendon-Wrapping. The simulations’ dura-
tion was 3 s with a constant time step h = 0.012 s.

A. Modeling Muscle Wrapping Over One Cylinder

The proposed method is first tested considering the wrapping
of a muscle-tendon unit around a cylinder surface, withb10 anda1

2

as the origin and insertion muscle points, respectively. The cylin-
der of radius r is parametrized in the local coordinate frame Σ1

using u and v coordinates as r(u, v) = [r cosu r sinu v]T

whose coordinates (x(u, v), y(u, v), z(u, v)) are translated w.r.t
its parent coordinate frame Σ0. Two cases were simulated con-
sidering fixed origin and insertion points for one muscle-tendon
path:

Case 1: The muscle-tendon unit remains in contact with the
cylindrical surface, while the cylinder follows a sinusoidal
trajectory: (0)c(t) = [ 0 0.009 sin(2πt) 0 ].

Case 2: The muscle-tendon unit transitions from a wrap-
ping state to a non-wrapping state (using the cylin-
der non-wrapping condition presented in [9]), while
the cylinder follows a sinusoidal trajectory: (0)c(t) =
[ 0 0.02 sin(2πt) 0 ].

Case 1 and 2 were simulated using the NR, BFGS and BR
methods, to analyze their numerical efficiency. In all simula-
tions, the states were initialized to an unfeasible initial guess
such that

∣∣∣∣f(x0)
∣∣∣∣ = 1.7086. The following parameters were

used for each numerical method:
� NR formulation: It finds the roots of (18) by updating (19)

with (22) and (21), for λ = 0.08, 0.1, 0.5.
� BFGS formulation: It minimizes (23) and it was initialized

with B−1
0 = I and tested with and without Procedure 1,

using a = 0.382 and b = 0.618.
� BR formulation: It finds the roots of (18) updating (19) with

(27). L0 was initialized using central finite differences to
approximate J; θk was set to 1. It was tested with and
without Procedure 2 setting σ1 = 0.001, σ2 = 0.001, ρ =
0.9, ϑ = 0.5 and ηk = 1/(k + 1)2.

The Jacobian J and the gradient needed by the NR and BFGS
methods, respectively, were approximated using finite differ-
ences. Numerical methods were terminated when

∣∣∣∣f(xi,j)
∣∣∣∣ ≤

1.0E-10 occurred.

B. Modeling Muscle Wrapping Over Two Cylinders

The simulation aims at testing the proposed wrapping
method with two cylinders using the BR method, and
the same parameters for this method as in the simula-
tion over one cylinder. The multi-obstacle wrapping case
was simulated considering fixed origin and insertion points
for one muscle-tendon path. The simulation considered the
muscle-tendon unit transitions from/to a wrapping state
to/from a non-wrapping state (using the cylinder non-
wrapping condition presented in [9]), while the cylinders fol-
low sinusoidal trajectories: (0)c1(t) = [ 0 0.15 sin(2πt) 0 ],
(0)c2(t) = [−0.5 0.15 cos(2π(t+ 0.24)) 0 ].

https://github.com/irammunoz/Muscle-tendon-Wrapping
https://github.com/irammunoz/Muscle-tendon-Wrapping
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Fig. 3. Convergence rate of NR, BFGS, and BR methods at initialization.

For n surfaces, the total i-th muscle path tangency error can
be described by

φ (ψ) =

⎡
⎢⎢⎢⎢⎣

f(xi,0,xi,1,xi,2)

f(xi,1,xi,2,xi,3)
...

f(xi,n−1,xi,n,xi,n+1)

⎤
⎥⎥⎥⎥⎦ = 0, (30)

where the roots of (30) can be find by updating the vector
ψ = [xi,0 xi,1 · · · xi,n ]. Note that xi,0 and xi,n+1 can be
dropped if the origin and insertion points do not depend on
the parameters of geodesics. BR method was terminated when∣∣∣∣φ(ψ)∣∣∣∣ ≤ 1.0E-10 occurred.

VI. RESULTS

A. Muscle Wrapping Over One Cylinder

Fig. 3 shows the initial convergence of each method at
t = 0.0 s for Case 1 and 2. The BFGS method shows slower
convergence (11 iterations) than the NR method (7 iterations,
λ = 0.1), whereas the BR method is slower (100 iterations). This
convergence stands indeed for offline computation of Jacobian,
used afterward as the initialized state. In this sense, although BR
was slower to converge to a well-posed initial state x0, it shows
the best numerical efficiency afterward. Numerical efficiency
is assessed in terms of the number of total iterations (ni), the
average number of iterations per time step (ia), and the number
of function evaluations (nf ), for a given error tolerance. Table I
shows the overall efficiency results, wherein the BR method
outperforms BFGS and NR methods. The BR method (using
the derivative-free line search algorithm) requires the fewest
number of function evaluations (nf ) for both Cases (10,100 and
10,264, respectively); with the fewer average of iterations per
time step (ia) using 13 and 14 iterations, respectively. However,
less computation time (ta), measured with the timeit MATLAB’s
function, is obtained using aβ = 1.0. As the results show that BR
is the best method, from now on only simulations results with this
method are shown. The muscle-tendon path solution obtained
with the BR method for Case 1 and 2 are shown in Figs. 4 and 5,

TABLE I
RESULTS FOR EACH MUSCLE-TENDON CASE AND SOLVING METHOD

Fig. 4. Cylinder moves only along y−axis (cy = 0.009 sin(2πt)): Path ob-

tained with the Broyden method for Case 1 with an initial guess
∣∣∣∣f(x0)

∣∣∣∣ =
1.7086; (a) render of muscle wrapping path at t = 0 s (yellow), t = 0.24 s
(green), and t= 0.744 s (purple); (b) muscle-tendon length and its velocity over
time.

respectively. There can be seen that the muscle-tendon length
in both cases follows a sinusoidal path during the wrapping
state, and remains constant at some intervals in Case 2 when
the muscle-tendon is not in compliant motion with the cylinder.
Moreover, results are accurate in comparison to the obstacle-set
method [9], with a maximum error below 15.0E-11 cm for both
Case 1 and Case 2, as shown in Fig. 6. Note that in both cases,
C1 continuity is guaranteed using arbitrary initial conditions. An
animation of each simulation case can be found in the online
supplementary material, where also an additional animation
shows the translational and rotational motion of the surface.

B. Muscle Wrapping Over Two Cylinders

For the case of wrapping over two cylinders, the BR method
was used with β = 1.0, as the best results were obtained in the
case of one cylinder (see Table I). Results showed that for an
initial guess ψ0 such that

∣∣∣∣φ(ψ0)
∣∣∣∣ = 1.3043, the BR method

required a total of 3297 iterations (ni), 6058 function evaluations
(nf ), with an average of 13 iterations per time step (ia) and a total
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Fig. 5. Cylinder moves only along y−axis (cy = 0.02 sin(2πt)): Path ob-

tained with the Broyden method for Case 2 with an initial guess
∣∣∣∣f(x0)

∣∣∣∣ =
1.7086; (a) render of muscle wrapping path at t = 0 s (yellow), t = 0.24 s
(green), and t = 0.744 s (purple); (b) smooth muscle-tendon length and its
velocity over time.

Fig. 6. Error of muscle-tendon length between the BR and the obstacle-set
methods [9].

Fig. 7. Cylinders move only along y−axis (c1y = 0.15 sin(2πt), c2y =
0.15 sin(2π(t+ 0.24))): Path obtained with the Broyden method with an initial
guess

∣∣∣∣φ(ψ0)
∣∣∣∣ = 1.3043; (a) render of muscle wrapping path at t= 0 s (dark

red), t = 0.252 s (green), and t = 0.756 s (purple); (b) smooth muscle-tendon
length and its velocity over time.

computation time (ta) of 9.1707 s. During the whole simulation,
muscle-tendon path C1 continuity was guaranteed, see Fig. 7.

VII. DISCUSSIONS

Our proposed method shows the C1 continuity required to
compute a well-posed muscle-tendon velocity; therefore, our
proposal is suitable for the computation of the musculoskeletal

Fig. 8. Newton-Raphson method solution for Case 1 yields ill-posed config-
urations using [8], for an initial guess x0 such that

∣∣∣∣f(x0)
∣∣∣∣ = 0.9401; (a)

muscle wrapping path at t = 0 s (yellow), t = 0.24 s (green), and t = 0.744 s
(purple) and (b) muscle-tendon length and velocity over time.

production of contraction force, which is essential for biome-
chanical models at the dynamic level. Let us analyze this claim
further. The state-of-the-art method [8] guarantees C0 by enforc-
ing the geodesic’s normal N and binormal B vectors, at points
ai
j and bij , be orthogonal to a straight-line segment based on

the following dot product constraint, without involving tangent
vectors,

f(xi,j) =

⎡
⎢⎢⎢⎢⎣

lSi
j
·Bai

j

lSi
j
·Nai

j

lSi
j+1

·Bbij

lSi
j+1

·Nbij

⎤
⎥⎥⎥⎥⎦ = 0. (31)

This formulation may include non-physiological muscle-tendon
configurations, such as muscle “folding”. To illustrate this, we
have simulated Case 1 based on (31) using the NR method,
see Fig. 8(a). Therein, a non-shortest muscle path is obtained,
representing an unrealistic (non-physiological) muscle-tendon
configuration, which is avoided using our proposed tangency
constraints (18) or (23). Furthermore, the computation of the
muscle-tendon velocity (16), which is equal to the one presented
in [8], is not consistent with the whole set of solutions provided
by (31), but only when the tangency constraints are satisfied.
This inconsistency is shown in Fig. 8(b) that depict velocities
obtained with (16) (l̇iMT , orange solid line) versus finite differ-
ences (ΔlMT , orange dashed line). It is worth mentioning that
the analytical expression for the Jacobian of [8], derived using
(31), requires indeed a C1 formulation, which can be obtained
with an initial guess in the vicinity of a solution that satisfies
tangency constraints. Even though C1 continuity is guaranteed
with our method, choosing an appropriate initial guess is re-
quired; otherwise, different wrapping directions may arise, as
described in [9]. Then, for large-scale formulations (considering
multiple obstacles or muscles) an automatic method to initialize
the algorithm needs to be developed.

Intending to simplify the clarity of the figures, the first sim-
ulations and results presented were for only one muscle and
one cylinder, though our formulation and algorithms have been
developed to be extended to a set of n contact surfaces. Indeed,
the second part of simulations were about the wrapping over
two cylinders, demonstrating that readiness of the proposed
framework.
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VIII. CONCLUSION AND FUTURE WORK

A method based on tangency constraints of geodesic paths
has been proposed that guarantees continuous muscle wrapping
around parametric surfaces. This latter is essential to calculate
the shortest muscle-tendon path during a wrapping condition
and thus achieve accurate biomechanical modeling of muscle
forces. Simulations showed C1 geodesic muscle-tendon paths in
two cases: 1) remaining in a wrapping state and 2) transitioning
to a wrapping from a non-wrapping state. Furthermore, unlike
other works, the numerical efficiency of the commonly used NR
method and two quasi-Newton methods were studied. Results
show the proposed method’s effectiveness in guaranteeing the
continuous computation of the muscle-tendon path and a fast-
solving procedure using the quasi-Newton Broyden’s method. In
this realm, the contribution of this work ranges from calculating
the shortest muscle-tendon path in a wrapping condition to the
analytical solution of the muscle-tendon velocity; both quantities
are necessary when using the well-known classical Hill-type
actuation muscle model, which is fundamental in advanced
biomechanical studies. In contrast to the literature, the C1 con-
tinuous solution of our method is obtained using as a constraint
the unit tangent vectors of the geodesic.

Immediate future work is in three venues, to speed up the
algorithm, which can be improved by deriving an analytical
expression for the NR Jacobian; to validate in a dynamic frame-
work for a complex human musculoskeletal system based on
the Hill actuation model, and to study how to handle the nu-
merical commutation condition (to/from wrapping) at a lower
sampling rate. A first validation of our formulation on a sim-
ple yet representative musculoskeletal model was presented
in [27], where a comparison versus OpenSim, which uses an
approximation of muscle-tendon velocity, showed differences
in muscle-related quantities, joint motion, and joint torques.
Therefore, our proposal contributes as a baseline to muscu-
loskeletal modeling for human movement assessment. Also, as
a byproduct of our proposed method, it can be extended to other
wrapping applications, such as cable-driven robots, either rigid
or soft ones, where an accurate description of cable path length is
required.
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