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Multi-Agent Visual Coordination Using
Optical Wireless Communication

Haruyuki Nakagawa and Asako Kanezaki , Member, IEEE

Abstract—Communication is a key element in applying multi-
agent reinforcement learning to a wide range of real-world scenar-
ios. We focus on optical wireless communication (OWC), which is a
practical solution to be used in various real situations where radio
communication is not available, such as underwater or in a lot of
radio noise environment. OWC is a method of communicating only
with other agents in visual range using light, unlike radio wave like
communication which is mostly assumed in existing research on
multi-agent reinforcement learning. Due to limited communication,
when OWC is used, overall performance is generally degraded
from the case with full communication. In this letter, we propose
a reinforcement learning method that learns visual coordination
behavior using OWC. Our proposed visually cooperative behavior
enables agents equipped with limited field of view (FOV) cameras
to efficiently comprehend and imagine their surrounding environ-
ment through cooperative communication. Experimental results
in simulation demonstrated that, using the proposed visual co-
ordination method, multi-agents using OWC with general FOV
show comparable performance to those with radio wave like full
communication. Additionally, it has been demonstrated that this
method can improve performance in various multi-agent reinforce-
ment learning algorithms. We also implement OWC devices on
real mobile robots and demonstrated the proposed multi-agent
operation.

Index Terms—Multi-robot systems, cooperating robots.

I. INTRODUCTION

A MULTI-AGENT system is more complex than a single-
agent system because of the difficulty of planning the in-

teraction of multiple agents. Multi-agent reinforcement learning
(MARL) is thus helpful for the system in which each agent learns
to cooperate along with self-motion [15], [17]. Existing letters
on MARL mostly assume that agents can communicate with all
other agents. In other words, they assume the full communication
scenarios such as using radio communication, which is possible
regardless of the location of the agents and obstacles in the envi-
ronment. However, in general, there are many situations where
full communication is impossible in the real world. For example,
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Fig. 1. Physical agents used in the MARL system with optical wireless
communication (OWC) in this letter.

radio communication is difficult in underwater environments
because radio waves are absorbed and attenuated. It is known
that robots that explore the sea are therefore connected by wired
lines for communication, and thus the coordinated actions of
multiple agents are limited [16].

Recently, camera-based limited visual input is utilized as the
most common way for agents to obtain information in real-world
multi-agent systems [8], [24]. Reinforcement learning using
limited field of view (FOV) is a partially observed Markov
decision process, which is more difficult to learn than the case
with fully observed states. Meanwhile, one advantage of a
multi-agent system is that it is possible for each agent to obtain
additional information beyond its own FOV by communicating
with each other. However, it is impractical to share all the
observation information obtained by other agents due to the
limited communication bandwidth and response time.

In this letter, we examine the issues that arise in real-world
applications of MARL from the viewpoints of communication
methods and visual information sharing. In particular, we inves-
tigate optical wireless communication (OWC) for our MARL
system. OWC is applicable to challenging environments such as
underwater [18] and space [11], as well as for recent applications
such as communication between autonomous vehicles and traffic
signals [20]. OWC is also suitable for multi-agent systems such
as swarm robotics because it can be implemented with only
low-cost devices. As shown in Figs. 1 and 2, we use optical
devices such as LEDs, photodiodes, and cameras for OWC. As
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Fig. 2. Conceptual diagram of OWC. Each agent has a limited field of view
as a receiver and can only receive signals from agents within its field of view
(FOV).

shown in this figure, the assumption of FOV in the receiver
side of the OWC is the same as vision, while the LEDs in the
transmitter side can be recognized from all 360◦ directions.

Furthermore, we propose a visual coordination learning
method for MARL. Unlike ordinary wireless communication,
OWC is characterized by the fact that the communication partner
must be inside its field of view. Therefore, control of visual
direction is important to increase performance. In our method,
agents have two networks, one of which predicts what they will
see when they turn to look in different directions and the other
determines which direction they are looking in is most likely to
yield the next highest reward. In this way, the proposed method
allows for actions that maximize the benefits of communication
with other agents.

The contributions of this letter are as follows.
� We propose a method for controlling visual direction by

sharing visual information with multiple agents and pre-
dicting the best direction to view.

� We show that the proposed visual coordination method re-
duces the performance gap between OWC and full commu-
nication in various multi-agent tasks, while also improving
the overall success rate of these tasks.

� We implement OWC with the proposed method on a real
robot system and confirmed its effectiveness in multi-agent
cooperative tasks.

II. RELATED WORK

Multi-agent system with communication: In a multi-agent
environment, there have been many reports examining the effects
of using communication between agents to enhance the task
completion while promoting behavioral diversity. Forester et
al. [6] introduced Differentiable Inter-Agent Learning (DIAL)
in a deep recurrent Q network and showed high performance
for DIAL by using a differentiable end-to-end communica-
tion channel. And, Lowe et al. [15] proposed Multi-Agent
Deep Deterministic Policy Gradient (MADDPG) algorithm and
demonstrated that a high level of coordinated behavior can be
learned even in adversarial tasks and with communication. They
also employ deterministic policy gradient methods to handle
continuous actions. In addition, several articles have reported
on the demonstration of communication capabilities in mobile
vehicles, taking into account real-world constraints such as
communication distance, errors, and budget [1], [9], [22].

Optical wireless communication: The characteristics of
OWC have been extensively described as a method of com-
munication between underwater access points and submarines
in environments where radio communication is difficult [18].
As in these reports, communication functions are possible with
inexpensive photodiodes and LEDs, and are easy to implement
for small agents. In recent years, there have been reports of
OWC and visible light communications (VLC) using cameras
with two-dimensional arrays of light-receiving elements instead
of point data [3], [23], [25]. Yamazato et al. [25] have studied the
possibility of equipping vehicles with cameras and communicat-
ing with LEDs, such as traffic lights. In addition, an event-based
camera that detects only events in which the brightness value
changes, has been developed in recent years [4], [7]. Event-based
cameras are recently used for VLC because they can operate
at a higher frame rate than a conventional camera [3], [23].
It is expected that OWC will expand to robotics for various
environments in the future in terms of acquiring communication
information using visual information at high frame rates. To our
knowledge, no research has been conducted on reinforcement
learning utilizing OWC in multi-agent mobility devices.

Coordination of limited visual information: There are not
many studies that aim to achieve collaboration by utilizing com-
munication between multiple agents with limited FOV. Baker
et al. [2] showed that agents with a limited 135◦ FOV learn
how to use tools through cooperative and adversarial behavior.
However, these agents are also assumed to have lidar-like all-
surrounding sensors, so they are not completely limited vision.
In terms of multiple agents coordinating their vision, several
methods have been proposed [13], [14], [21]. Wu et al. [24]
proposed a method that incorporates the positions of other agents
and self subjective image information to generate an overhead
map. This method uses the generated map as input and the
agent’s movements as actions to learn the distribution of Q values
through a network and make decisions. This method requires
RGB-Depth sensor to obtain subjective images to generate the
overhead map. Generating an overhead map and the approach of
creating and maintaining maps using Simultaneous Localization
and Mapping (SLAM) may be computationally demanding and
consume a large amount of memory. In contrast, we consider a
visual cooperation algorithm using merely an RGB sensor that
can be easily equipped on inexpensive multi-robots.

III. METHOD

A. Multi-Agent Tasks

In this letter, we validate the effectiveness of the proposed
method on several well-known multi-agent tasks: Simple spread,
Predator-Prey, and Keep-Away. For the sake of clarity, we
hereby describe the experimental setup using the Simple Spread
task. TheN agents {a1, . . . , aN} andN landmarks {l1, . . . , lN}
are used in the task and each agent has to reach a different
landmark. Basic information regarding Simple Spread task is
provided below.
� Action space: The visual direction of the next step θ (−π ≤
θ ≤ π) and the amount of movement of the agent in that
direction s (0 ≤ s ≤ S), which is the action of one step.



NAKAGAWA AND KANEZAKI: MULTI-AGENT VISUAL COORDINATION USING OPTICAL WIRELESS COMMUNICATION 7859

Fig. 3. 1D-RGB observation in our experiments.

Note that S is the parameter of the maximum distance that
can be moved in single step.

� Observation information: 1-dimensional visual RGB in-
formation that scans a range of viewing angles centered
on its own viewing direction (Fig. 3) and individual state
information such as position pi and visual direction di.

� Reward: For Simple Spread task, reward r is given as
penalty by taking the sum of distances to the nearest agent
for each landmark position qi. This is the same as used in
existing letters [15].

r = −
N∑
i=1

min
j=1,...,N

‖qi − pj‖. (1)

� Communication : The communication signal consists of
positionpi, view directiondi, and topological information
(to be described in III-C).

Note that agent is not aware of the location of landmarks.

B. OWC for MARL

In OWC, the transmitter sends a blinking pattern of light from
an LED or other device as a signal, and the receiver decodes it
with a photodetector or other device. Due to the straightness
of this light, OWC requires that the transmitting agent (Tx) be
visible to the receiving agent (Rx) due to its communication
mechanism. If aj (Tx) is not visible to ai (Rx), ai will not receive
a signal from aj . Also, it cannot obtain a signal even if there
is some other object between Rx and Tx. In this experimental
system, there are no restrictions on the distance that can be
communicated by OWC.

Define a variable vim that represents whether an entity em
(1 ≤ m ≤M ) in the visual range. Entity em represents agent
am or landmark lm, and the total number of these M = 2 N
in Simple Spread task. If the mth entity is within the visual
range of the ith agent, vim = 1, and if it is not within the visual
range, vim = 0. Yali et al. [5] define the graph relationship with
communicating agents as topology. In this letter, we refer to
such “what each agent is looking at” as topological information.
Agent ai extracts and maintains {vim}Mm=1 ∈ R

M (which we
call self topological information) from its own visual infor-
mation. In addition to the location information pi and visual
directiondi, it is shared with other agents. By adding topological
information received from other agent am via communication,
each agent ai acquires Vi = (vnm) ∈ R

N×M . Since this infor-
mation is binary, the bandwidth required for communication

Fig. 4. Exemplar topological information V of Red agent in different commu-
nication methods. Circles represent agents and rectangles represent landmarks.

is small and considered realistic. An example of topological
information Vi is shown in Fig. 4. As shown in Fig. 4(a), in this
example, there is a green agent in the red agent’s field of view
and a black landmark in the green agent’s field of view. The
other two landmarks are in the field of view of the blue agent.
A topological graph representing these situations is shown in
Fig. 4(b).

For each communication method, topological information Vi

for red agent is shown in Fig. 4(c), (d), and (e). In a case of
w/o communication, only the self-topology information of each
agent is utilized as Vi (Fig. 4(c)). In a case of full communi-
cation, all agents can obtain topology information from each
other through communication, resulting inV1 = V2 = . . . = VN

(Fig. 4(d)). However, it should be noted that when in a case
of OWC, topological information of agents that are not within
the field of view (in this case, the blue agent) is not available
(Fig. 4(e)). In such cases, the corresponding row values of these
agents are filled with 0.

C. How to Control Visual Direction

The proposed algorithm for selecting the visual direction is
shown in Fig. 5. The basic idea of this method is to share “what
is seen” among agents as compressed information that can be
communicated to each agent, so that they can imagine areas
that are not seen. Then, information such as what the agents are
seeing is used to determine whether a high reward can be ob-
tained. A simple way to control visual direction among multiple
agents is to have all agents actually look in various directions,
such as through random sampling or grid search. However, this
method requires a large number of steps, and the number of
steps increases exponentially when considering combinations
of multiple agents, which worsens sample efficiency. Another
possibility is to reward the control of visual direction itself,
but it is difficult to set the optimal balance between visual and
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Fig. 5. Diagram of visual coordination methods among multiple agents.

behavioral rewards in the task with actions being considered in
this study. In contrast, the proposed method prevents an increase
in the number of steps by imagining what is visible according
to the visual direction, and applies a reward setting that leads to
task success by linking the visual direction control method to the
reward setting by the action. Moreover, by using only abstract
information without relying on detailed visual input, it becomes
easier to imagine the situation when changing visual direction
regardless of the actual circumstances.

The proposed method consists of the following two modules.
First, it predicts what the topological information will be when
the agent changes the viewing direction. Second, it predicts
whether the predicted topological information will be highly
rewarded in the next step. Each module is described in detail
below.

1) Prediction of Topological Information for the Next Step:
The network f is trained to predict what objects will be in view
when an agent turns from the current state to an angle θ and
what the resulting topological information will be. For example,
as shown in Fig. 5, the green agent can see the black landmark
even though the red agent cannot. Based on the information from
the green agent, the red agent can predict that the black landmark
will be visible if it faces a certain angle θ. The state information
for the last T = 3 steps is input to the network f . Let pt

i, d
t
i,

and V t
i denote the position, looking direction, and topological

information of each agent at step t, respectively. And, let St
i be

self topological information of ai at step t. The network f takes
as input the combination of these and the angle information θ
for the next direction and outputs the predicted Ŝt+1

i of the self
topological information at the next step t+ 1 for that agent.

Ŝt+1
i = f

(
{{pt′

i }i∈ac
, {dt′

i }i∈ac
, V t′

i }tt′=t−T+1, θ
)
. (2)

Here, ac refers to the group of agents, including itself, with
whom ai can communicate, and the position and visual direction
of ac are also utilized as inputs. V̂ t+1

i is then computed by
substituting Ŝt+1

i forSt
i inV t

i . The network f learns to minimize
the following loss (Mean Square Error).

Lf =
1

N

N∑
i=1

‖St+1
i − Ŝt+1

i ‖2. (3)

Topological information is difficult to compute for landmarks
or adversarial agents whose positions are unknown. Particularly

in multi-agent environments and in OWC where agents do not
have constant communication with all other agents, constructing
rules becomes increasingly complex as the number of agents
increases. Therefore, it would be useful to train these in a neural
network.

2) Prediction of Whether Topological Information Will Lead
to Higher Rewards: Let rti be the reward of step t for agent ai,
and define the network g that predicts the likelihood that the
predicted topological information will lead to a higher reward
than the current one by the following formula.

P (rt+1
i − rti > Δr)

= g
(
{{pt′

i }i∈ac
, {dt′

i }i∈ac
, V̂ t′

i }tt′=t−T+1

)
. (4)

The parameterΔr determines how much higher reward to expect
from the current reward. If no other landmarks are visible to the
agent or the same landmark is seen by the agent, as shown in
Fig. 5 (right), the agent is unlikely to get a higher reward in the
next action step. On the other hand, when different landmarks
are visible, the probability of obtaining a high reward in the next
action step is high. It is similar to learning the appropriate stance
or formation for the task by tying it to topological information.

By learning these networks separately, the agent can predict
the next topological information using f for each angle, and then
use g to predict whether that topological information will yield
a higher reward in the next step. Then, agent selects the most
rewarding visual direction using end-to-end network. Letting
qi = P (rt+1

i > rti), the network g is trained to minimize the
following loss (Binary Cross Entropy).

Lg = − 1

N

N∑
i=1

yi log qi + (1− yi) log(1− qi), (5)

where yi = 1 if rt+1
i − rti > Δr and yi = 0 otherwise.

D. Training Algorithm

The training algorithm for this method is shown in Algo-
rithm 1. During training, the agent learns what kind of obser-
vation and action policy π is rewarded by learning the usual
Actor-Critic training. Each agent stacks the observed 1D RGB
information of the past three frames and extracts it into a feature
vector using a 1D convolutional network. If communication is
possible, the communication signal is concatenated with the
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Algorithm 1: Training.
1: for episode = 1 to Nep do
2: Receive initial state x← {pi,di}Ni=1

3: for t = 1 to max-episode-length do
4: for each ai, select viewing direction θ
5: Execute actions and get new state x′ ← {pi,di}Ni=1

6: Get communication signals x′ ← {x′, {Vi}Ni=1}
7: for each ai, select movement action using π
8: Execute actions, get reward r, and get new state

x′′ ← {pi,di}Ni=1

9: Get communication signals x′′ ← {x′′, {Vi}Ni=1}
10: Store (x, θ, a, r,x′,x′′) in replay buffer D
11: x← x′′

12: for agent i = 1 to N do
13: Sample a random minibatch of size S from D
14: Update critic (same as MADDPG [15])
15: Update actor (same as MADDPG [15])
16: Update f by minimizing the loss in (3)
17: Update g by minimizing the loss in (5)
18: end for
19: Update target network parameters for each agent ai
20: end for
21: end for

feature vector. The overall learning method uses the centralized
training method same as in MADDPG [15]. The feature vector
extracted from the Actor’s own local observations is used to out-
put the distance to move. The direction to be moved at this time is
the direction after the visual direction change. The visual direc-
tion can be selected randomly or by the method described in Al-
gorithm 2. Critic takes the combined feature vectors of all agents
as input and outputs the Q-value through MLP during training.

At the same time as learning Actor-Critic, the prediction
network f of topological information and the prediction network
g of topological reward information described in Section III-C
are learned from the data obtained here.

The execution algorithm is shown in Algorithm 2. At ex-
ecution, the above two networks are used to predict the next
topological information and the reward probability at that time
from the θ candidates quantized every 2π/ND when the visual
direction is changed. By doing so, the change of visual direction
is made in the direction with the highest probability of reward.
In this letter, we set ND = 36.

IV. SIMULATION EXPERIMENT

A. Settings

We investigated the effect of communication methods using
OWC and visual coordination on performance in multi-agent re-
inforcement learning. For the multi-agent environment, we em-
ployed the Multi-agent Particle Environment (MPE) [15], which
provides a variety of cooperative, adversarial, or communicative
environments in the 2-D plane. Here, we conducted simulations
to verify the performance of multi-agent reinforcement learning
utilizing the visual coordination method described in Section III

Algorithm 2: Execution.
1: for episode = 1 to benchloopM do
2: Receive initial state x← {pi,di}Ni=1

3: for t = 1 to max-episode-length do
4: for agent i = 1 to N do
5: Get Vi

6: for j = 1 to ND do
7: Set θ = 2πj/ND

8: Estimate Ŝt+1
i by (2) and compute V̂ t+1

i

9: Calculate P (rt+1
i > rti) by (4)

10: RewardListi[j]← P (rt+1
i > rti)

11: end for
12: Select view dir. jmax = argmaxj(RewardListi[j])
13: end for
14: Change viewing direction to 2πjmax/ND

15: Select movement action for all agents
16: Execute actions
17: end for
18: end for

and optical wireless communication across multiple tasks. Note
that in the case of visual coordination without communication
setting, the method described in Fig. 5 is executed using only
individual information without utilizing information from other
agents. The case without visual coordination was defined as
baseline, and in this case, the control action in the visual direction
and the distance moved were combined as action. In other
words, in this case, no prediction of topological information and
rewards based on the next visual direction, as shown in Fig. 5, is
performed. We finally confirmed whether the proposed method
improves performance when applied to multiple algorithms in
multi-agent reinforcement learning.

In addition to the Simple Spread task shown as an example
in Section III-A, we performed benchmarking on the Predator-
Prey task and Keep-Away task, which are provided as MPE.
The Predator-Prey is a task where multiple good agents co-
operatively chase and capture an escaping adversarial agent.
The Keep-Away is a task where multiple good agents protect
a landmark from an adversarial agent. For these task, topology
information about the adversary agent is also added. On the
other hand, communication is possible only among good agents.
In this experiment, the processing part of visual information
shared by both Actor and Critic is composed of four-layer
1D-convolutional with 64 filters and a kernel size of 4. The MLP
layers of Actor and Critic are composed of a five-layer MLP with
256 units. In addition, the f and g networks are constructed with
four-layer MLP with 256 units. In all experiments, we used the
Adam optimizer with learning rates of 0.001 for both the Actor
and Critic, and 0.0005 for the f and g networks. Additionally,
Δr was set to 0.001 for all tasks.

B. Results

1) Simulation Results for Each Task: Fig. 6 shows the results
for each task for a 200 K steps trained model, benchmarked 20
steps per episode for a total of 10 K times. First, the results
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Fig. 6. Benchmark results for each task per 1 episode (= 20 steps). The dashed line indicates the results of the baseline approach, while the solid line shows the
results of the proposed method. The results of OWC using the proposed method are close to the results of Full Comm.

TABLE I
PERFORMANCE COMPARISON OF EACH LEARNING METHOD

Fig. 7. Overview of the experimental setting with physical equipment.

TABLE II
ARRIVAL RATE COMPARISON ON PHYSICAL EQUIPMENT

of the Simple Spread task are shown in Fig. 6(a), where the
performance is consistently higher with visual coordination
than without visual coordination in all cases. This demonstrates
the effectiveness of the proposed visual coordination method

regardless of the communication method, which implies that the
topological information shared by other agents in this method
has an important influence on the accuracy of the visual direction
control. Regarding the communication method, the performance
is higher when OWC communication is used than in the case with
no communication.

More interestingly, by including visual cooperative behavior
learned in the proposed method, the performance of OWC
becomes comparable to Full comm.

The results of the Predator-Prey task and the Keep-Away
task are shown in Fig. 6(b) and (c). For these two tasks, we
compared the results between training both good and adver-
sarial agents using the proposed method and training only an
adversarial agent using the proposed method. In other words,
good agents are trained without the proposed method in the
latter case. Fig. 6(b) demonstrates probability of adversarial
agents captured by the good agents on the vertical axis, and (c)
demonstrates probability of the good agent defending landmark
from approaching adversarial agents during one episode on the
vertical axis. First, in the Predator-Prey task, it is observed that
the probability of reaching the adversarial agent is increasing
regardless of the communication method using the visual coor-
dination method. Furthermore, similar to the Simple Spread task,
both Full comm. and OWC achieve comparable performance,
capturing the adversarial agent with a probability of over 90%
in a single episode. In the Keep-Away task, Full comm. and
OWC also increase the probability of preventing the adversarial
agent from reaching the landmark. In this way, the proposed
method has been confirmed to improve performance in adversar-
ial tasks, and to improve the effect of communication including
OWC.

2) Simulation Results With Different RL Algorithms: In order
to verify the improvement of the proposed method compared to
MADDPG [15], we used DDPG [12], R-MADDPG [22], and
MARL-TRANS [1] as baselines. The characteristics of each are
shown below.
� DDPG: Unlike MADDPG, this uses decentralized training

using only individual observations without using central-
ized training.
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Fig. 8. Exemplar images of the physical devices operating with the proposed method with OWC. In the Simple Spread task, the agents share information using
OWC (middle) and each agent decides its visual direction and moves towards the landmark (right).

� R-MADDPG: This approach introduces an LSTM layer
into MADDPG to handle temporal information. The LSTM
layer is introduced into the output of the convolutional
layers of both the Actor and the Critic.

� MARL-TRANS: This approach introduces an attention
mechanism into the communication content, under the
assumption that the communication range is limited in dis-
tance. Note that Proximal Policy Optimization (PPO) [19]
is used for the learning algorithm.

Table I shows the results when each algorithm is applied to
the proposed method in the Simple Spread task. In the setting of
N = 3 agents, DDPG’s performance tends to degrade without
centralized training. The proposed method improves its perfor-
mance, while OWC achieves the same level of performance as
Full Comm. Also, R-MADDPG is worse than MADDPG. Unlike
the original letter where the state information such as positional
data is directly inputted to the LSTM layer as observation, we
introduced the LSTM layer after the CNN layer. Therefore, the
information such as hidden state becomes stale as the CNN
layer is updated [10]. Although detailed parameter tuning and
optimization of the learning method were not performed in this
study, the proposed method enhances the performance up to
the same level as the original letter. Furthermore, for MARL-
TRANS, merely changing the communication method to OWC
significantly decreases performance. However, applying the pro-
posed method improves its performance to the same level as Full
Comm. These results demonstrate that the proposed method can
be applied to various algorithms.

V. EXPERIMENTS ON PHYSICAL EQUIPMENT

A. Settings

For a physical agent, we used a small device named toio1.
These devices can acquire their location information by read-
ing the dedicated sheet where patterns of location information
are encoded using an optical sensor. An external camera was
connected using a Raspberry Pi Zero2, and an Arduino3 was
connected for the purpose of OWC. The field size is 90 cm wide

1https://toio.io/
2https://www.raspberrypi.org/
3https://www.arduino.cc/

by 60 cm deep. The physical agents we created are shown in
Fig. 1 and the overall configuration is shown in Fig. 7. Details
of each part are described in the following.

1) OWC Part: For OWC, LEDs in the 940 nm band are used
for transmitter. Manchester coding was used for the commu-
nication signal, and a phototransistor sensitive to the 940 nm
band was used for the receiver (L-51ROPT1D1). The receiver
was designed to acquire a range of 100◦, which is the same as
the camera angle of view. The transmitter was connected to 8
LEDs so that it could transmit throughout the perimeter so that
it could be seen from any direction. Note that during execution,
the timing of communication is separated to avoid confusion
between the communication signals.

2) Camera Part: A camera with a FOV of about 100◦ was
used. We extract only one line of the acquired image as used
in the simulation. In order to use the behavior policy obtained
in simulation in the physical device, images are converted to
the data that should be obtained in simulation by a Sim2Real
fashion. We employ a four-layer one-dimensional convolutional
neural network for Sim2Real transformation and train it using
3,000 data samples.

During the experiment, the raspberry pi zero mounted on toio
is connected to the host PC via ssh and communicates with
it to determine what actions to have it take. The actions are
determined based on the local observation information of each
agent.

B. Results

Physical experiments were conducted with Full comm., OWC,
and w/o comm. First, the performance of OWC itself was
checked. We confirmed the success of OWC communication
within a range of approximately 80 cm in distance and a
field of view of around 100 degrees by varying the rela-
tive angle and distance from the transmitter to the receiver’s
center.

Next, we confirmed the applicability of OWC to multi-agent
operations. In this experiment, the communication signal for
determining the visual direction is sent and received by OWC,
and the other basic operation procedures are the same as in the
simulation. As mentioned above, when using OWC, a tuning
period is required to search whether the phototransistor can

https://toio.io/
https://www.raspberrypi.org/
https://www.arduino.cc/
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acquire the signal from the LED or not. During the tuning period,
the Tx side rotates by 20◦ at regular intervals and the Rx side
prepares to receive. Therefore, signal information is provided
during the multi-agent operation if the signal is acquired as a
result of tuning to shorten the operation time. In the experiments,
benchmarking was performed based on the ratio of the number
of landmarks reached in the final step per episode. The number of
experiments was 10 episodes each, and the average percentage of
the landmarks reached was calculated in the final (20th) step and
the middle (10th) step. The results are summarized in Table II.
The results reproduced that the operation with full communica-
tion achieved the highest performance and fastest arrival, while
the performance decrement with OWC was relatively small. The
exemplar operation is shown in Fig. 8.

VI. CONCLUSION

We propose a method for visual coordination in a multi-agent
system with limited vision using OWC and evaluated its per-
formance through simulations and physical experiments. By
sharing information about what each agent is looking at, our
method enables agents to imagine areas they cannot see and
predict the probability of obtaining high rewards. Simulation
results demonstrated that the OWC method outperformed the
no-communication method and that controlling the viewing
direction improved performance in all cases. Furthermore, com-
bining OWC with the control of viewing direction achieved
performance comparable to those of full communication. These
results were also confirmed on a physical device. However, the
current system has limitations, such as the need for optical
axis alignment due to the use of only a few photodetectors.
We anticipate that this challenge can be addressed in the future
by using high-speed image sensors, such as photodiode arrays
or event-based vision cameras, in the light-receiving portion of
OWC.
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