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Reinforcement Learning With Energy-Exchange
Dynamics for Spring-Loaded Biped Robot Walking

Cheng-Yu Kuo , Hirofumi Shin , and Takamitsu Matsubara , Member, IEEE

Abstract—This letter presents a probabilistic Model-based Re-
inforcement Learning (MBRL) approach for learning the Energy-
exchange Dynamics (EED) of a spring-loaded biped robot. Our
approach enables on-site walking acquisition with high sample
efficiency, real-time planning capability, and generalizability across
skill conditions. Specifically, we learn the data-driven state tran-
sition dynamics of the robot in the formulation of energy-states,
with their interaction characterized as energy-exchange to reduce
dimensionality. To improve planning reliability with the learned
EED, we design a control space based on a walking trajectory
that follows the law of conservation of energy and is formulated
by energy-states. We evaluated our approach using a four-degree-
of-freedom spring-loaded biped robot in simulation and hardware,
and generalizability is validated by using the same learning frame-
work for different walking speeds and terrains in simulation and
walking acquisition with hardware. All results showed successful
on-site walking acquisition with a compact nine-dimension dynam-
ics model, 40 Hz real-time planning, and on-site learning within a
few minutes.

Index Terms—Humanoid and bipedal locomotion, model
learning for control, reinforcement learning.

I. INTRODUCTION

COMPLIANT biped robots have gained attention due to
their potential for deployment in human-centric environ-

ments, resemblance to humans in anatomy and behavior [1]
that can handle impacts and traverse different terrains [2], and
the captivating prospect of a non-organic machine performing
a human-associated task. However, the increased compliance
of such robots results in a complex dynamic system, making
analytical approaches challenging.

Several learning-based studies tackled the problem of com-
pliant biped locomotion and achieve different biped maneuvers.
These methods include Model-free Reinforcement Learning
(MFRL) [3], [4] and Bayesian Optimization (BO) [5], [6].
However, both MFRL and BO are black-box approaches that
are task-specific and data-intensive, requiring virtual scaling
like Sim-to-Real to learn each gait. To enhance generalizabil-
ity, parameterized policies are learned with MFRL and BO to
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Fig. 1. Illustration of the Energy-Exchange Dynamics (EED) of a spring-
loaded biped robot. The energy flows between the gravitational, kinetic and
elastic energy, with actuators being energy sources that provide energy to the
system. This work uses MBRL to learn this EED to perform biped walking.

achieve different walking speeds [7], [8], walking heights [9],
or both [10]. Nevertheless, these policies are limited to the
predefined walking parameters involved in the training, and
adding new parameter requires long re-learning. This not only
lengthens the learning process, but also limits on-site learning
capability.

As a promising solution for achieving sample efficiency
and generalizability, probabilistic Model-based Reinforcement
Learning (MBRL) involves learning a data-driven dynamics
model of a robot and perform different skills using probabilistic
Model-Predictive Control (pMPC) with varying control objec-
tives [11], [12]. However, due to the computational expense
of MBRL [13], previous studies on biped locomotion were
mainly conducted in simulation [14], [15] or with physical robot
using offline planning [16]. Furthermore, more training samples
and high dimension dynamics are needed to accommodate the
compliance dynamics of compliant biped robots. The increase
in sample size and model dimension largely impacts the control
frequency, as the computation load of pMPC depends on either
the training sample size [17] or model dimension [18], making
implementation of compliant biped locomotion challenging.

With the above considerations in mind, our objective is to
develop an MBRL approach that can 1) learn the dynamics of
a compliant biped robot on-site with high sample efficiency, 2)
achieve locomotion skills at a high online planning frequency,
and 3) have generalizability across skill conditions.

This work presents an MBRL approach that learns the Energy-
exchange Dynamics (EED) to enable a spring-loaded biped
robot to walk. Specifically, we view actuators as energy sources
by incorporating the energy conservation equation and use
MBRL to learn a data-driven state transition dynamics of the
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robot in the formulation of energy-states to reduce dimension-
ality with their interaction characterized as energy-exchange,
Fig. 1. For reliable pMPC planning with EED, we establish a
state-aware control space that utilize with the observed robot
state and an energy-state-based reference walking trajectory we
designed by following the law of conservation of energy. Our
approach’s generalizability is validated through different walk
speeds, continuous changing walk speeds, and uneven terrains
in simulation and walking acquisition with hardware. All results
showed successful on-site walking acquisition with 1) a compact
nine-dimension dynamics model, 2) 40 Hz real-time planning
capability, and 3) on-site learning within a few minutes.

Comparing to our previous work which utilized energy to
learn spring dynamics and perform a hopping task with a simu-
lated robot [19], this work incorporates the energy conservation
equation of actuators to further reduce dimensionality, improves
pMPC planning reliability, tests generalizability, and success-
fully implemented onto hardware.

II. PRELIMINARIES

MBRL with GPs dynamics is sample-efficient [12], but its
control frequency with pMPC grows exponentially with the
training sample size, making it unsuitable for high control
frequency tasks like biped locomotion. Building on previous
successes of robotic applications [19], [20], we implemented
the Fourier-featured Linear Gaussian Model (LGM-FF) [18] to
alleviate the sample size and control frequency trade-off.

A. Probabilistic Dynamics Acquisition and State Prediction

Let a dynamical system, xt+1 = f(xt,ut) + ε, represents
the system’s true dynamics as discrete-time state transition.
Here, xt ∈ X ⊂ RD is the state, ut ∈ U ⊂ RU is the control,
and ε is the system noise that follows Gaussian distribution.
We approximate a latent dynamics model for each prediction
dimension via LGM-FF, f := {fi(·)}i=1,...,D, withN collected
samples from the system during trials. In particular, the train-
ing samples are formulated as input X̃ = [x̃1, . . ., x̃N ], where
x̃t := (xt,ut) ∈ RD+U , and the target yi = [xi,2, . . ., xi,N+1]
as the i-th element of xt.

As LGM-FF predicts future state as a Gaussian distribution,
recursive uncertainty propagation is required for multi-step pre-
dictions. With a Gaussian distributed state p(xt), the future
state distribution p(xt+1) ≈ N (μt+1,Σt+1) is approximated
by exploiting moment-matching [18], [21] with the LGM-FF.
Specifically, the predictive state p(xt+1) is obtained by inte-
grating LGM-FF latent dynamics f(·) over the state distribution
p(xt), denoted as function fM (·):

p (xt+1) = fM (p (xt) ,ut) =

∫
f (xt,ut) p (xt) dxt, (1)

where analytic solutions are provided in a previous study [18].
Comparing the computation cost of exploiting moment-

matching with standard GPs model, O(DN2), LGM-FF results
in O(DM2) which is independent to collected sample size
N , where M is the feature size used in LGM-FF, and was
demonstrated that M � N in robotic tasks [18], [19].

B. Finite-Horizon Probabilistic Model Predictive Control

Given an input state distribution p(x), pMPC returns the
optimal H-step control u� := [û1, . . ., ûH ] by minimizing

the expected finite-horizon loss L(p(x)) derived by recursive
moment-matching via (1) [12], [20]:

minimizeu� L (p (x)) =
∑H+1
k=2 E [� (x̂k) |p (x̂k)]

subject to p (x̂k+1) = fM (p (x̂k) , ûk)
p (x̂k) ∼ N (μk,Σk) , k = 1, . . ., H + 1
ûk ∈ U , k = 1, . . ., H

⎫⎪⎬
⎪⎭
(2)

where x̂1, . . ., x̂H+1 are the predictive state rollouts with initial
state distribution p(x̂1) = p(x), and � : X → R is the immedi-
ate loss. Within a task with a full horizon Hf , pMPC re-solves
an optimization problem over a receding horizon H (H < Hf )
with newly observed state of all time instants, making it robust
to environmental changes. The computation cost of pMPC with
LGM-FF is O(HDM2).

III. PROPOSED METHOD

We propose an MBRL approach consisting of three strategies
to achieve walking on a spring-loaded biped robot:

1) EED Model and Energy-state: Motivated by the law
of conservation of energy [22], we use LGM-FF with
energy-state to model the EED of the robot to express
its CoM, elastic components and actuators’ dynamics in
the formulation of energy with their interaction charac-
terized by energy-exchange. The use of EED can reduce
dimensionality as some state instances can be implicitly
expressed.

2) Energy-state-based Walking Trajectory: As pMPC lever-
ages multi-step state predictions for control planning, the
use of energy-state converts the intended walking task into
an energy control problem. To achieve successful walking
with pMPC, we incorporate the law of conservation of en-
ergy and design an energy-state-based reference walking
trajectory.

3) State-aware Control Space: To address the challenge of
ensuring reliable controls in pMPC planning, we propose
a state-aware control space that utilizes both the provided
energy-state-based trajectory and the observed robot state
to constrain the pMPC exploration.

A. Simplified System’s Variables and Gait Parameters

In this section, we use a simplified spring-loaded planer biped
system to explain our approach, and our implementation to a
spring-loaded biped robot is detailed in Section IV.

1) Simplified System’s Variables: Consider an m-kg point-
mass planer biped robot system with k spring-loaded actua-
tors, characterized by a spring constant matrix K ∈ Rk×k. The
following variables are assumed available: the Center-of-Mass
(CoM) height h, CoM velocity v ∈ RV , spring deflections
ΘS ∈ Rk, and actuators’ position and velocity Θ, Θ̇ ∈ Rk.

2) Gait Parameters: The Lswg, Lsup denotes the leg length
of the swing and support leg as well as their respective orienta-
tion in world-space ψwswg, ψ

w
sup, Fig. 2. L and ψw are assumed

obtainable from actuator Θ and spring’s positions ΘS . The
walking gait is then described by four parameters: the stance leg
length Lstan, the lifted leg length Llift, the desired stride angle
θstride, and the desired CoM velocity at the peak vp ∈ RV . This
walking gait is divided into two phases with distinct objectives,
Double-Support (DS) and Single-Support (SS), with the rear leg
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Fig. 2. Walking gait with the swing/support leg definition and gait parameters.

during DS being the support leg. Conditions for phase transition
is detailed in Section IV-C1.

3) Gait Motion: With the gait parameters, the target gait
motion is shown in Fig. 2, with following requirements:
� DS phase: the angle between two legs matches θstride

and the swing leg’s length matches the stance leg
length. We denote these requirements as RDS = {ψwswg =
−0.5θstride, ψ

w
sup = 0.5θstride, Lswg = Lstan}.

� SS phase: the support leg’s length matches the stance leg
length such that the system act as an inverted pendulum,
with requirement denoted as RSS = {Lsup = Lstan}.

B. EED Model and Energy-State

Using MBRL to learn the EED model of the robot, xt+1 =
f(xt,ut) + ε, requires an energy-state x and a user-defined
control ut based on how actuators are controlled, our definition
is detailed in Section IV-C3. First, we denote the system energy
E ∈ RV+2 as

E := [Eg,Ek, ES ]
� = [m|g|h, 1

2
mv◦2,

1

2
(KΘS)

�ΘS ]
�,

(3)

where Eg is the gravitational energy, Ek is the kinetic energy,
Es is springs’ total elastic energy [19], g is the gravity vector and
◦ denotes element-wise operations. Without an external energy
source, the system’s total energy remain constant; that is,1�E =
const., where 1 is a vector of ones.

Next, we assume the actuators are the only energy source of
the robot system. The energy of the actuator,Eact, is derived by
taking the integral of motion [23] of their Equation-of-Motion:
τ = JΘ̈ +KΘ +DΘ̇:

Eact =

∫
τ�Θ̇dt

=
1

2
(JΘ̇)�Θ̇ +

1

2
(KΘ)�Θ +

∫
(DΘ̇)�Θ̇dt, (4)

where τ contains actuators’ torque, J is the inertia matrix, D
is the damping matrix. By introducing the actuator’s energy, the
system’s energy conservation equation becomes:

1�E = Eact +Const.

=
1

2
(JΘ̇)�Θ̇+

1

2
(KΘ)�Θ+Const., (5)

which shows the robot’s system energy E is a function of the
actuator’s position Θ and velocity Θ̇. As the system’s energy E

is obtained from observed CoM state and spring deflections, the
actuator’s positionΘ and velocity Θ̇ can be implicitly expressed
by one another. In this work, we select the actuator’s position
and design the energy-state as

xt =
[
Θ�
t ,E

�
t

]� ∈ Rk+V+2, (6)

which reduces 2k − 1 dimensions from the standard state

xt =
[
Θ�
t , Θ̇

�
t , h,v,Θ

�
s

]�
∈ R3k+V+1. (7)

C. Energy-State-Based Walking Trajectory

Double-Support: Based on the law of conservation of energy
and the provided gait parameters, the system has to posses the
target energy E� ∈ R to follow the desire gait:

E� = E�g + 1�E�
k = m|g|Lstan + 0.5m1�v◦2

p , (8)

where E�g ∈ R and E�
k ∈ RV are the target gravitational and

kinetic energy, with vp the desired CoM velocity at the peak.
Therefore, the objective is provide a trajectory that pMPC can
find optimal controls that supply the system with necessary
energy to progress forward. As the target energy remain constant,
the reference trajectory at time-step t are:

E�g,t = E�g = m|g|Lstan, (9)

E�
k,t = E�

k = 0.5mv◦2
p . (10)

and the corresponding reference trajectory of the DS phase is

TDS
t =

{
E�g,t,E

�
k,t

}
. (11)

Single-Support: Assuming the system has gained energy after
the DS phase, the objective of the SS phase is to execute a stable
leg swing with the swing leg in order to progress to the DS
phase. To synchronize the inverted pendulum’s swing motion,
the swing leg’s references, L�swg and ψ�swg , must be a function
of the support leg orientation ψwsup. As long as the swing leg’s
terminal configuration matches the defined stance configuration
of the DS phase, the swing leg’s intermediate trajectory can be
chosen according to the desired gait pattern. We denote the swing
leg’s trajectory as follows:

L�swg,t = SL
(
ψwsup,t

)
, (12)

ψ�swg,t = Sψ
(
ψwsup,t

)
, (13)

where SL, Sψ : R → R are mappings between support leg ori-
entation ψwsup and reference swing leg’s trajectories. Our ap-
plication is detailed in Section IV-C2. Therefore, the reference
trajectory of the SS phase is

T SS
t =

{
L�swg,t, ψ

�
swg,t

}
. (14)

Although the SS phase’s reference trajectories are formulated
as positions; however, given the EED model is characterized as
position and energies, energies are incorporated to predict future
positions in pMPC.

D. State-Aware Control Space

The state-aware control space for pMPC modifies the explo-
ration control space U in (2) to reduce the chance of the pMPC
producing unreliable controls. At each time-step t, the modifi-
cation is based on system’s state xt, the reference trajectory x�t ,
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Fig. 3. (a) The spring-loaded biped robot [1]. (b) The simulated robot in Mujoco. (c) The biped robot configuration with variable descriptions in Table I. Robot
parameters: mass m = 11.25 kg; lthigh, lshin, lrod = 0.25 m; llever, lknee = 0.0705 m; θknee = 110◦; kthigh, klever = 150 Nm/rad.

the user’s prior knowledge of which control signals are more
reliable:

U ′
t = g (xt,x

�
t ,U) , (15)

where g : X × U → U ′ ⊂ U modifies the control space, and
our application of this method is discussed in Section IV-C4.

IV. SETUP FOR EXPERIMENT AND IMPLEMENTATION

A. Environment

1) Hardware: We selected a spring-loaded biped robot [1],
featuring lightweight legs with parallel-linkage structures and
four spring-loaded actuators driving its lever and thigh links
for prismatic compliance, The lightness of the legs enabled us
to approximate the robot’s CoM with its hip joint. Actuators
were velocity controlled at 40 Hz with limit of ±6 rad/s. The
robot was attached to a rotational boom and constrained in the
sagittal plane. Conversion between local, task, and world-space
is provided in Appendix A. Hardware results were computed on
the on-robot computer with an i7-4700EQ CPU.

2) Simulation: A simulated replica of the robot was built in
Mujoco (Fig. 3(b)), with friction and damping in all joints to
mimic the real robot. The simulated robot was constrained in
the sagittal plane (xz-plane) and controlled at a frequency of
40 Hz, matching the real robot. Simulated experiments were
conducted using an Apple M1 Max-equipped computer.

B. EED Model Configuration for MBRL

Following (7), the robot’s energy-state is defined as:

x =
[
Θ�, θT ,E�]� ∈ R9, (16)

where θT is added to obtain world-space leg orientation. Θ and
E are defined as

Θ = [φswg, ψswg, φsup, ψsup]
� ∈ R4, (17)

E =

[
Eg, ER,

ṖT

|ṖT |
ET , ES

]�
∈ R4, (18)

with φ being the inner angle of each leg corresponding to the
leg length L; Eg is the gravitational energy; ES is the total
elastic energy of all springs;ER andET are the kinetic energies
obtained from radial and tangential CoM velocities (ṖR, ṖT ),

referring to the support leg, Fig. 3(c). Directions are added to the
tangential kinetic energies for additional information (positive
when walking forward). Both φ andψ include spring deflections
and are configured in task-space to simplify the walking control
problem, and are obtained from actuator position and spring
deflections, as detailed in Appendix A. Dynamics models for
the DS and SS phase are independently trained with samples
collected in that phase.

C. pMPC Planning Objective

1) Walking Gait Parameters: Stance leg length Lstan and
lifted leg length Llift were measured when the joint angles
φmin = 14◦ and φmax = 37◦; the target stride angle is θs = 28◦;
the target velocity at peak is vp is 0.4 m/s in the x-direction.
Therefore, we obtained the target energy as

E� = m|g|Lstan + 0.5m1�v◦2
p ≈ 54.426 J. (19)

The transition between phases is determined by feet’s ground
reaction forces, F swg and F sup, with conditions: a) DS → SS
if |F sup| ≤ 5N, and b) SS → DS if |F swg| ≥ 20N. F swg and
F sup are only used to identify phase transitions and are not used
in the pMPC planning.

2) Reference Swing Leg Trajectory for the SS Phase: We
designed a human-inspired reference trajectory for our appli-
cation by incorporating a recent human gait analysis [24]. To
achieve a smooth motion, the reference swing leg trajectory was
heuristically fitted to the human gait [24] using multiple sigmoid
functions, as shown by the black dashed lines in Fig. 8. This
allowed us to execute a stable leg swing.

3) Control Strategy and pMPC Objective Function: Follow-
ings are designed associating with the reference trajectories
TDS
t ,T SS

t from (11) and (14), and the requirementsRDS ,RSS

from Section III-A3.
Double Support: a kicking motion is anticipated to provide

the system with necessary energy, thus define the control as

uDS :=
[
φ̇sup

]
, (20)

and the immediate loss for the pMPC is set accordingly:

�DS (xk) := − exp
(−|E� − 1�Ek|

)
, (21)
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TABLE I
SYSTEM VARIABLES (VAR.) IN LOCAL-, TASK-, AND WORLD-SPACE

where the directional kinetic energy in (18) encourages gaining
energy by kicking forward. Following RDS , positions of φsup,
ψsup, and ψswg are fixed via PD controllers.

Single Support: the goal is to perform a leg swing while
keeping its body orientation at −5◦ to avoid exceeding the
actuator limits due to the hardware constraints. Given RSS ,
the support leg length is held by PD controllers with additional
ψsup = (−5◦ − θT ) to counteract the torso tilt. Meanwhile,
given the reference state the optimal swing leg control:

uSS :=
[
φ̇swg, ψ̇swg

]�
, (22)

is obtained through pMPC with an immediate loss set to:

�SS (xk) := −0.5 exp (−|φ�k − φswg,k|)
− 0.5 exp

(−|ψ�k − ψwswg,k|
)
, (23)

where the conversion from L�swg,k to φ�swg,k and obtaining the
world-space leg orientation ψw is provided in Appendix A.

4) State-Aware Control Space: The purpose is providing a
reliable control space to constrain pMPC exploration. As the
reference state of the pMPC is already known (φ�swg, ψ

�
swg, E

�),
we find an theoretical control relative to these references and
establish a control range for pMPC. Specifically, we modify the
control space as adding a range of velocities [−δ, δ] above the
theoretical velocities u�i :

U ′
t := {ui ∈ [u�i − δi, u

�
i + δi]}∀ui∈ut

⊂ U . (24)

For all steps of the DS phase, the theoretical kicking velocity
L̇�sup is obtained from the required radial kinetic energy E�R:

E�R = max (E� − Eg − ET , 0) , (25)

L̇�sup =
√

2m−1E�R, (26)

where (25) calculates the lacking energy that the radial kinetic
energy can provide, and 26 converts E�R into the theoretical
velocity, which is converted to φ̇�sup via (37).

For all steps in the SS phase, the theoretical velocities ψ̇�swg
and ψ̇�sup are obtained by scaling the distance between the current
state and the reference trajectory:

φ̇�swg,t = α
(
φ�swg,t − φswg,t

)
, (27)

ψ̇�swg,t = α
(
ψ�swg,t − ψswg,t

)
, (28)

Fig. 4. MBRL process with ahead pMPC planning.

where α is a scaling factor, and we set to control frequency
α = 40 for exact conversion from position to velocity.

Based on the theoretical velocities at each time-step, we define
the control space for the DS and SS phase as

U
′
DS =

{
φ̇sup ∈

[
φ̇�sup − δ, φ̇�sup + δ

]}
, (29)

U
′
SS =

⎧⎨
⎩

φ̇swg ∈
[
φ̇�swg − δ, φ̇�swg + δ

]
ψ̇swg ∈

[
ψ̇�swg − δ, ψ̇�swg + δ

]
⎫⎬
⎭ , (30)

where δ is defined as 1.2 rd/s for simulated robot and 0.6 rd/s for
hardware, which pMPC explores approximate 20% and 10% of
the actuator’s full capability.

D. MBRL Process

In our experiments, MBRL repeated trials until reaching the
target sample duration. In each trial, steps were repeated at a rate
of 40 Hz until any termination condition was satisfied. During
each step, an ahead pMPC scheme [20] was applied to find the
optimal control while alleviating control delay. Specifically, at
time step t, the pMPC finds the optimal control sequence u� =
[û1, . . ., ûH ] of length H = 3 based on the dynamics model of
that phase and a predictive state x̂t+1, as obtained via (1). The
first control signal û1 is then assigned as the one-step-ahead
control that will be applied to the system at time step t+ 1.
After each trial is completed, the MBRL model is updated using
samples collected from all previous trials. The learning process
is summarized in Fig. 4.

Termination conditions of for simulation trials included reach-
ing a target distance of 20 m, fall over (Pz ≤ 0.35 m), or
falling back (Ṗx ≤ −0.75 m/s), where Pz is the z-element of
PC and Ṗx is the x-element of ṖC . For hardware trials, con-
ditions included reaching joint limits (θ1 /∈ [36.5◦, 143.5◦] and
θ2 /∈ [−40.5◦, 83.5◦]) or the operator engaging the emergency
stop when the robot was unstable or had reached a target distance
(≈8.23 m).

For all experiments described below, samples are collected
on-site and dynamics are learned from scratch. This means that
no skill or model is transferred between experiments.



6248 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 10, OCTOBER 2023

Fig. 5. Simulation results of utilizing energy for learning the walking task.
All three methods are applied with the proposed state-aware control space. The
success rates of achieving a 20 m walk are displayed above the bar chart. Even
with a reduced dimension dynamics model, MBRL with EED model is thus
shown to be sufficient for walking task learning.

TABLE II
STATE DIMENSIONS (D) AND AVERAGE TIME PER PMPC OPTIMIZATION

ITERATION FOR EACH BASELINE, WITH STANDARD DEVIATIONS IN

PERCENTAGES

V. EXPERIMENTAL RESULTS

A. Simulation Results

The target sample duration is set to 480 seconds, and we
evaluate our proposed method by studying its 1) effectiveness of
leveraging EED for learning biped walking, 2) effectiveness of
constraining pMPC exploration with state-aware control space,
3) generalizability when walking at different velocities, and
walking on uneven terrains.

1) Leveraging EED for Biped Walking: This section demon-
strates the effectiveness of utilizing EED via comparing:

1) Standard MBRL, which learns the standard dynamics
without energy terms, (31).

2) TDE2-MBRL [19], which only considered spring’s elas-
tic energy as energy-state, (32).

3) Ours, which considered both spring and actuator’s motion
as energy-state, (7).

All three methods are applied with the proposed state-aware
control space. The state of standard MBRL is

x =
[
Θ�, θT , Θ̇

�
, Pz, ṖR, ṖT ,ΘS

]�
∈ R

16, (31)

where Pz is the z-element of robot’s CoM position PC ; and
ΘS ∈ R

4 contains all four spring’s deflection. Furthermore, the
state of TDE2-MBRL is

x =
[
Θ�, θT , Θ̇

�
,E�

]�
∈ R

13. (32)

Fig. 5 and Table II demonstrate that learning EED not only
does not impede learning performance, but also reduces the time
cost per pMPC optimization iterations, leading to higher success

Fig. 6. Energy-state’s actual and model-predicted (predicted mean) trajectory
during successful walking in simulation, showing the exchange between grav-
itational, elastic, and kinetic energy, as well as the energy loss during the DS
phase due to joint friction and damping. Our approach captures this energy loss,
as shown in the model-predicted trajectory.

Fig. 7. Simulation results of constraining pMPC control space for learning
the walking task. The success rates of achieving a 20 m walk are displayed above
the bar chart. The increase in both learning efficiency and success rate confirms
our approach’s effectiveness in enhancing planning reliability.

rates and highlighting the importance of increasing optimization
iterations. In addition, Fig. 6 shows an example of energy-state
trajectory and energy-exchange during successful walking with
our approach.

2) Utilizing State-Aware Control Space: This section
presents the effectiveness of constraining pMPC exploration.
We compare the following three approaches:

1) No pMPC, where the theoretical velocities, obtained via
(26)–(28), are directly taken as control input.

2) Standard pMPC, where the pMPC control space is set to
the actuator’s performance limit.

3) Ours, the proposed approach that pMPC explores an
established control space around the theoretical velocities.

Fig. 7 shows that the “No pMPC” was unable to execute the
walking task due to its inability to counteract joint elasticity.
The “Standard pMPC” had a slow learning speed, as a result
of a wide pMPC exploration range. Our approach, however,
exhibited a remarkable improvement in both learning efficiency
and walking reliability; 97.1% success rate was achieved after
only two minutes of training samples. Also, Fig. 8 illustrates
the swing leg motion of the proposed approach, demonstrating
improved tracking capability in the later-stage (≥240 s) with a
much more concentrated trajectory compared to the early-stage
(≤30 s) results, which contributes to walking stability and a
higher success rate shown in Fig. 7.



KUO et al.: REINFORCEMENT LEARNING WITH ENERGY-EXCHANGE DYNAMICS FOR SPRING-LOADED BIPED ROBOT WALKING 6249

Fig. 8. Swing leg trajectory obtained through our approach in simulation
(including fails), indicating that the tracking performance is enhanced with an
increased number of samples collected.

Fig. 9. Simulation results of of 30 MBRL attempts to walk on uneven terrains,
showcasing the robustness of our approach. The success rates of achieving a 10 m
walk are displayed above the bar chart.

3) Generalizability: Using the same framework and settings
as in previous experiments, we tested our approach’s gener-
alizability of learning different tasks. Footage of the below
experiments is provided in the supplementary movie.

First, we evaluate our approach’s ability to learn robot dynam-
ics under unknown terrains that have random ground heights
ranging from 0–10 mm and 0–15 mm (2% and 3% leg length).
Results in Fig. 9 shows our approached achieved over 95% and
80% success on the 10 mm and 15 mm terrains, respectively,
demonstrating its ability to handle ground uncertainties without
knowing the ground’s status.

Second, we tested our approach’s ability to walk at different
speeds by changing the velocity of the CoM at peakvp to 0.3 m/s,
0.7 m/s, and alternating between these two velocities every five
meters to handle continuous speed changes. All other settings
remained unchanged. The results (see Fig. 10) showed over
90% success across all three tests, demonstrating our approach’s
ability to generalize over different and changing walking speeds.

The results of the “cross-performing” test in Fig. 10 show
that over 75% success was achieved when using all 30 models
learned with 0.3 m/s walking speed to perform 0.7 m/s walking,
and vice versa. This highlights the advantages of learning robot
dynamics over learning robot tasks.

B. Hardware Results

We compared our approach with “No pMPC,” which applies
theoretical control input. Our goal was to learn the robot’s
dynamics from scratch and perform walking with 40 Hz online
planning until the boom reaches 270◦ rotation (≈8.23 m). The
target sample duration for hardware is set to 180 seconds. As

Fig. 10. Simulation results of 30 MBRL attempts to walk at different CoM’s
peak velocities. The “alternating velocity” switches between 0.3 and 0.7 m/s
every five meters of walking. The “cross-performing” shows the average walking
distance over five trials of using all 30 models learned with 0.3 m/s to perform
0.7 m/s walking and vice versa. The success rates of achieving a 30 m walk are
displayed above the bar chart.

Fig. 11. Footage shots of hardware experiment.

Fig. 12. Hardware results of our approach learning the walking task. The
walked distance was obtained by combining the IMU’s z-rotation readouts
and the boom length. The success rate of achieving the 7.5 m goal distance
(accounting for sensor errors) is displayed in percentages above each bar. The
pMPC averaged 2.44 ms per iterations with the on-robot CPU.

shown in Fig. 12, our approach achieved a 73.3% success rate in
this walking task with only ≈180 seconds of samples, while
“No pMPC” failed. This result demonstrates the real-world
capability of our approach, even with a relatively low-spec CPU
(i7-4700EQ) used for this experiment.

VI. DISCUSSIONS

Despite the demonstrated success, our approach has limita-
tions. The state-aware control space requires user adjustment to
filter out unreliable controls without limiting the robot’s capabil-
ities, and control problems requiring both actuator positions and
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velocities cannot be applied if either is concealed. Nevertheless,
this work provides insight into utilizing EED for compliant biped
locomotion.

We listed the following future studies to improve this work.
1) Additional hardware experiments to validate that conditions
in simulation experiment is reproducible in the real world. 2)
While energy is a physical quantity that exists in all systems, we
need to address the computational burden when implementing
it in high-dimensional bipedal robots. 3) An adaptive model is
required to handle scenarios where the zero point of potential en-
ergy changes, such as slops. 4) Developing a reference trajectory
generator that considers stability will be helpful in achieving var-
ious dynamic maneuvers. 5) Investigating the ability to transfer
models can improve the generalizability of handling changing
environments.

VII. CONCLUSION

We propose an MBRL approach for learning the EED of
a compliant biped robot and using pMPC to identify an opti-
mal control for walking. The EED reduces dimensionality and
effectively expresses the dynamics of a spring-loaded biped
robot. Simulation results demonstrate our approach’s ability to
generalize across different speeds, changing speeds, and uneven
terrains while learning quickly. Real-world feasibility is also
demonstrated with hardware. Results show successful on-site
learning using a compact dynamics model, 40 Hz real-time
planning, and on-site learning within a few minutes.

APPENDIX A
JOINT/TASK/WORLD SPACE CONVERSION

The following equations derive the conversion between local-
(θ1, θ2), task- (φ, ψ, L) and world-space (ψw, θT ):

ψw = ψ + θT , (33)

φ = 0.5 (θknee − θ1 + θ2) , (34)

ψ = 0.5 (π − θknee − θ1 − θ2) , (35)

L = (lthigh + lshin) cosφ, (36)

L̇ = (lthigh + lshin) φ̇ sinφ, (37)

θi = θacti + θspri , ∀i = 1, 2, (38)

where θact and θspr are the readouts of actuator and spring.
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