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Abstract—The proposed work presents a framework based on
Graph Neural Networks (GNN) that abstracts the task to be ex-
ecuted and directly allows the robot to learn task-specific rules
from synthetic demonstrations given through imitation learning. A
graph representation of the state space is considered to encode the
task-relevant entities as nodes for a Pick-and-Place task declined at
different levels of difficulty. During training, the GNN-based policy
learns the underlying rules of the manipulation task focusing on
the structural relevance and the type of objects and goals, relying
on an external primitive to move the robot to accomplish the task.
The GNN-policy has been trained as a node-classification approach
by looking at the different configurations of the objects and goals
present in the scene, learning the association between them with
respect to their type for the Pick-and-Place task. The experimental
results show a high generalization capability of the proposed model
in terms of the number, positions, height distributions, and even
configurations of the objects/goals. Thanks to the generalization,
only a single image of the desired goal configuration is required at
inference time.

Index Terms—Learning from demonstration, imitation learning,
task and motion planning.

I. INTRODUCTION

WHEN robots appeared in the industry back in the 90 s,
the most popular programming method for the first

decades was online programming due to its simplicity and
intuitiveness [1]. Online programming is still nowadays the first
choice for small and easy tasks, but when the tasks become
more complex, offline programming is the preferred and most
effective alternative. However, even though robotic research
advances have grown very fast in the last few years, industrial
robots execute mostly pre-programmed tasks. And if something
changes, they still need to be programmed again by expert
operators. Programming-by-demonstration [2] has shortened the
time required to set up new procedures, but still, robots do not
present a high level of autonomy. In line with the concept of
flexibility pushed by Industry 4.0 [3], vision-guided robots are
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Fig. 1. Graphical representation of the proposed approach where a Graph
Neural Network based policy abstracts the Pick-and-Place tasks as pairs of an
object and a goal. Given a scene (goal configuration acquired at the beginning
of the task and the current object configuration), the GNN policy plans at each
time step which object o∗ to move in which goal g∗ to achieve the desired goal
configuration. The GNN policy is composed of two GNNs: one focused on the
goals and the other on the objects. The input is provided to the GNN through
a perception module, while the decision taken by the GNN is executed by an
external PickAndPlace primitive.

becoming the new generation of robots powered by computer
vision and artificial intelligence techniques trying to shorten
the gap toward autonomous robots capable of adapting to the
changes in the surrounding environment [4].

Task-oriented or Task and Motion Programming (TAMP) [5]
is a framework that tries to abstract at a high-level the robot
programming process and the improvements in computer vision
and machine learning boosted the development. Anyway, all
the aforementioned methods, even if they allow adapting to the
target changes, are able to employ just the single policy encoded
in the execution of a task, and they should be re-programmed
from scratch to satisfy other needs, which can be inefficient and
tedious. In this context, imitation learning [6], i.e., the ability
of the robot to acquire knowledge by imitating humans, can be
a key feature since it can enable the operator to dynamically
program the robot without leveraging on strong programming
skills.

There exist three main approaches to imitation learning for
robotics based on the way the knowledge is transferred to the
robot [2]: kinesthetic teaching, teleoperation, and passive obser-
vation. The last one is the easiest for the operator since the human
has to show the actions to be performed by the robot in a more
human-like approach [7]. With regard to passive observations, a
key characteristic would be to endow the robot with the ability
to learn the rules of the task without the need to equip the human
operator with on-body sensors [8]. However, the main problem is
how to make the robot able to acquire knowledge about task rules
for the planning process from the perception of the environment.
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Fig. 2. Overview of the proposed approach. The scene is captured by the camera, which perceives objects and goals. The perception module has the role of
providing information about the type (τj ) and poses ([xj , yj , zj , q0j , q1j , q2j , q3j ]) of each object/goal j. The information is encoded in a geometric scene graph
G, where, in the illustration, yellow nodes represent objects, and cyan nodes represent goals. The GNNobj outputs probability distribution over objects. The objects’
feature vectors are modified such that only the chosen object becomes reachable. Then GNNgoal outputs a probability distribution over goals. Policy π chooses
the object and the goal with the highest probability and extracts pose information from correspondent feature vectors. Finally, the poses are sent to the motion
primitive, which picks the specified object pose and places it in the specified goal pose.

In this direction, the proposed work provides a framework
based on Graph Neural Networks (GNNs) for Pick-and-Place
tasks, exploiting the GNN’s ability to capture relational
inductive biases [9]. By abstracting the task to be executed, the
GNN-based policy directly allows the robot to learn task-specific
rules from abstract synthetic demonstrations in training and to
one-shot generalize to unseen tasks in inference. Therefore, it
is possible to consider a graph representation of the state space
that encodes the task-relevant entities as nodes, in such a way
the GNN-based policy could exploit the intrinsic information
present between the nodes of the graph for the acquisition of
the task-specific rules. Basically, as depicted in Fig. 1, the GNN
holds the role of orchestrating the steps for completing the
manipulation task at a high-level, choosing which entities of
the graph are relevant and should be passed to the externally
encoded PickAndPlace motion primitives. The policy has been
trained with a node-classification approach by looking at the
different configurations of the objects and goals present in the
scene. In Pick-and-Place tasks, especially in the industrial sector,
recognizing the type of target objects is crucial. The developed
GNN-based policy has been designed to take explicitly into
consideration the types of objects present in the scene. Therefore,
it is able to learn the association between objects to pick and
goals positions for placing with respect to the object type, even
for complex tasks like object stacking. Several experiments
have been carried out to assess the performance of the proposed
approach. The framework requires synthetic demonstrations
to train the network, and the experimental results show a high
generalization capability of the proposed model in terms of
the number of objects/goals, objects/goals’ stacks, heights
distributions, planar position on the table, and configurations of
objects/goals used during the training demonstrations.

The letter is organized as follows: Section II provides an
overview of works that address the robotic manipulation prob-
lem; Section III presents the background on the Graph Neural
Networks; Section IV shows the adopted methodology, while
Section V illustrated the results of the experiments together
with an ablation study of the architecture; Sections VI and VII
summarize the letter concluding the work and showing future
research directions.

II. RELATED WORK

The Task And Motion Planning approach (TAMP) [5] for
solving long-horizon manipulation tasks has proved to be a
powerful tool in robotics, thanks to the combination of artificial

intelligence methods applied to task planning level and robotics
solutions to motion planning [10]. As shown in [11], the high-
level reasoning ability, i.e., the capability of planning in very
different situations, represents a key challenge. In particular, it
is hard to deduce high-level planning in a world characterized
by low-level sensing. One classical TAMP approach of common
use relies on a set of pre-defined symbolic tasks by defining
states, actions, and transition models that are given to symbolic
planners [12]. Such kind of methods require a precise defini-
tion of the domain, and any modification in the environment
requires a re-definition of the domain by an expert program-
mer. Another popular approach that is emerging in TAMP ap-
proaches is the integration of machine learning techniques inside
planning [13].

Anyway, all the aforementioned methods, even if they allow
adapting to the target changes, are able to employ just the
single policy encoded in the execution of a task, and they
should be re-programmed from scratch to satisfy other needs,
which can be inefficient and tedious. In this context, Imitation
Learning (IL) can be a key feature since it can enable the
operator to dynamically program the robot without leveraging
strong programming skills. However, the majority of works in
Imitation Learning assume a close match between train and test
environment [14] without the possibility of transferring knowl-
edge to new situations. For this reason, One-Shot Imitation
Learning (OSIL) tries to overcome the limitations imposed by
classical IL approaches. The goal of OSIL, first formulated
in [15], is to learn a policy that, given one demonstration of a
new unseen task (w.r.t. the training set), is able to generalize and
to act in the unseen instance of the task. In recent years, several
works have addressed the problem of one-shot imitation learning
by exploiting different techniques like Model-Agnostic Meta-
Learning [16], Domain Adaptation [17], Transformers [18], or
Graph Neural Networks [19]. The common denominator of these
works is the use of visual input through video demonstrations.
Instead, the proposed work focuses on the one-shot imitation
learning problem from the planning manipulation point of view
exploiting state space information of the scene. In practice,
given a single demonstration of the desired goal configuration,
the robot should be able to plan long-horizon manipulation
sub-tasks, in a goal-conditioned manner.

Other works addressing the problem of OSIL try to learn
modular task structures to be reused at inference time like [20]
that proposes a graph approach to represent the action sequence
of a task and [21] that formulates one-shot imitation learning
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as a symbolic planning problem. In this direction, [22] pro-
vides a combination of symbolic and geometric scene graphs
to achieve symbolic goal specification, and [23] exploits GNNs
to predict inter-objects relationships and a sequence of actions
that can accomplish the specified symbolic goal. However, the
outputs of these symbolic planners are highly abstracted in
semantic concepts, thus assuming extensive domain knowledge
and human-designed priors, and are not well-suited for those
situations where a specific goal pose is necessary (like the
industrial setting that is here considered).

Another approach based on GNN applied to the problem
of robotic manipulation is [24], which exploits Graph Neural
networks to forecast object motion in scenes in combination
with Model Predictive Control but was demonstrated only in
much simpler tasks and scenarios (pushing and falling) w.r.t.
the cases considered in the proposed work. A recent work [25]
uses Gated GNN for robotic grasping to understand the picking
order of the objects, combining the state representation provided
by the GNN with visual feature extractors without considering
a goal configuration. In addition, it requires specific datasets to
train the model in contrast to a purely synthetic dataset as the
proposed work.

Differently from [26], which also exploited state space infor-
mation to construct a GNN to tackle the long-horizon manipula-
tion task, the proposed work focuses on the generalization ability
of the proposed GNN approach to achieve one-shot imitation
learning capabilities on more complex tasks and scenarios, even
considering the types of the objects involved in the scene. In
particular, the proposed approach is based on the combination
of two different GNNs that, during training, directly learn task-
specific rules and require only a single goal-configuration demo
at inference time to accomplish the task. Considering the poses
and types of objects involved in the scene drastically increases
the task completion difficulty, especially in stacking tasks due to
the presence of precedence constraints, i.e., putting the highest
object in the lowest goal corresponding to that type. Respecting
such constraints is compulsory in the industrial sector.

III. BACKGROUND

LetG = (V,E) be a graph withV being the set of vertices and
E the set of edges between nodes. Each node v ∈ V has a feature
vector f(v) that contains the node’s specific information. With
message passing, neighboring nodes can exchange information
encapsulated into feature vectors, obtaining updates of the fea-
ture vectors for each node in the graph. One message-passing
layer consists of two main phases: transformation and aggrega-
tion. Each node’s feature is updated through a transformation of
the initial feature f(v) and an aggregation of the feature of the
neighboring nodes. Denoting with hl

i the feature vector of node
i at layer l, the general definition for message passing architec-
tures is hl+1

i = φθ(h
l
i, h

l
j{j∈Ni}

), where θ are parameters of the
network that are optimized during training and j ∈ Ni are the
neighbors of node i. In the beginning it results h0

i = f(v).
Many different architectures exist, and most of them make

different choices in the way they transform and aggregate infor-
mation between nodes in the above general formulation. One key
property of GNNs is the fact that, once the network is trained,
the model’s parameters can be shared across all nodes, giving

them inductive learning capability. This means that it is possible
to train the GNN on one graph, obtain parameters of the graph
network, and then apply the same network to a new graph. In this
work, two approaches are analyzed for training the graph neural
network, GraphSAGE [27] and Graph Attention Networks [28].

GraphSAGE: Most existing approaches are inherently trans-
ductive since they require the presence of all nodes in a graph,
and they do not intrinsically generalize to new unseen nodes.
GraphSAGE takes explicitly into consideration this problem
by constructing a model that, during training, given a node i,
samples a set of neighbors Ni not evaluating all node’s neigh-
bors. Node’s embeddings are computed by hl+1

i = σ(θ0h
l
i +

θ1
|Ni|

∑
j∈Ni

hl
j) where θ0 and θ1 are the parameters of the

network,
∑

j∈Ni
denotes the aggregation of the feature vectors of

each neighbor j of node i, and σ denotes the nonlinear activation
function.

Graph Attention Networks (GAT): This type of architecture
takes into consideration how much the feature vector of node j is
important for node i by using coefficients that weigh the degree
of importance. Node’s embeddings are computed by hl+1

i =
σ(θ0h

l
l +

∑
j∈Ni

ai,jθ1h
l
j) where θ0 and θ1 are the parameters

of the network,
∑

j∈Ni
denotes the aggregation of the feature

vectors of each neighbor j of node i, σ denotes the nonlinear
activation function, and ai represents the attention coefficients,

which are in turn computed by ai,j =
exp(ai,j)∑

k∈Ni
(exp ai,k)

.

IV. PROPOSED APPROACH

The proposed approach uses a GNN-based policy that ab-
stracts the task of Pick-and-Place at a higher level. The policy
is meant to find the relationships among objects involved in the
scene that are the targets to be grasped and the goals corre-
sponding to the targets’ placement positions. Then, an external
low-level PickAndPlace primitive takes as input the decision of
the GNN-based policyπ (representing the poses of chosen object
and goal) and it is in charge of moving the robot to accomplish
the task. In particular, the policy combines two GNNs that
orchestrate the long-horizon manipulation task, choosing which
object has to be located in which goal at each time step of the task
execution. Indeed, the policy has been designed to take explicitly
into consideration the type of objects present in the scene. At
each time step t a fully-connected object-centric graph G of the
scene st is constructed and it is evaluated by the GNN policy π.

A. Problem Formulation

We consider goal-conditioned one-shot imitation learning as
a supervised learning problem on a synthetic data set contain-
ing Pick-and-Place demonstrations. Each demonstration of the
Pick-and-Place completion is characterized by state-action pairs
(st, at) at each time step t. The state st is converted into a
graph, and the action at represents the connection between
the object o∗ that must be moved in the correct goal g∗ to
achieve the new state st+1 at the time step t+ 1. Each entire
task completion T is composed of a set {(s1, a1), . . ., (sT , aT )}
containing state-action pairs until the final time step T of the
single manipulation task is reached. Policy π is trained on a
dataset D = {T1, . . ., Tn}.
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Algorithm 1: GNN-Based Policy for Manipulation Task.
1: for t ≤ T do
2: G ← st
3: po, pg ← π(G)
4: o∗ = argmax po
5: g∗ = argmax pg
6: Execute PickAndPlace with inputs o∗ and g∗

7: end for

B. Method

Fig. 2 depicts graphically the proposed approach. From an
image of the scene, a geometric graph is constructed. In the
graph encoding step, the objects and the goals define the set of
nodes. ñτ

o = ñτ
g , where ñτ

o represents the number of objects for
each type τ and ñτ

g represents the number of goals for each type
τ . This assumption implies that the total number of objects no

is equal to the total number of goals ng . The set of vertices is
V = {vol }

no

l=1 ∪ {v
g
i }

ng

i=1 with cardinality |V | = no + ng = M .
The superscripts and subscripts o and g denote if the vertex refers
respectively to an object or a goal.

The set of edges is E = {ei,j} with i, j = 1, . . ., no + ng .
Each node v ∈ V is characterized by a feature vector f(v)
containing the pose, the type, and structural information. From
the geometric graph encoded scene G, the policy π returns
probability distributions over objects and goals. In the proba-
bility computation, the policy π has to capture the importance
of structural relations among the entities and the importance
of correct type association between object and goal. Denoting
with {τol }

No

l=1 the type of the object - where No represents the

total number of objects’ types - and with {τgi }
Ng

i=1 the type
of the goal - where Ng represents the total number of goals’
types - the study considers No = Ng = N . The total number
of types is No +Ng = 2 N . The policy π has to learn the
mapping {τoj −→ τgj }Nj=1 during the execution. Pseudo-code of
the algorithm is shown in Algorithm 1.

C. Feature Encoding

At each time step, the graph is updated with the information
coming from the scene. Each node of the graph has a feature
vector f(v) ∈ R

2N+9, where N are the types of objects and
goals encoded as a categorical feature that is then converted
in a one-hot encoded vector. Fig. 3 illustrates the information
encapsulated in the feature vector: three values represent the
x, y, z translational information in the world frame, four values
represent the orientation information in the form of quaternion
q0, q1, q2, q3, one feature encapsulates information about the
reachability of the object/goal considered, and the last feature is
a binary value, denoting if an object is inside a goal of the same
type (1) or not (0), or if a goal is filled with an object of the same
type (1) or not (0).

The reachability term indicates with the value of 1 if the
considered entity can be manipulated by the low-level Pick-
and-Place primitive being the highest free objects with the type
corresponding to one of the types of one of the lowest free goals.
It is worth noticing that such information is not restrictive since

Fig. 3. Schematic view of f(v) ∈ R2N+9. The first N -dimensional one-hot
encoding vector refers to the objects while the second one concerns the goals.
The last 9 encompass the world coordinatesx, y, z, the quaternion q0, q1, q2, q3,
one binary element to indicate if the actual object/goal is reachable and another
binary element that states if the object has been placed in the corresponding
goal.

can be derived by the perception module that gives the input to
the GNN.

D. Policy Training

The policy π, which acts on G, is composed of two GNNs.
The first one (GNNobj) takes in input the graph representation
and outputs a probability distribution over the objects’ nodes,
while the second GNN (GNNgoal) takes as input both the graph
representation of the state and the object selected by GNNobj ,
i.e., the object node with the highest probability, and predicts a
probability distribution over goals’ nodes.

The PickAndPlace manipulation task is considered at each
time-step as a binary classification problem: the GNNobj takes
as input the feature vector f(v) of each node v ∈ V and, passing
inside a sigmoidal function, outputs a choosing probability
for each vertex. Then a value of 1 is assigned to the object
that presents the highest probability and setting 0 to all the
others, thus deciding which object has to be manipulated at
each time step. In this way, each vertex in the graph results
in a 1-dimensional binary vector. The GNNgoal takes as input
both the graph representation and the information about the
chosen object, which is provided by modifying the reachability
feature of the incoming graph representation’s nodes setting all
the reachability features of the objects to 0, except the one of
the chosen object that is instead set to 1. Finally, the GNNgoal

outputs a probability distribution over the goals passing each
vertex value inside the sigmoidal function.

The parameters of the two Graph Neural Networks are trained
to minimize the binary cross-entropy loss. One target vector
per GNN is used in the policy: Pyobj

for GNNobj contains
information about the correct object o∗ and the correct goal
g∗, while Pygoal

for GNNgoal is a modified version of the first
one, where all reachable goals of the same object’s type g∗τ are
set equal to 1. This gives rise to the target zero vector Pyobj

having 1 where [ok = o∗, gk = g∗] and to target zero vector
Pygoal

having 1 where [ok = o∗, gk = g∗τ ]. This design choice
allows GNNobj to choose the object on the basis of structural
information encoded in the graph, and GNNgoal to focus on
those goals matching the type of first GNN’s choice.

Given Pyk
the target label for each node k = 1, . . .,M in the

graph and pk the value of probability assigned in output by the
GNN to the k − th node, the loss function L to be minimized is:

L =
1

M

M∑

k=1

−Pyk
log(pk)− (1− Pyk

) log(1− pk) (1)

The loss function as the (1) is computed both for GNNobj as
Lobj and GNNgoal as Lgoal, respectively using the target vector
Pyobj

and Pygoal
. The output probability over objects’ nodes
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computed by GNNobj is then concatenated with the output
probability computed over goals’ nodes by GNNgoal, obtaining
a unique tensor of probabilities denoted by p of length M .
Given po the vector of choice probabilities for no objects and pg
the vector choosing probabilities for ng goals, the chosen object
is computed as o∗ = argmax po, and similarly the chosen goal
is computed as g∗ = argmax pg .

The parameters of the two GNNs are meant to maximize
the generalization behavior: indeed, a binary cross-entropy loss
function has been adopted for each node, differently from the
categorical cross-entropy loss used by [26] to decouple the single
GNN’s prediction made for each node from the full state’s
predictions. This allowed the proposed approach scaling up over
an increasing number of nodes.

The target data used to train the networks are collected by
assigning a label to each node in each graph sampled from the
collected dataset of Pick-and-Place demonstrations D. The two
networks are trained separately, and, in the case of GNNgoal,
the information about the chosen object is taken at training time
from the collected objects’ labels.

V. EXPERIMENTS

We use synthetic data to train and test the policy π by gener-
ating different training Ttrain and testing tasks Ttest.

Once trained with synthetic data, the policy can be transferred
to simulation environments or real-hardware platforms without
further modifications. For simulation, we employed the ROS-
Gazebo physical simulator, while we used the Franka Emika
Panda as the robotic arm equipped with a parallel-jaw gripper.
Objects and goals considered in the experiments are cubes whose
color determines their type. In simulations, goals are represented
with semi-transparent cubes of the same color as the objects. In
real scenarios, a RealSense D435i RGB-D camera has been used.

Since the proposed framework is modular, the perception and
motion execution parts (respectively responsible for providing
the necessary information to the GNN and for grasping the
target) can be different, depending on the user’s needs. In partic-
ular, the perception module should provide the types and poses
(translation + orientation) of the objects. The motion execution
module, instead, should be able to synthesize a feasible grasp
for the target object. For the real hardware experiments, we
leveraged a category 6D pose estimator [29] to obtain the pose of
each object/goal along with a simple computer vision component
that determines the type of the objects through the HSV color
map filtering. Instead, for the execution module, i.e., the Pick and
Place primitive, we exploited the Moveit! framework in ROS.

It is worth noticing that in real hardware, for the sake of
simplicity, the orientation of the objects has been ignored since it
would have added only complexity in the grasping phase without
affecting the GNN decision-making behavior. Experiments have
been designed such that both GAT and SAGE models employ
MLP-based mapping in the message-passing layers with the
Relu activation function and 100 neurons for each layer.

A. Synthetic Data Generation and Tasks

In this work, an instance of the task is designed to be a se-
quence of Pick-and-Place actions from the starting configuration

of objects and goals until all the goals have been filled. Task
instances can differ from each other depending on the variables
of the task instance itself: the number of types, objects, goals
(here we assume equal to the number of objects), objects’ stacks,
goals’ stacks, position in the x− y plane, and height distribution
of both objects and goals stacks.

It is worth clarifying some nomenclature that can help in
understanding the following description. Objects can be stacked
in multiple stacks. One highest free object is an object that is
the highest item in its stack. One lowest free goal is a goal in
the lowest position in its stack. The main rule underlying the
task that GNN-policy has to learn is to choose at each time step
one highest free object and to place it in one lowest free goal of
the same type. From this characterization, it appears clear that
there is a strong dependency constraint on types among objects
and goals that must be respected to accomplish the whole task
correctly. Indeed, it is not guaranteed that the absolute highest
object (i.e., the highest object considering all the stacks) is the
one that satisfies the type constraint for the available lowest free
goals at each step of a task instance.

The datasetD = {T1, . . ., Tn} used for training has been gen-
erated synthetically. For eachTi, once all the variables have been
set up, the synthetic code provides a generation of feature vectors
like the one in Fig. 3 and the correct update for each state-action
pair belonging to Ti. Each object/goal has been considered as a
cube of length 0.02 m and has a position on the plane randomly
generated with x ∈ (0.3 m, 0.7 m) and y ∈ (−0.2 m, 0.2 m),
leaving out all positions that were inside a circle of radius 0.1 m
and center in (0.5 m, 0.0 m) to be used in the testing phase. The
height of the x− y plane has been considered starting at 0.2 m.
The number of types present in each Ti varies in [1, ntype_max]
between demonstrations.

In order to evaluate the performance of the policy, a different
set of variables has been provided at testing time. All test
experiments have been considered to evaluate the generalization
performance with respect to variables between Ttrain and Ttest,
except for the higher number of types, for whose generalization,
π was not designed.

B. Performance Evaluation

In order to choose the hyperparameters of the networks to
perform the validation of the proposed approach, we perform
a greedy search varying the network model (GAT and Graph-
SAGE), the number of message-passing layers inside the model,
and the number of demonstrations. From experimental training
results, it has been observed that the SAGE model is always able
to converge to good training accuracies. Given the same training
conditions, the same does not happen when the employed archi-
tecture is GAT, failing to reach the training accuracies achieved
with the SAGE model. For this reason, in the following training,
the SAGE model has been used.

During training, three different variables of the task instance
concerning the number of objects have been considered gener-
ating a scenario with 4, 8, and 12 maximum number of objects,
respectively. In each scenario, the number of objects per type
and the number of objects for each demonstration within the
maximum value have been randomly generated. The number of
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TABLE I
ACCURACY WITH REPLAY FOR HYPERPARAMETERS’ CONFIGURATION.

MODELS TRAINED ON MAX. 4, 8, AND 12 OBJECTS. EACH VALUE

COMPUTED (ON 18 OBJECTS, VARYING THE NUMBER OF STACKS)
AS THE MEAN ACCURACY OVER 300 SEPARATE TEST RUNS

stacks for both objects and goals varies in the range of [1-4] in
each run to obtain diverse configurations. The accuracy has been
computed as the total number of correct classifications (i.e., the
correct association at each time step between the highest free
object into the lowest free goal of the same type) over the total
number of predictions. It is worth noticing that the accuracy is
computed following two types of metrics that spot two different
salient aspects:
� accuracy with replay for which if the policy π selects

an object or a goal that is not reachable, or the type of
object and the goal does not match, the choice is considered
incorrect, but the state at the subsequent time step is shown
with the correct object placed in the right goal to continue
the demonstration till the end;

� accuracy with end-of-episode for which, if the policy’s
choice is wrong, the Ttest is stopped, and the remaining
choices to complete the task instance are all considered
incorrect for the computation.

In both cases, (unfeasible) situations, in which the policy is
unable to choose a reachable object matching the type of one
of the free lowest goals, are not considered in the computation.
The first metric evaluates the correctness of the policy’s choices
independently of the impact it might have on the continuation
of the task. The second one considers that an error in the policy
automatically makes it unfeasible to complete the task as the
number of objects per type and the number of goals for the
corresponding type is equal. The latter metric is more stringent
and best suited for industrial tasks where for example, it is
relevant that all the objects of a given type are located in the
right place, and an error in a situation where there are precedence
constraints dictated by the type of the objects can jeopardize the
whole task. The complexity of these kinds of tasks, where the
different numbers of stacks and the different numbers of objects
per type are present, can lead to particular situations in which
the choice of a certain object could unlock a feasible path (since
another object can become reachable), otherwise, a deadlock
can occur (since the lowest free goal’s type does not match the
highest free objects’ type forcing the policy to fail).

For the hyperparameters’ configuration, we consider only the
accuracy with replay since we want to find the more appropriate
training setup, while for generalization performance evaluation,
we consider both accuracies. In Table I, the results of the dif-
ferent hyperparameters’ configurations are reported. Once the
model is fixed, each accuracy value in the table is computed as
the mean value of accuracies over a total number of 300 runs.
For each model, we consider the same Ttest, with 18 objects of 4
types varying the number of objects/goals’ stacks between each
demonstration. The number of objects per type in each demo
has been randomly generated.

Fig. 4. Results of accuracy with replay (left) and accuracy with end-of-episode
(right) w.r.t. the varying number of objects, showing three models trained on four
types and a maximum of four, eight, and twelve objects respectively, as reported
by the legend. The x-axis of the plots represents the number of objects used
to test the generalization performance of the models, performing 300 runs per
num_obj. The number of stacks for both objects and goals randomly varies
across runs to obtain diverse configurations. The graphics show the mean value
of accuracies over the 300 runs. The three models are able to generalize to a
number of objects higher than the one presented at training time.

TABLE II
MEAN AND STANDARD DEVIATION RESULTS ON 18 OBJECTS TEST TASK

AND VARYING STACKS OVER 300 RUNS PER N. TYPES WITH

600 AND 1000 TRAINING DEMONSTRATIONS

From the performance measures, it is clear that a given num-
ber of demonstrations and a suitable architecture (in terms of
message-passing layers) are needed to obtain a good general-
ization. Indeed few demonstrations are not sufficient to obtain
good results independently from the number of training objects
and message-passing layers. However, by increasing the number
of demonstrations, also the accuracies increase in proportion
to the number of message-passing layers and the number of
training objects. The maximum accuracy is obtained with 4
or 8 message-passing layers and 1000 demonstrations using
either a maximum of 8 or 12 objects during the demonstrations.
Fig. 4 shows the generalization performances of the 3 models
trained with 8 message-passing layers and 1000 demonstrations
with respect to the varying number of objects. The way the ac-
curacy measure is computed on Ttest is equal to the one used for
Table I. The required number of training demonstrations is also
strictly related to the number of types. As depicted in Table II,
when the number of types increases, the number of training
demonstrations required to have a high accuracy increases as
well. Table II also confirms that the policy’s generalization
performance can deteriorate with the decrease in the number
of training demonstrations.

C. Baseline Comparison

We compared our approach against IL-GNN [26] and two RL
baselines (RL-GNN and RL-GNN-Seq) on block stacking and
pyramid scenarios. These RL baselines have been designed and
trained in [26] to highlight the generalization abilities of GNN
policy over RL.

IL-GNN uses a single geometric Graph Neural Network to
predict at each time step which object and which goal have to be
chosen (using information encoding similar to ours). The model
is trained by collecting expert demonstrations of bin packing and
unpacking (opening a box cover, displacing the cubes inside or
outside the box, and finally closing the box) with a Cross-entropy
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TABLE III
COMPARISON RESULTS BETWEEN IL-GNN [26] AND OUR APPROACH

Loss minimization and considering only two types of objects
(blocks and cover). Therefore, cubes are all considered to be of
the same type regardless of their color, resulting in a simpler
scenario w.r.t. the experimental tasks addressed by the proposed
approach in which the type is considered for each cube entity.

RL-GNN is IL-GNN trained using RL on stacks of size 2 to 9,
and RL-GNN-Seq is IL-GNN trained using sequential training
curriculum described in [30]. For such a comparison, we repli-
cated the same conditions of the tests performed in [26], training
our policy on a set of 20 task instances consisting of a maximum
of 4 objects of 1 type, with a number of stacks ranging from
1 to 3. In particular, we compare the proposed method against
the 6-Pyramid having a pyramid-like goal configuration with 6
cubes in total and 3 layers, and block stacking, i.e., size-variable
stacks of objects and goals. The latter is characterized by 3-block
3-stack, and 40-block stacking configurations.

In Table III, we show that our method can outperform the
IL-GNN baseline approach in the generalization behavior con-
sidering one type. The improvement in performance can be
appreciated most for the 40-Block stacking scenario in which
we reach the maximum accuracy. For the two RL baseline’s
performances on 6-pyramid and 3-block 3-stack scenarios, RL-
GNN reaches 0.2 and 0.13, respectively, while RL-GNN-Seq
obtains 0.19 and 0.14. Indeed, in [26], RL methods on block
stacking tasks have already been shown to have much lower
performance than the baseline, demonstrating the advantage of
the GNN-based approach in such tasks.

D. Architecture Ablation

By removing the reachability information from the feature
vector, the networks should still be able to learn the different
structural importance of the cubes to be manipulated from the
z-value during training time, but this adds more complexity to the
training process and affects the robustness of the policy. Indeed,
the reachability factor helps the networks learn the correct
structural behavior and generalize to height distributions not
seen during training, giving much more robustness to real-world
applications. The model trained with a maximum of 12 objects,
4 types, 1000 demonstrations, and 8 message-passing layers
without the reachability features achieved a mean accuracy with
replay of 0.18 and 0.06 with a std of 0.12 and 0.06 on test tasks
presenting 4 and 8 objects respectively.

In addition, the use of the two GNNs, one after the other, is
fundamental for the successful completion of the task. Training
experiments have shown that the type matching rule is not
respected most of the time if only GNNobj or only GNNgoal

is employed, as it is not able to predict both the object and goal
to be manipulated at the same time. The same model used in
the reachability analysis has been evaluated by employing one
GNN at a time on testing tasks with 18 objects. The GNN_obj
achieved a mean accuracy with replay of 0.49 with a std of 0.18,

and the GNN_goal achieved a mean accuracy with replay 0.75
with a std of 0.16, thus showing performance that is lower than
the one obtained with the cascade of the two GNNs.

E. Hardware Results

Once the GNN policy has been trained on synthetic data,
it can be directly deployed on robot hardware without any
modifications. In real-world experiments, the information about
the scene is obtained from the RGB-D images provided by the
camera, which is mounted on the wrist of the robotic arm. The
perception module makes use of the i2c-net [29] opportunely
trained on a synthetic dataset containing equally-sized cubes,
rendered through pose, background, and texture randomization
and an additional computer vision component that detects
the type of the object through the HSV color map filter. The
experiments require an operator to show the desired goal
configuration, which is captured by the camera and memorized.
Then objects are randomly displaced in the scene. The trained
GNN-based policy, given the information of the scene, decides
which of the cubes has to be placed in the corresponding goal
configuration. Finally, the external high-level PickAndPlace
primitive executes the task exploiting the Moveit! framework.
The employed model has been trained on 5 types with 1000
training demonstrations and 12 objects.

It is worth noticing that the cubes employed in real scenarios
are bigger (length equal to 0.025 m) than the ones used in the
simulation, and the height distribution is different from the one
seen at training time. A total number of 30 Ttest runs have
been conducted by varying the number of objects, objects/goals’
configurations, and the number of objects per type, achieving a
mean accuracy with replay and with end-of-episode equal to 1.0
with 0.0 standard deviation in both cases. It is not required that
all the types should be present in each demonstration.

The real-hardware performance results show to be consistent
with synthetically computed ones since the policy is not related
to the perception modules. In addition, the policy has proved to
be robust to cases in which the stacks or cubes can fall during
robot execution due to inaccurate perception values or robot
grasping because the new state is perceived again as being able
to continue the task until all goals are filled.

VI. DISCUSSION

We presented an approach based on Graph Neural Network
for one-shot imitation learning in the robotic manipulation
domain. As shown by experimental results, the method is able
to generalize to different aspects of the tasks: position in the
x− y plane, numbers, and height distribution of stacks, and the
number of objects. For the latter, the diagrams in Fig. 4 show
that the policy is able to generalize to a total number of objects
quite far from the one seen during training.

The modular structure of the proposed approach is a key
advantage allowing to exploit the perception and grasp module
that best fits the task to be executed since the GNN policy
has the capability of abstracting the underlying rule of the
task and being agnostic to the specific objects involved in the
scene. Being modular the perception module can be substituted
following the progress in the computer vision field as far as
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it provides the translation and quaternion information of the
objects. Therefore, errors coming from the perception module
reflected in wrong decisions of the GNN policy could not be
ascribed to the proposed method.

It is worth noticing that, even if the GNN policy has not been
designed to generalize over a number of types higher than the
one employed in training, the policy can handle lower or equal
numbers of types present at inference time. This happens be-
cause the number of types in the training dataset varies between
demonstrations.

VII. CONCLUSION

In this letter, a goal-oriented graph policy architecture for one-
shot imitation learning of Pick-and-Place manipulation tasks
is presented. The policy learns the underlying rules of the
task by synthetically generated demonstrations and shows good
generalization behavior, and can be transferred in real situations
without further modifications. In particular, the proposed frame-
work is modular, and the GNN component takes the required
information from a perception module and outputs the decision
to a motion execution module. The GNN component actually
exploits two GNNs, one for the goals and the other for the
objects involved in the scene. Future works consist in extending
the decision-making policy to cluttered scenarios and expanding
the capabilities of the policy to multiple actions like push/pull or
open/close rather than only Pick-and-Place to make the approach
more versatile.
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