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Generalization of Auto-Regressive Hidden Markov
Models to Non-Linear Dynamics and Unit

Quaternion Observation Space
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Abstract—Latent variable models are widely used to perform
unsupervised segmentation of time series in different context such
as robotics, speech recognition, and economics. One of the most
widely used latent variable model is the Auto-Regressive Hidden
Markov Model (ARHMM), which combines a latent mode gov-
erned by a Markov chain dynamics with a linear Auto-Regressive
dynamics of the observed state. In this work, we propose two
generalizations of the ARHMM. First, we propose a more general
AR dynamics in Cartesian space, described as a linear combination
of non-linear basis functions. Second, we propose a linear dynamics
in unit quaternion space, in order to properly describe orientations.
These extensions allow to describe more complex dynamics of
the observed state. Although this extension is proposed for the
ARHMM, it can be easily extended to other latent variable models
with AR dynamics in the observed space, such as Auto-Regressive
Hidden semi-Markov Models.

Index Terms—Probabilistic inference, probability and statistical
methods.

I. INTRODUCTION

H IDDEN Markov Models (HMMs) [1], [2], [3] are a type
of graphical model widely used in speech recognition [4],

[5], hand-writing recognition [6], natural language modeling [7],
and to segment kinematics in the context of Minimally Invasive
Surgery [8], [9], [10]. The model consists of a Markov chain
governing the evolution of an hidden (or latent) mode. At each
time t, the hidden mode zt emits an observation yt with a certain
probability distribution p(yt|zt).

A well-known generalization of HMMs is the Auto-Regressive
HMM (ARHMM) [4], [11], [12], [13], [14], [15], [16], in which
the observation yt at time t is given by the hidden mode zt and
the previous observed state yt−1 via a linear Auto-Regressive
dynamic. This means that the current latent mode zt does not
emit an observation, but instead it describes the (linear) vector
field governing the evolution of the observed state.
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This type of model, and its generalizations, have been success-
fully used to temporally segment robot kinematics. For instance,
in [15] a state-based transition ARHMM (STARHMM) was
developed. This model adds a conditional dependence between
the current observed state and the next hidden mode. Similarly,
in [17] this model was improved to learn skills by creating a
primitive library.

In the literature, most of the improvements to ARHMM have
been implemented in the definition of the latent or observation
space (e.g. by adding hidden variables [17], [18]), by adding
conditional probabilities relation between modes (e.g. by mak-
ing the next hidden mode dependent on the current observed
state [15], [17]), or by increasing the number of previous states
taken into account in the definition of the AR dynamics. That
is, most of the generalizations of the ARHMM have focused on
the topology of the graphical model.

On the other hand, at the best of the authors’ knowledge, no
generalization of the definition of dynamics of the observed state
exists in the literature. For this reason, in this work, we propose
to generalize the ARHMM to allow Non-Linear AR dynamics in
Cartesian space and linear dynamics in Unit Quaternion space.
The main advantage of our proposed improvement lies in the fact
that it can be straightforwardly adapted to work in combination
with the modification of the topology of the latent variable model
mentioned above.

The letter is structured as follows. In Section II we present the
theory behind ARHMM, recalling the Expectation Maximiza-
tion (EM) algorithm used to infer the set of model parameters
from data. In Section III we present our proposed modification to
the ARHMM model and the modification to the EM algorithm
to infer the model’s parameter. In Section IV we propose the
experiments validating our proposed approach. In Section V
we present the conclusion of the work and possible future
extensions.

II. AUTO REGRESSIVE HIDDEN MARKOV MODELS

In this section, we provide a formal definition of the Auto-
Regressive Hidden Markov Model.

In details, an ARHMM is a model defined as follows:

H .
=
{S,Y,Θ =

{
�,T, {As,bs,Σs}s∈S

}}
.

S = {1, 2, . . . , S} is the set of hidden modes, and the mode at
time t ∈ 1, 2, . . . , T is denoted by zt. Y = R

d is the observation

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-5845-3692
https://orcid.org/0000-0002-0711-8605
mailto:michele.ginesi@univr.it
mailto:paolo.fiorini@univr.it


5848 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 9, SEPTEMBER 2023

Fig. 1. Graphical representation of ARHMM.

space, and the observed state at time t is denoted by yt ∈ Y .
Θ is the set of model parameters. Vector � = [�i]i∈S defines
the initial mode probability such that �i = Pr(z1 = i), for i ∈
S . Matrix T = [ti j ]

j∈S
i∈S is the transition probabilities matrix

between hidden modes such that ti j = Pr(zt+1 = j|zt = i).
The emissions are modeled by the following Auto-Regressive
(AR) dynamics with Gaussian white noise:

yt|zt = s, yt−1 ∼ N (yt|Asyt−1 + bs,Σs) . (1)

The graphical representation of the model is given in Fig. 1. In
this representation, a grey dot represents an observed variable,
while a white dot denotes a hidden variable. An arrow between
two nodes a and b means that the probability of b depends on
the value of a. For a refresh on graphical model representation,
we suggest [19].

Two main algorithms characterize the ARHMM (and the
latent-variable models in general): the Expectation Maximiza-
tion (EM) algorithm and the Viterbi algorithm. The former
is used to infer the set of parameters Θ by maximizing the
likelihood of the observed data p(Y|Θ). The latter, instead,
allows extracting the sequence of latent mode ẑ that maximize
the joint probability distribution p(Y, z|Θ) for a given observed
sequenceY. In short, the EM algorithm allows to learn the model
parameters from the data, while the Viterbi algorithm allows to
segment an observed sequence once the model parameters are
known.

A. EM Algorithm in Brief

The EM algorithm consists of an iterative procedure that, at
each iteration, maximizes, w.r.t. Θ, the auxiliary function

Q(Θ,Θold)
.
= Qinit(Θ,Θold) +Qtrans(Θ,Θold) +Qout(Θ,Θold)

(2)
where Θold is the current guess of the set of parameters, and the
three terms of the sum are defined as

Qinit(Θ,Θold)
.
=
∑
z1∈S

log p(z1|Θ)p(z1|Y,Θold), (3a)

Qtrans(Θ,Θold)
.
=

T−1∑
t=1

∑
zt,zt+1∈S

log p(zt+1|zt,Θ)p

× (zt, zt+1|Y,Θold), (3b)

Qout(Θ,Θold)
.
=

T−1∑
t=0

∑
zt+1∈S

log p(yt+1|zt+1,yt,Θ)p

× (zt+1|Y,Θold). (3c)

During the Expectation Step, the quantities that depend on
θold, that is p(zt, zt+1|Y,Θold) and p(zt+1|Y,Θold), are com-
puted using the forward-backward algorithm [19]. During the
Maximization Step, the set of parametersΘ that maximizesQinit,
Qtrans and Qout is computed. These two steps are repeated until
convergence. Convergence is reached when the changes in the
log-likelihoodlog p(Y, z) is below a given tolerance.

III. GENERALIZATION OF ARHMMS TO DIFFERENT

DYNAMICS

In this section, we present our proposed generalizations of
the AR dynamic. In particular, in Section III-A we discuss
our proposed non-linear dynamics in Cartesian space; while in
Section III-B we present our proposed linear dynamics in Unit
Quaternion space.

A. Cartesian Non-Linear ARHMM

When generalizing the AR dynamics in Cartesian space, we
aim at modifying the linear AR dynamics shown in (1) with a
more general dynamic fs : Rd → R

d for each hidden mode s ∈
S. To do so, we will use a basis functions-based formulation so
that the non-linear function fs is written as a linear combination
of non-linear basis functions {ϕn : Rd → R}n=0,1,...,N :

fs(yt)|i = f
(s)
i (yt) =

N∑
j=0

ω
(s)
i j ϕj(yt), (4)

whereω(s)
i j is the set of weights that describes the vector field. By

defining the weight matrix Ωs
.
= [ω

(s)
i j ]

j=0,1,...,N
i=1,2,...,d and the non-

linear mapϕ(y)
.
= [ϕj(y)]j=0,1,...,N , we have that formulation

(4) can be written in matrix-vector notation as

fs(yt) = Ωsϕ(yt). (5)

Thus, (1) now reads

yt|zt = s, yt−1 ∼ N (yt|Ωsϕ (yt−1) ,Σs) . (6)

We remark that, since only the formulation of the AR dynamics
changes from the classical ARHMM to the non-linear case, the
graphical model representation is the same as in Fig. 1.

During the Expectation step, the quantities that depend on the
current guess of the set Θold of parameters have to be computed.
Since the conditional independence properties of the model
depend exclusively on its graphical representation [19], we have
that the E-step for the Non-Linear ARHMM (NL-ARHMM)
is identical to the linear case. The only difference is that the
emission probability p(yt|zt,yt−1) is given by formula (6)
instead of (1).

Similarly, in the Maximization step, maximization of (3a)
and (3b) is achieved in the same way as the linear ARHMM
case, since there is no dependence on the emission probability.
Thus, the only difference in the EM algorithm between a linear
ARHMM and the NL-ARHMM lies in the maximization of
quantity Qout.

Proposition 3.1: Denote by γ(t) the quantity p(zt|Y,Θ)
so that γs(t)

.
= Pr(zt = s|Y,Θold). Then, maximization of
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Qout(Θ,Θold) in (3c) is achieved by setting

Ωs =

(
T−1∑
t=0

γs(t+ 1)yt+1ϕ(yt)
ᵀ
)

×
(

T−1∑
t=0

γs(t+ 1)ϕ(yt)ϕ(yt)
ᵀ
)−1

(7a)

and

Σs =

∑T−1
t=0 γs(t+ 1)e

(s)
t e

(s)
t

ᵀ∑T
t=0 γs(t+ 1)

; (7b)

where the vector e(s)t ∈ R
d is defined as

e
(s)
t = yt+1 −Ωsϕ(yt).

Proof 3.1: We aim at maximizing (by droppingΘ for notation
simplicity) the quantity

Q̃(Θ,Θold) =

T−1∑
t=0

S∑
s=1

γs(t+ 1) log p(yt+1|zt+1 = s,yt).

To maximize this quantity, we can maximize over each hidden
mode s ∈ S independently:

Ω�
s,Σ

�
s = arg max

Ωs,Σs

T−1∑
t=0

γs(t+ 1) log p(yt+1|zt+1 = s,yt).

Since the emission probability is given by (6), the function to
maximize reads

Q̂out = − 1

2

T−1∑
t=0

γs(t+ 1) log |Σs|

− 1

2

T−1∑
t=0

γs(t+ 1) (yt+1 −Ωsϕ(yt))
ᵀ Σ−1

s

× (yt+1 −Ωsϕ(yt)) . (8)

We start by discussing the maximization over the weight matrix
Ωs. The gradient of Q̂out w.r.t. Ωs is

∇Ωs
Q̂ = Σ−1

s

(
T−1∑
t=0

γs(t+ 1)yt+1ϕ(y)
ᵀ

−Ωs

T−1∑
t=0

γs(t+ 1)ϕ(yt)ϕ(yt)
ᵀ
)
.

By setting it to zero, we get formula (7a).
We now discuss the maximization over the weight matrix Σs.

The gradient of Q̂out w.r.t. Σs is

∇Σ−1
s
Q̂ =

1

2
Σs

T−1∑
t=0

γs(t+ 1)− 1

2

T−1∑
t=0

γs(t+ 1)

× (yt+1 −Ωsϕ(yt)) (yt+1 −Ωsϕ(yt))
ᵀ ,

which, by setting it to zero, gives formula (7b).
We remark that the matrix Ωs in (7b) is the “old” guess,

and not that given by the update formula (7a). Thus, when

implementing the EM-algorithm, the update of the covariance
matricesΣs should be performed before the update of the weight
matrices Ωs.

1) Example of Basis Functions: In this section, we present
some examples of basis functions.

The first set shows how to interpret the classical, linear
ARHMM as a particular case of NL-ARHMM. Indeed, by defin-
ing ϕ(lin)(y)

.
= [1, y1, y2, . . . , yd]

ᵀ, we have that the resulting
weight matrix is a block matrix with the offset b and the linear
map A in (1) as Ω = [b,A].

The second well known set of basis functions is the family
of Gaussian Radial Basis Functions (GRBFs). Given a set
{μi}i=1,2,...,N of centers and a set {Σi}i=1,2,...,N of covariance
matrices, we define the basis functions as

ϕ
(grbf)
0 (y)

.
= 1,

ϕ
(grbf)
i (y)

.
= exp

(−(y − μi)Σ
−1
i (y − μi)

)
, i = 1, . . . , N.

Usually, the covariance matrices are set to be a multiple of the
identity matrix Σi = ςiIdd. The main drawback of this family
of basis functions lies in the fact that, even for small values of
the dimension d of the observed space, a high number of basis
functions is needed to ‘cover’ the space. Indeed, this family
of basis functions is usually adopted when learning functions
in bounded domains (e.g. in Dynamic Movement Primitives,
where the time domain is fixed [20]). For this reason, we suggest
to use this set of basis functions when dealing with bounded
observation spaces, such as d−dimensional cubes [0, 1]d.

Finally, a third family of basis functions is the set of polyno-
mial functions up to a degree k:

ϕ(Pk)(y)
.
= col

({
d∏

i=1

ycii : ci ∈ N,

d∑
i=1

ci ≤ k

})
. (9)

For instance, assume that d = 2 (y ∈ Y = R
2) and k = 3. Then

the basis functions are

ϕ(P3)(y) =
[
1, y1, y2, y

2
1 , y1y2, y

2
2 , y

3
1 , y

2
1y2, y1y

2
2 , y

3
2

]ᵀ
.

As we will show in Section IV-B, this type of basis functions
is particularly useful in low-dimension spaces, where linear
dynamics are not able to describe complex evolutions of the
observed state. On the other hand, they are less useful in higher
dimensional spaces for two main reasons: firstly, linear dynamics
are able to describe more complex evolutions; secondly, non-
linearity in higher dimensional spaces require a huge amount of
parameters (i.e. the number of columns of Ω increases) risking
over-fitting and numerical inefficiency.

B. Unit-Quaternion Linear ARHMM

Orientations can be modeled in different ways. There are two
preferred spaces to describe orientations: the space SO(3) of
orthogonal 3× 3matrices, and the space S3 of unit quaternions.
Both representations are singularity-free. However, unit quater-
nions are preferred since they require only four variable to be
described, instead of the nine parameters of 3× 3 matrices.

The main difficulty when dealing with dynamics in S
3 lies

in the fact that the resulting quaternion must still be of unitary
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norm. To solve this problem, we take advantage of two properties
of quaternions. The first is the fact that the exponential of a
quaternion with null real part always results in a quaternion of
unit norm: ‖Exp(0 + ai+ bj+ ck)‖ = 1, ∀a, b, c,∈ R. The
second is the fact that the norm of the product between two
quaternion p and q is the product of the norms: ‖p ∗ q‖ =
‖p‖ ‖q‖. Thus, we propose to describe a dynamics in S

3 by
3 parameters a, b, c ∈ R such that

qt+1 = Exp(ai+ bj+ ck) ∗ qt.
From here, we will denote as ‘vec’ the function that maps a
quaternion to its vector formulation:

vec : S3 → R
4, q = qr + qii+ qjj+ qkk 
→ q

= [qr, qi, qj , qk]
ᵀ.

With this notation, we have that in this model the probability of
the next observation reads

qt|zt = s, qt−1

∼ N (vec(qt)|vec (Exp(asi+ bsj+ csk) ∗ qt−1) ,Σs) (10)

As in the case of Cartesian Non-Linear ARHMM, we need only
to explain how to maximize the emission probability. Therefore,
in the Maximization step we have to maximize the quantity
Qout in (3c) where the next-state probability is given by (10).
Differently from what we showed in Proposition 3.1, there is not
a closed form solution to the maximization problem. Indeed, by
defining γs(t)

.
= Pr(zt = s|Y,Θold) we have that the function

to maximize reads, similarly to (8):

Q̂out = − 1

2

T−1∑
t=0

γs(t+ 1) log |Σs|

− 1

2

T−1∑
t=0

γs(t+ 1)vec(qt+1 − μ
(s)
t+1)

ᵀΣ−1vec

× (qt+1 − μ
(s)
t+1) (11)

where μ
(s)
t+1 is the expected orientation at time t+ 1 for hidden

mode s:

μ
(s)
t+1

.
= Exp(asi+ bsj+ csk) ∗ qt.

Similarly to Proposition 3.1, maximization of (11) is achieved
by setting

Σs =

∑T−1
t=0 γs(t+ 1)e

(s)
t+1 · e(s)t+1

ᵀ∑T−1
t=0 γs(t+ 1)

where e
(s)
t+1 is the difference between the actual orientation and

the predicted one at time t+ 1 assuming that the hidden mode
s is active:

e
(s)
t+1

.
= vec(qt+1 − μ

(s)
t+1).

On the other hand, maximization over the dynamics parameters
can be formulated as

(a�s , b
�
s , c

�
s) = arg max

(as,bs,cs)

(
−

T−1∑
t=0

γs(t+ 1)
∥∥∥vec

(
qt+1

− Exp (asi+ bsj+ csk) ∗ qt
)∥∥∥2

Σ−1

)

where ‖ · ‖A is the semi-norm induced by a Symmetric Semi-
Positive Definite (SPD) matrix A: ‖x‖A .

=
√
xᵀAx. Unlikely

the Cartesian formulation, this problem cannot be solved in
closed form. Therefore, to solve the Maximization step, we
rewrite the maximization problem as an equivalent minimization
problem

(a�s, b
�
s , c

�
s) = arg min

(as,bs,cs)(
T−1∑
t=0

γs(t+ 1) ‖vec (qt+1−Exp (asi+bsj+csk) ∗ qt)‖2Σ−1

)

and solve it via any minimization algorithm (e.g. gradient de-
scent).

The implementation (in Python 3.10) of our proposed gener-
alizations is available at https://github.com/mginesi/nl_arhmm.

Remark 3.1: The use of our proposed generalizations can be
combined with other extensions to the ARHMM model. For
instance, in the EM algorithm of Auto-Regressive Hidden semi
Markov Models, the maximization formula for the emission
probabilities can be easily extended in a similar fashion to what
we proposed here.

Remark 3.2: We do not discuss the generalization of the
Viterbi algorithm [21] since its most general formulation works
with any latent-mode model with Markov dynamic, indepen-
dently of the dynamics of the observed state.

IV. EXPERIMENTS

In this section, we will compare the results obtained with
the NL-ARHMM against the linear ARHMM, showing that our
proposed approach results in higher segmentation scores.

A. Validation Test

At first, we show that the EM algorithm for the NL-ARHMM
allows learning the parameters of the model. To do so, we define
a NL-ARHMM with fixed parameters and use it to generate data
samples. In our test, we set both the number of hidden modes
and the dimension of the continuous state to 2: S = 2, d = 2.
The initial mode distribution is set to � = [0.5, 0.5]ᵀ and the
transition probability matrix is

T =

[
0.95 0.05

0.05 0.95

]
.

The non-linear dynamics is written as follows. We start by
defining the vector field

f

([
y1

y2

])
=

[
y1

3 + y2
2y1 − y1 − y2

y2
3 + y1

2y2 + y1 − y2

]
.

https://github.com/mginesi/nl_arhmm
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Fig. 2. Results for the validation test presented in Section IV-A. The top
figure shows the components of the trajectory, the second plot shows the “true”
segmentation (the first mode is represented in purple, while the second mode is
represented in yellow), the third plot shows the segmentation obtained with the
learned ARHMM, and the fourth plot shows the segmentation obtained with the
learned NL-ARHMM.

Then the dynamics of the two hidden modes are obtained using
the Euler method with time step δt = 0.05 for the dynamics f
and its opposite−f , with Gaussian noise with standard deviation
ς = 5e− 03:

yt+1|zt+1 = 1,yt ∼ N (yt+1|yt + δtf(yt), ςId2),

yt+1|zt+1 = 2,yt ∼ N (yt+1|yt − δtf(yt), ςId2).

We use this NL-ARHMM to generate fifty samples with T =
100 steps each. Next, we initialize both a NL-ARHMM (with
polynomial basis functions of degree k = 2) and a linear
ARHMM, and apply the EM algorithm to learn the model
parameters. Finally, we use the Viterbi algorithm to segment a
new trajectory generated from the “true” NL-ARHMM. Before
applying the EM algorithm we standardize the dataset. That is,
we translate it and multiply by a constant to have null mean and
unit variance.

Fig. 2 shows one result for these tests. As can be observed, the
NL-ARHMM is able to properly segment the trajectory, being
able to capture more complex dynamics. On the other hand, the
linear ARHMM results in a poorer segmentation.

B. Comparison of Different Degrees Polynomial Functions

In this Section, we propose some tests to show that Non-Linear
basis functions are more effective when the observation space
Y is low dimensional. On the other hand, for high-dimensional
observation space the difference between the two is less notice-
able.

To show this aspect we simulate three different ARHMM with
non linear dynamics. Each of them has two hidden modes but
differs in the dimension d of the observation space; d = 1, 2, 3.
To present a fair comparison, all the six dynamics (two for each
value of d) are non-polynomial: in this way none of the model
we will compare (linear, quadratic, and cubic) is able to perfectly
describe the dynamics.

Simularly to the previous test, for each value of d we generate
a total of fifty trajectories of 100 steps. Fig. 3 shows the results
of these tests.

As it can be observed, with d = 1 (Fig. 3(a)) the linear model
is not able to properly describe the non-lienar dynamics, failing
in the segmentation of the obtained trajectory. On the other hand,
for d = 2 and 3 (Fig. 3(b) and (c) respectively), the differences
between the three dynamical model (linear, quadratic, and cubic)
significantly reduce.

These tests show that for lower-dimensional observation
spaces, the improvements in using the Non-Linear formulation
for the ARHMM dynamics are more significative. We argue
that the motivation lies in the fact that for high-dimensional
data, linear vector fields can describe a wider range of dynamics,
since the number of parameters in the dynamics grows quadrat-
ically with the space dimension (to be precise, the number of
parameters for each dynamics is d2 + d: d2 elements for the
matrix As and d for the vector bs in (1)). Oh the other hand,
for smaller observation spaces, linear dynamics are too limited
and the usage of polynomial functions in the definition of the
dynamics provides a broader set of possible behaviors.

For this reason, in Section IV-C we will propose a model in
which the Cartesian position of the robot end-effector is modeled
by a linear dynamics, while the gripper angle (a 1-dimensional
variable) will be modeled using a polynomial dynamics.

C. Experiments on Real Setups

To prove the effectiveness of our generalizations, we propose
a model combining both Non-Linear Cartesian and Linear Unit-
Quaternion dynamics. In particular, we propose a pose+gripper
model in which, for each hand of the robot, we model the position
with a linear Cartesian model, the end-effector orientation with
a linear Unit-Quaternion model, and the gripper angle with a
quadratic model. The decision to use a linear model for the po-
sition and a quadratic model for the gripper angle are motivated
by the tests presented in Section IV-B: for 3-dimensional spaces,
linear, quadratic, and cubic models are almost indistinguishable
(Fig. 3(c)) and we thus choose the simplest one. On the other
hand, for 1-dimensional trajectories, linear models fail to de-
scribe the complexity of the behavior, while a quadratic and a
cubic one give similar results (Fig. 3(c)).

Additionally, we assume that position xh
t , orientation qht , and

gripper angle ϑh
t of each arm h are independent of each others

when the hidden mode is given:

p

(
x1
t+1,q

1
t+1,ϑ

1
t+1,

...,

xH
t+1,q

H
t+1,ϑ

H
t+1

∣∣∣∣∣
x1
t ,q

1
t ,ϑ

1
t ,

...,

xH
t ,qHt ,ϑH

t ,zt+1

)

=

H∏
h=1

p(xh
t+1|zt+1,x

h
t ) p(q

h
t+1|zt+1, q

h
t ) p(ϑ

h
t+1|zt+1, ϑ

h
t ).

(12)

A graphical model representation of the model is given in Fig. 4.
To demonstrate the improvement in the segmentation quality

given by the different dynamics, we compare our model against a
Linear ARHMM with the same topology, so that the only differ-
ence lies in the definition of the Auto Regressive dynamics itself.
This means that position, orientation, and gripper angle for each
end effector is independent of each other, and the conditional
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Fig. 3. Comparison between linear and polynomial ARHMM. In all three figures the first plot shows the components yi of the observed dynamics, the second
plot shows the true segmentation, the third, fourth, and fifth plots shows the segmentations obtained by, respectively, the linear, quadratic, and cubic formulations
of the ARHMM (i.e. k = 1, 2, 3 in (9)).

Fig. 4. Graphical representation of a Pose+Gripper ARHMM.

Fig. 5. Histograms showing the number of occurrences for different scores.
Color blue marks the ‘state of the art’ linear ARHMM, while orange marks our
proposed generalization.

probability of the next observed state follows the same law as in
(12). The only difference is that the Linear ARHMM uses linear
dynamics for the evolution of each observed state. Since the
conditional independence (and, thus, the topology) are identical,
the graphical representation of the model does not change.

To test our method, we use the JIGSAW dataset [22]. It consists
of three different surgical tasks (‘SUTuring’, ‘Knot Tying’, and
‘Needle Passing’) executed by eight surgeons of different skill
levels. Data consists of positions, velocities, orientations (in
the form of rotation matrices), angular velocities, and gripper
angle. Each variable is given for both left and right arms, and
for both the patient-side and surgeon-side controllers. Moreover,
JIGSAW provides a segmentation of all the tasks in gestures. We
use only positions, orientations (converting from rotation matri-
ces to unit quaternions) and gripper angle for the patient-side
end-effectors. Thus, in our case, H = 2.

To evaluate the quality of the algorithm, we proceed as
follows. For a given batch of data, we use the Expectation
Maximization algorithm to infer the set of parameters Θ for
both models. Then, we apply the Viterbi algorithm to segment
one of the executions that were not in the training set, and we
compute different scores for segmentation. This test is repeated
a given number of times randomizing each time both the training
and testing sets.

The scores we decide to adopt are the following: Seg-score
and Silhouette Index (SI). Seg-score (also known as Jaccard
index) [23], [24] is a supervised score, that is, it compares the
obtained segmentation to the ground-truth; it is the size of sim-
ilarity between segmentation result and ground-truth. SI [25],
instead, is an unsupervised score and it evaluates the goodness
of the segmentation by treating it as a clustering problem; it
evaluates the clusters by comparing the average distance within
a cluster with the average distance to the points in the nearest
clusters. We decided to use these scores since they are already
used for the evaluation of segmentation algorithms in the context
of robotic surgery [26], [27].

The main challenge in using this dataset is that it is not
consistent: the same task may contains different gestures in each
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trial (that is, a particular gesture is present in one trial but not
in the others). This makes the segmentation a particularly hard
problem: if the model has many hidden modes, but some are rare,
over-fitting and over-segmentation (i.e. a segment is wrongly
split in multiple smaller parts) will likely happen. On the other
hand, if we use fewer hidden modes, some different gestures
will be described by the same hidden mode, resulting in a lower
Seg-score.

In Fig. 5 we show the results of this test. In particular, for
each of 100 trials with a given task and a given number of
hidden modes, we show the histograms counting the number of
occurrences of the scores in a given interval. As it can be seen,
the NL model is able to achieve, on average, a higher score in
both the supervised and unsupervised metric, and it is also able
to achieve higher scores (see, for instance, Fig. 5(d)).

V. CONCLUSION

In this work, we proposed a generalization to the Auto-
Regressive Hidden Markov Model via modifications of the
Auto-Regressive dynamics. In particular, we proposed a Non-
Linear dynamics in Cartesian space and a linear dynamics in
Unit-Quaternion space.

Experiments on real datasets show that adopting these new
dynamics result in an improvement in segmentation scores.
This has been proved by comparing two topologically identical
models in which the only difference is the formulation of the
vector fields governing the evolution of the observed state.

As future work, we aim to further generalize the observed state
dynamics to dynamical systems used in trajectory learning for
robotics such as Dynamic Movement Primitives [28], [29] and
Probabilistic Movement Primitives [30]. This would allow to
simultaneously segment a robot trajectory and extract the robot
movements used to generate the trajectory.

Moreover, we aim at generalizing ARHMMs to deal
with dynamics in generic Riemannian Manifolds and non-
Euclidean spaces, possibly extending our proposed idea for
Unit-Quaternions to the space SO(3) of Rotation Matrices and
the space of Symmetric Positive Definite (SPD) matrices, both
heavily used in robotics.
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