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Multi-Hypothesis Tracking in a Graph-Based World
Model for Knowledge-Driven Active Perception

Jordy Senden , Kevin Hollands, David Rapado-Rincon, Akshay Kumar Burusa , Bas Herremans,
Herman Bruyninckx , and René van de Molengraft

Abstract—Robots that have to robustly execute their task in an
environment containing many variations need situational aware-
ness to adapt at run-time. This work proposes a knowledge-
centered software architecture with a world model (WM) as a first
class citizen, from which other software components can query
information in order to infer predictions, configure skills, and
monitor the progress of the task. This approach is demonstrated
on the task of detecting tomato trusses hanging from a plant,
with possible occlusions from leaves. A labeled property graph
is used to model a tomato plant, which can be queried to create
predictions of truss locations. This information is used to configure
two tomato detection skills. First the plant is passively scanned for
trusses. Association of the obtained information to the semantic
objects in the model leads to multiple semantic hypotheses, that
are explicitly modeled in the graph world model. If trusses are
missing according to a hypothesis the second skill actively looks
at inferred position of the undetected trusses. Tests shows that
this approach of context-aware active perception allows the robot
to decide when to look for missing trusses, which improves the
detection of occluded trusses. Moreover, by keeping the task-, skill-,
and semantic association functionalities agnostic to the context,
but relying on the answers to the queries to the world model, the
approach is composable and flexible. This is shown by a qualitative
test on a different tomato plant.

Index Terms—World models, robotics, reasoning, multiple
hypothesis tracking, MHT, active perception.

I. INTRODUCTION

A DECLINING human labor-force in the agro-food sector
drives the need for robotic systems to automate repetitive
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Fig. 1. Picture inside a tomato greenhouse, showing the dense environment
(a) and visual occlusion of tomatoes (b).

tasks, such as harvesting fruits and pruning trees. Automation is
challenging since typical agro-food environments contain many
objects or actors, like humans, animals, plants or even other
robots, which can exhibit variations in both their appearance
and behavior. For example, the natural growth of tomato trees
in greenhouses will lead to (visual) disparities and dense foliage
cause many trusses to be visually occluded, as can be seen
from Fig. 1, which makes it difficult for a robot to detect,
localize and handle them. The goal is to create autonomous
systems that can robustly execute their task in semi-structured
environments, like harvesting tomato trusses in a greenhouse.
Current applications are moslty data-driven, where information
is only derived from raw sensor data and the decisions on when,
where and how to move are decided at design time. Such purely
data-driven approaches lack flexibility to adapt to the variations
in these environments [1]. Instead of merely improving detection
algorithms, it is important to understand the context in which
detection algorithms are deployed and accept imperfect, noisy
data as a matter of fact and incorporating it into the overall
processing strategy, which was already argued in [2]. The main
challenge is to model this context, i.e. the knowledge about the
robot and its environment, explicitly and provide it to the robot.
This knowledge, captured in a so-called world model (WM),
should drive the planning, action, performance evaluation, and
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data-association efforts of the robot. The robot must evaluate
the situation they are in, based on the current state of the world
model, and monitor the task in order to actively re-plan an
re-configure their actions when necessary.

II. RELATED WORK

For applications like autonomous mobile robots (AMR) the
WM is often a geometric map, which can be provided a-priori
or created by the robot itself using Simultaneous Localization
and Mapping (SLAM) [3]. New sensor data is compared to the
geometric map for localization and object tracking, e.g. using
particle filtering [4]. Many hypotheses are created that compare a
fictive measurement in the WM to the newly measured real data.
Geometric maps, including such metric hypotheses, scale poorly
with the size of the environment, the dimensions of the map,
and the number of degrees-of-freedom (DOFs) of the robot with
respect to this map. Therefore, often a probabilistic approach
is taken, where the least probable hypotheses, which could
possibly contain the correct one, are discarded. Expanding on
pure geometric models, [5] suggest a semantic, object centered
world model. When new measurements are done, they have to be
anchored to semantic objects in this WM. Although implicit, [6]
shows that adding knowledge of relations between object, i.e.
how connected objects move together, can improve tracking
performance and reduces the number of possible hypotheses.
In [7] an explicit, geometric Building Information Model (BIM)
is used to extract relevant features that can be detected with
a Laser Range Finder (LRF). Known recurring patterns be-
tween these features in the model and the LRF measurements
are used to reduce the number of hypotheses for localization.
Using active perception [8], [9] the robot can gather more
information to resolve the multiple hypotheses into a single
conclusive belief state, i.e. create situational awareness. In [10]
it is shown that introducing prior knowledge in the form of
geometric Regions of Interest (ROIs) improves the performance
of Next-Best-View planning (NBV) for active perception for
tomato plant reconstruction. However, all these approaches are
rooted or heavily rely on exact geometric WMs which lack
the capacity to explicitly model semantic connections between
objects. In semi-structured environments, such as a greenhouse,
the geometry of the environment might contain many variations.
For robust task execution, the environment should be described
on a level of abstraction that contains invariant features [11], e.g.
relative distances or sizes, equality in shape or reflection, or a
known topology.

III. CONTRIBUTIONS

The objective is to develop a method for a robot to localize
desired objects, and understand when it is missing information
and where to find it. Our first contribution is to develop an explicit
object-centered world model that is able to model different types
of semantic relations between objects, adding to the work in [10].
Secondly, we provide the robot with a mechanism that can
query information from the WM, or infer information through
reasoning, which is used for planning and skill-configuration. A
graph structure is chosen to represent high-level concepts and

Fig. 2. Software overview with the world model at the center. The other
components interact with the WM through queries.

relations on the symbolical level, which is driven by multi-robot
cooperation and robust task execution in a world containing
variations [12]. The approach in [7] is reversed; a knowledge
graph is created where geometric information can be added.
The graph structure enables context-driven graph traversals to
retrieve information and to infer facts that are not explicitly
modeled. Our third contribution is the association of new infor-
mation to the WM. This happens at the semantic level, based
on the explicit connections in the WM, which will result in
semantic hypothesis. The semantic association relies on object
properties as well as the relations between them, which can
be a strong feature in itself. Therefore, association is done
only after enough information is acquired, instead of filtering
every new measurement. Our fourth contribution is to track the
resulting multiple semantic hypotheses in the graph-based world
model. This allows us to track, test and resolve these semantic
hypotheses through active perception and update the WM with
newly measured information. We show this on a robot that is
tasked with detecting all tomato trusses on a single plant, while
being faced with occlusions.

IV. METHOD

The world model must be created separately from its intended
use, i.e. agnostic to how it is going to be used, and become an
explicit component in the software architecture of the system.
As a first class citizen, the WM can be used by other software
components that can query information from it. Using tomato-
truss harvesting as an example, this section shows how prior
knowledge of the environment is modeled, how the robot uses
this knowledge to configure its detection skills and how new
detections lead to multiple semantic hypotheses when they are
associated with known objects in the WM.

A. Software Architecture

The software architecture in Fig. 2 shows that the central
world model is surrounded by three functional components;
a task interpretation block (left), a skill block (bottom) and
a semantic association block (right). The skill block consists
of three sub-functionalities; planning, configuration and execu-
tion. These three functional components interact with the world
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model through queries, indicated with the thick double arrows.
The task block interprets a given assignment and decides on
a task-plan, conforming to the current belief state of the world.
With one or more possible task-plans, the system needs to choose
the correct skills to perform this plan. The internal parameters of
the skill need be to configure dependent on the current informa-
tion of the world. After a skill is executed the information gained
or changes made in the environment need to be updated in the
world model. This new information needs to be associated with
information that already exists in the world model. This work
will not focus on task planning or skill selection, but rather on
the world model, information queries and semantic association.

B. World Model

Because the WM is designed independent from its intended
use, there is no knowledge on where data is stored or which mes-
sages are passed along. Instead of following a publish-subscribe
messaging pattern, the functional component need to request
or infer information through queries to the WM. The Labeled
Property Graph (LPG) is chosen as a meta-model for the WM
to fulfill these requirements.

1) Labeled Property Graph: A labeled property graph is a
type of graph database that provides support for highly inter-
connected information. An LPG consists of vertices V , which
are connected by edges E that make up the graph G(V,E). In a
robotics context vertices can be used among others to represent
physical objects. In the LPG model the vertices and edges can
have properties. These properties should describe the physical
characteristics of the object itself, e.g. shape, reflection, or mass,
and can only change by physically changing the object. Edges
can model multiple different semantic relations between objects,
e.g. mereological relations like is_part_of, physical relations
like connected_to, or geometric relations like distance_between.
The properties of these graph-edges capture the relevant values
that describe the connection, like the value of a distance. Some
edge properties rely on the properties of the connected objects,
e.g. the friction-coefficient between objects relies on the surface
roughness properties of the individual objects. When an edge
property is dependent on a vertex that it is not connected to,
the edge has to be extended with a help-vertex, since the LPG
model does not allow to connect edges to vertices or other edges.
An example is the geometric_connection, which describes the
(relative) pose of an object as a vector, expressed with respect to
a reference frame. In the graph WM this connection is modeled
as a set of three edges and one extra help-vertex, as shown in
Fig. 3. The reference frame is modeled as a vertex. Two edges
model the direction of the vector and the third points to the
reference frame in which it is expressed. The extra vertex holds
the values of the vector. This model makes it possible to describe
an objects position in multiple different reference frames at the
same time and to ask the WM which objects are modeled in
the same frame. There is no absolute world frame, only relative
frames that are connected. When the robot starts moving, only
the relation between its own frame and connected surrounding
frames needs to be updated. The relative position of the trusses,
which are expressed in the plant frame, do not change when

Fig. 3. Example of the geometric_connection, which describes the pose of an
object as a vector, expressed with respect to a reference frame. This pose can
be absolute w.r.t. the reference frame (a) or relative to another object (b). In the
remainder of this work, the geometric_connection is visualized as (c).

Fig. 4. Visualization of a tomato plant in a greenhouse (a) and the graph model
representation (b).

the robot moves. Updating frames and resolving contradictions
when a position is expressed in multiple frames is out of the
scope of this work.

2) LPG of a Tomato Plant: The world model for a tomato har-
vesting robot must contain knowledge of the tomato plants inside
a greenhouse, schematically shown in Fig. 4(a). These plants
continue to grow throughout the season, while the lower leaves
of the plant are pruned for better air circulation, light penetration,
and accessibility to ripe trusses. The grower closely monitors
and controls the environment, which results in a consistent
growth and equality across plants, such as tomato size, amount
of tomatoes per truss and inter-truss distance, which are strong
invariant features. Although all tomato plants are geometrically
different, their topology and invariant features hold for all plants
in the greenhouse. Modeling the world on the abstraction level of
these invariants can increase robustness in task execution [11].
In Fig. 4(b) the graph model for a tomato plant is shown, where
the topology is capture by physical_connection edges and the
geometric connections are simplified for improved visualization.
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Listing 1. Gremlin-Python example where a graph is created.

Listing 2. Gremlin-Python example where the graph is queried for informa-
tion.

C. Querying the World Model

The graph is created using the Apache TinkerPop graph com-
puting framework1. Gremlin2 is the graph traversal language of
Apache TinkerPop, which is used to write queries to interact with
the LPG. Gremlin-Python is used to implement Gremlin within
the Python language, by connecting to a server that is hosting
the graph [13]. In Listing 1 a piece of example code is shown
where a graph is initialized. The graph-traversal source g is used
to start queries to create the graph. Two vertices are created that
represent an Object, one a stem and the other a truss, which
are connected by an edge with the label physical_connection.
Queries for information use the same graph-traversal source g.
The example in Listing 2 first asks for a list of IDs of all trusses
that are physically connected to the stem. Next, for all objects
in this list their geometric position in the world is queried. The
traverser will start at one of the object vertices and traverse over
Geometric_con edges until a Reference vertex is reached. The
vertices that are encountered during this traversal are returned
by their name in a list.

D. Task

A task is a desired change in the environment, or information
gain thereof, and should be described agnostic to the system that
is going to perform it. Hard-coding recipes that couple actions
to predicted situations, such as a finite state machine (FSM),
is not robust against variation. Instead, the system should ask
the right questions to the WM and act accordingly based on
the answers. These questions should be captured in a query
machine (QM), analogous to a FSM, which consists of a set
of task-related questions, e.g. “what information do I need to
collect in the world”, “do I posses a skill that can perform this
measurement?”, or “do I have the correct information to execute
this skill?”. Transitioning between these questions in the QM
depends on the received answers that do or do not satisfy certain
criteria. This work will not focus on parsing of a high-level
task or researching properties of such query machine. Instead,
the query machine is created explicitly for the task and thus

1[Online]. Available: https://tinkerpop.apache.org
2[Online]. Available: https://tinkerpop.apache.org/gremlin.html

Algorithm 1: Query Machine - Taskplan.

knows some of the context. The simplified task in this work is:
“for each tomato plant, localize all tomato trusses below the leaf
removal level”. The system is provided with the model discussed
in Section IV-B2 and only needs to retrieve information from
the environment, not physically interact with it. The task-plan is
captured in a simplified query machine, shown in Algorithm 1.

Here TaskDone and SkillsAvailable are boolean flags that keep
track on whether the task is finished and if there are still skills
available to continue with the task. The truss IDs are stored in
list T and the leaf-deck ID is stored in L. Trusses (Ti) that are
associated with a measurement are stored in list TH

a and H
represents the hypotheses they belong to.

E. Skill-Plan

Localizing the trusses is done with a depth camera that is
attached to the end-effector (EE) of a robot arm. The basic sub-
skills that are used in this work are:

1) move the depth camera relative to the tomato plant
2) localize single tomatoes using a neural network
3) cluster detected tomatoes into a truss
The details of the detection- and clustering skills, including

pre- and post-processing of the data, are explained in [14]. When
these skills would be configured once at design time, a choice has
to be made on how to scan the plant to find all trusses below the
leaf-removal level (LRL). At least, the plant has to be scanned
along the stem, ranging from the lowest possible truss position
until the maximum height of the LRL. Only scanning it from one
side requires few viewpoints, but has a high change of missing
occluded trusses. Alternatively, more viewpoints can be chosen
that view the plant from different sides. This approach might
detect an occluded truss by looking from another side, but taking
more viewpoints costs time. In [10] it is already shown that an
attention mechanism can reduce the number of viewpoints. We
use a similar approach of knowledge driven active perception.
Two skills are designed, which are visualized in Fig. 5 , that
search for trusses using different operation modes. The current
information in the WM, either based on prior knowledge or
recent measurements, determines which skill to perform and
how.

Skill A scans the plant for multiple trusses by moving the cam-
era upward along the stem. The scanning range is a configurable

https://tinkerpop.apache.org
https://tinkerpop.apache.org/gremlin.html
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Fig. 5. Visualization of detection skills. Skill A passively scans the plant
upward along the stem for multiple trusses, based on prior knowledge an
open-loop guarded motion (a), skill B actively looks for an expected truss at
a specific position by scanning in a circular motion around the plant (b).

Algorithm 2: Query Machine - Skillplan.

skill-parameter, which is determined by the lowest predicted
truss and the maximum height of the predicted LRL. Skill B
scans around the plant for a single truss by moving the camera
in a circular motion around a center point. The center point is
a skill-parameter that is determined by the center position of an
expected truss. Skill composition, i.e. determining a skill-plan
depending on the situation and on what the skills can provide, is
not the focus of this work. Instead, a fixed skill-plan is created in
the form of a query-machine, similar to the task-plan, as shown
in Algorithm 2.

When no trusses are detected yet (TH
a = ∅), skill A is de-

ployed to try and find multiple trusses. A region of interest (ROI)
for skill A to scan is calculated based on the a-priori estimated
tomato locations (T ) and LRL (L), which are provided to the
robot at the start of its task. Measurements are stored in M and
skill-event (EA) are sent to the task-planner. Skill B is deployed
after some trusses are measured or if skill A failed to detect
trusses due to possible occlusions. For each resulting hypothesis
Hj , the ROI for skill B is determined by predicting the locations
of trusses in the WM (T ) based on the position of the measured
trusses T

Hj
a and the LRL (L). Where skill A passively scans the

plant based on prior knowledge an open-loop guarded motion,
skill B actively looks for a specific truss. Measurements lead
to multiple hypotheses as to which trusses are measured and
thus where other trusses could be, depending on a specific

hypothesis. In this work all hypotheses are equally probable
to prevent the urge of pruning the least probable hypothesis.
Instead hypotheses are actively tested, by deploying skill B, to
gather new information in order to reach a conclusion if possible.
This pipeline of gathering information, updating the WM and
actively looking for missing information is what we call active
perception.

F. Semantic Association

Each new measurement with the depth camera can lead to
newly detected tomatoes. The position of these tomatoes are
tracked and filtered over time, and eventually clustered in a truss,
which is explained in [14]. After these data-association steps
result in sufficiently likely semantic objects, i.e. a truss, they
have to be associated with the information in the WM.

1) Feature and Relation Matching: Association is done on
semantic features of the object itself or on relations between
objects. This is very similar to [15] with the difference that the
initial semantic map Gm in this example is modeled based on
prior knowledge, instead of being a result of previous measure-
ments. To be able to associate on connections, and when a WM
update is not required instantly, it is better to first detect multiple
objects to compare to the model. This allows for a smoothing
approach instead of filtering [16] which is more resistance
against noise and outliers. After scanning for multiple objects
they can be matched to the WM as a set. The goal of the matching
algorithm is to determine which objects in the set of detections
(Sd ) belong to the set of predicted objects (Sm) in the WM. The
matching algorithm queries the WM for prior information about
the objects of interest and the relations between them. If the set
of predicted objects (Sm ) are directly (geometrically) connected
to each other, this connection is first used for the association. If
there is no relative connection between objects, or if only a single
object is measured, the absolute pose with respect to their frame
of origin is used. This can lead to many hypotheses, because the
absolute height-range of a single modeled trusses can overlap.
The geometric relations are modeled in the reference frame of the
plant, while the truss positions are measured in a robot frame. To
match the measurements to the model, a mapping is necessary to
express the (relative) geometric relations in the same frame. The
current implementation assumes the prior knowledge in the WM
is correct. If there are more measurements than modeled object,
it is assumed that Sd contains outliers caused by false positive
measurements or trusses from another plant. To deal with this,
one or more detections are removed from Sd and the remaining
detections are matched toSm until a feasible hypothesis is found.

2) Multi-Hypotheses Tracking in the Graph: Often, a set of
measurements cannot be unambiguously matched with the set
of predictions. Instead, the many matching possibilities lead
to multiple hypotheses, which should be tracked in a MHT
approach. Each hypothesis should be tested by deploying skill
B to search for missing trusses, until a single hypothesis is
considered to be true. Since the objects in the prediction set
Sm can have semantic relations, each hypothesis should be able
to link this prediction set to a set of measured objects. Moreover,
hypotheses that arise from a single association should be linked



SENDEN et al.: MULTI-HYPOTHESIS TRACKING IN A GRAPH-BASED WORLD MODEL FOR KNOWLEDGE-DRIVEN ACTIVE PERCEPTION 5939

Fig. 6. Example of MHT in a graph. Hypothesis-vertices connect a set of new
data to objects in the WM. Hypothesis H1 associates D1 with T1 and D2 with
T2, while alternative hypothesis H2 associates D1 with T2 and D2 with T3.

together to enable first order logic between them; “if hypothesis
A is true, B must be false”. To keep track of all hypotheses, and
how they are related, the concept of a hypothesis is introduced as
vertex in the graph, which is visualized in Fig. 6. Measurement
vertices are connected with to their associated object vertex in
the WM with an semantic_association edge. Because a set of
measurements could be associated to different objects, according
to different hypotheses, the semantic_association edges should
connect to the hypothesis vertex they belong to. This is similar
to a geometric_connection that points to the reference it is
expressed in (Fig. 3). In our work, the hypothesis vertex and as-
sociation help-vertex do no contain properties. Explicitly intro-
ducing hypothesis-vertices allows queries like: “which objects
are detected according to hypothesis X?”, “what are alternatives
to hypothesis X?”, etc. When one hypothesis is believed to be
true, the set of measurements belonging to that hypothesis is
anchored to the predicted object in the WM and the alternative
hypotheses can be removed from the graph. Another benefit of
explicitly modeling hypothesis in the graph is the ability to share
them with other robots by sharing the WM.

V. EXPERIMENTS AND RESULTS

An experimental mock-up tomato plant is created, which
allows control over the variations that are introduced in the
environment. This way, the robot’s task output can be compared
to a known ground truth of the environment, which is necessary
to validate the framework against variations and occlusions. This
section will explain the test setup, explain the different types of
situations that are tested and discuss the performance of our
approach.

A. Setup

An Intel RealSense L515 LiDAR camera is attached to the EE
of an ABB IRB1200 robotic arm. The robot operating system
(ROS) is used to simplify communication between different
processes running on the robot. MoveIt3, a motion planning
framework for ROS, is used for motion planning and control
of the arm. The LiDAR camera is calibrated by performing
an eye-in-hand calibration and the experiments are performed
indoors, where the lighting conditions are controlled. A mock-up

3[Online]. Available: https://moveit.ros.org

Fig. 7. Test setup showing the ABB robot and mock-up plant (a). The occluded
truss can be detected from the side (b). Example videos of situations 3 and 4 can
be viewed by scanning the QR-codes (c) and (d), respectively.

Fig. 8. Overview of tested situations, representing different realistic variations
in a plant with three trusses: (1) without occlusions, (2) with occlusions, (3) with
unexpected ’extra’ truss. Situation (4) shows a different plant with four trusses,
which will (qualitatively) show that, by only changing the prior knowledge in
the WM, our approach still works.

of a tomato plant is created, shown in Fig. 7(a), where fake
trusses are connected to a vertical pole that represents the stem.
The number of trusses and height of these trusses along the stem
can be varied and occluding leaves can be introduced, shown in
Fig. 7(b). The robot is placed in front of the mock-up plant at a
distance of approximately one meter. This value is chosen to be
within the field-of-view of the camera, while still enabling the
robot to have a decent motion range while scanning.

B. Situations

To determine the performance of the approach against varia-
tions in the environment, several situations that are observed
in a real greenhouse are emulated on the mock-up plant. In
Fig. 8 a schematic overview of these situations is shown. In
all situations the height of each truss is chosen from a set of
measurements that are performed in a real greenhouse and scaled
down to fit the parameters of the test setup. This ensures that the
distribution of the variation in inter-truss distance is realistic.
For situations 1 to 3, the plant consists of three trusses that are
attached to the stem. In situation 1 there are no occlusions and
all trusses should be visible while performing skill A. In this
situation only the height of the trusses is varied between tests. In
situation 2 trusses are occluded by a leaf; in situation 2.1 only the
lowest truss is occluded, in situation 2.2 only the middle truss is

https://moveit.ros.org
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occluded, and in situation 2.3 two random trusses are occluded.
The difference between 2.1 and 2.2 is the possible hypotheses
that the matching algorithm can make; seeing two trusses closely
together results in different hypotheses than seeing two trusses
spaced apart. Situation 2.3 is tested to see how the algorithm
fares with multiple occlusions and only one visible truss, which
prevents association on the relative connections between trusses.
In situation 3 an extra truss is introduced, which represents a
truss from a neighboring plant; in situation 3.1 the ‘extra’ truss
is hanging close to one of the other trusses, in situation 3.2 the
‘extra’ truss is positioned in between two trusses, and in situation
3.3 the ‘extra’ truss is randomly added while one of the three
existing trusses is occluded. Since this extra truss or plant is
not part of the world model, there will be issues associating the
measurement to the model. Where situation 1 to 3 are designed
to quantify the performance while facing realistic variations,
situation 4 tests the generality of the approach. In situation 4
a truss is added to the mock-up, representing a different type
of tomato tree that has 4 trusses below the leaf removal deck.
The graph-based model, as discussed in IV-B2, is extended to
include an extra truss and the geometric relations are updated
accordingly. This situation qualitatively shows that the task- and
skill-plan as well as the matching algorithm is agnostic to the
WM, but their operations are based on the answers to the set
of queries. In the video that can be viewed by scanning the
QR-code in Fig. 7(c), an example experiment of situation 2.1
shows a visualization of the graph-traversals and an explanation
of what the robot is doing at each step. Note that at the start the
WM contains a graph of prior knowledge, which is queried for
information to configure skill A. After semantic association, the
queries traverse the measured values to predict the position of
undetected trusses to configure skill B.

C. Performance

To quantify the performance of the approach the position of
the detected trusses, in situations 1 to 3, is compared to the
known ground-truth of the mock-up plant. If a detection is made
within a distance of 6 cm from the ground-truth, a value based
on the size of the used trusses, it is deemed as correct. These
detections lead to hypotheses which are not always resolved
into a single conclusion. A second quantitative performance
indicator is the number of times the approach comes up with
the right conclusion or a set of hypotheses that contain the
correct conclusion. Situation 4 give a qualitatively indication
of the flexibility of the approach. A video showcasing situation
4 can be seen when scanning the QR-code in Fig. 7(d).

1) Results Precision and Recall: To quantify the added value
of knowledge-driven deployement of skill B to actively test
hypotheses when a truss is believed to be occluded, the preci-
sion and recall after performing both skills is determined for
situations 1 to 3. Precision is a measure for the amount of
false-positive detections, while recall indicates how much of the
trusses are actually detected. The results are shown in Table I,
which show the amount of tests for each situation, the gain of per-
formance after deploying skill B and the number of viewpoints
taken. Since the detection algorithm is the same for both skills,

TABLE I
EXPERIMENTAL RESULT FOR SITUATIONS 1 TO 3

the precision remains equal. A slight drop in precision-gain
for is caused by executing skill B on top of skill A. Doing
more measurements increase the chance of wrong detections.
In situations with occlusions the number of viewpoints increase.
The robot understands that it is missing information and deploys
skill B, which increases the recall. The link between precision
and recall is caused by the clustering approach, because if two
trusses hang closely together they can be clustered into one truss,
resulting in a false positive. The association algorithm matches
it with a truss in the WM and moves on without recognizing it
missed the two real trusses. This leads to two false negatives on
top of the false positive.

2) Results Hypotheses Correctness: Since the robot’s own
perception of performance and its skill-plan are based on the
hypotheses, their correctness is important. When the task is
finished, there are three final outcomes:
� True: the robot has seen all objects that it was expecting

and decides correctly that its task is finished.
� Undetermined: the task is not yet finished but there are no

other skills to deploy to test the unresolved hypotheses.
However, the correct conclusion is present in this set.

� False: the robot has drawn a wrong conclusion or is left
with a set of hypotheses which are all false.

The results, after both skills are deployed in their respective
ROIs, are shown in Fig. 9 . It shows that in situation 1 either
correct or false conclusions are drawn. All expected trusses are
seen but sometimes clustered wrongly, which will result in a
wrong conclusion, there are no hypotheses left. In situation 2
the level of incorrect conclusions is linked to the precision of
the detection algorithm. In situation 2.2 some hypotheses could
not be resolved into the correct conclusion because there was
often a problem of detecting the truss behind the occlusion,
as seen from the recall in Table I. In situation 3 it was very
difficult to draw the correct conclusion. Since the WM has no
knowledge of ’extra trusses’ it is impossible to draw a single
correct conclusion. Instead, it tries to fit all trusses on the one



SENDEN et al.: MULTI-HYPOTHESIS TRACKING IN A GRAPH-BASED WORLD MODEL FOR KNOWLEDGE-DRIVEN ACTIVE PERCEPTION 5941

Fig. 9. Conclusion after task execution per situations.

modeled plant, which results in multiple hypotheses that often
contain the correct conclusion.

VI. CONCLUSION

A method is created that enables a robot to localize trusses
on a plant, and understand when it misses expected information.
The world model at the center of the software architecture stores
the information, be it prior knowledge or measured detection,
which is used by the other functional components of the system.
The graph structure allows to model objects and their semantic
relations. Gathering a number of measurements before semantic
matching allows us to take these relations into account, which
help to reduce the number of hypotheses. The set of hypotheses
are explicitly modeled as vertices in the graph, which allows
to query for missing information according to each hypothesis.
This in turn can help the robot decide whether or not to deploy
a second skill that actively looks for this missing information.
Linking hypotheses to each other allows for first order logic on
the hypothesis-level, which is used to reach a final conclusion.
The current implementation assumes that the information is the
world model is correct. In the future, we need a mechanism
that enables to add missing information based on trustworthy
measurements. Other future steps could be to make a smarter
choice on which hypothesis to test first, e.g. by modeling a set
of hypotheses as a Bayesian network, assigning probabilities
to each hypothesis. This can help the robot to decide which
hypothesis to test first; the one that requires the least amount
of effort, while maximizing the information gain. Although
the approach is demonstrated on a tomato harvesting use-case,
we believe it is relevant in other robotic contexts where the
environment is semi-structured.
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