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A Learning-Based Approach for Estimating Inertial
Properties of Unknown Objects

From Encoder Discrepancies
Zizhou Lao , Yuanfeng Han , Yunshan Ma , and Gregory S. Chirikjian , Fellow, IEEE

Abstract—Many robots utilize commercial force/torque sensors
to identify inertial properties of unknown objects. However, such
sensors can be difficult to apply to small-sized robots due to their
weight, size, and cost. In this letter, we propose a learning-based
approach for estimating the mass and center of mass (COM) of
unknown objects without using force/torque sensors at the end
effector or on the joints. In our method, a robot arm carries an
unknown object as it moves through multiple discrete configura-
tions. Measurements are collected when the robot reaches each
discrete configuration and stops. A neural network then estimates
joint torques from encoder discrepancies. Given multiple samples,
we derive the closed-form relation between joint torques and the
object’s inertial properties. Based on the derivation, the mass and
COM of the object are identified by weighted least squares. In
order to improve the accuracy of inferred inertial properties, an
attention model is designed to generate the weights used in least
squares, which indicate the relative importance for each joint. Our
framework requires only encoder measurements without using
any force/torque sensors, but still maintains accurate estimation
capability. The proposed approach has been demonstrated on a
4-degrees-of-freedom robot arm.

Index Terms—Attention mechanism, calibration and
identification, representation learning.

I. INTRODUCTION

IN ORDER to manipulate previously unseen objects, it is
crucial for robots to infer physical properties such as shape,

weight, material, and so forth [1], [2], [3], [4]. In this letter, we
develop a method for estimating mass and center of mass (COM)
of a prior unknown objects being carried by robots without using
force/torque sensors.
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Existing works in the field of robot manipulation have made
great progress in estimating the inertial properties of objects [5],
[6], [7]. A common approach to these works is by observing
changes in force/torque sensors during the manipulation of
objects. However, commercial force/torque sensors are heavy
and expensive, and are not commonly equipped on small-sized
robots. Another relevant topic is estimating interaction force of
robots [8], [9], [10]. In many of the force estimation methods,
the force at end effector is solved by the joint torque through the
corresponding Jacobian matrix. In particular, the cost function
to be minimized is often defined as the summation of joint
torque errors. Obtaining force information by minimizing this
cost function implies that all joints are treated equally, causing
the distinctive information to be less concentrated or focused.
For instance, if the magnitude of torque error is relatively small,
the corresponding joint should be assigned a larger weight. In
order to adaptively select important information, it is necessary
to develop a mechanism that assigns weights to joint torque
errors dynamically.

To address the above issues, we propose a learning-based
framework to estimate mass and COM of unknown objects.
In the proposed framework, a neural network is designed to
estimate joint torques of a robot arm. Without using force/torque
sensors, we only use encoders because they are light-weight,
small and cheap, and are already built in to most robots [11],
[12], [13]. In particular, we find that the discrepancy between
the commanded joint angle and that observed by the encoder is
useful in assessing load. An attention mechanism is a type of
learning technique that adaptively generates weights for input
information. The weight assigned to each piece of information
is generally high if it is important, and low if it is unimportant.
This process leads to a dynamic selection of information. At-
tention mechanisms have been widely used in the field of deep
learning [14], particularly in areas such as computer vision and
natural language processing, but less explored in the context of
mechanics and robotics. We employ attention mechanisms in
the process of solving the optimal mass and COM of unknown
objects held at the end effector. In particular, the cost function for
inferring inertial properties is defined as a weighted sum of joint
torque errors, where the weights are adjusted dynamically by an
attention model. The inertial properties of objects are solved by
minimizing the cost function. To the best of authors’ knowledge,
the use of attention mechanisms is introduced here for the first
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time to infer force/torque information indirectly from encoder
discrepancies.

The main contributions of the proposed framework are as
follows: (i) A neural network is trained to estimate joint torques
accurately with only the measurements from encoders, which
saves the trouble of using force/torque sensors. (ii) For a robot
carrying an object at steady state, the closed-form relationship
between joint toque and the object’s inertial properties is de-
rived. Based on the derivation, mass and COM can be solved
analytically by weighted least squares. (iii) An attention model
is designed to generate weights assigned to joints dynamically,
which helps to improve the accuracy of least squares estimation
of inertial properties.

II. RELATED WORKS

We discuss existing works on the identification of inertial
properties, force/torque estimation, and attention mechanisms.

Identification of inertial properties: In the field of robot
manipulation, many methods are proposed to estimate inertial
properties of unknown objects [15], [16], [17]. For example,
Atkeson et al. [5] propose a method for estimating inertial
parameters of a rigid body load from the measurements of a wrist
force/torque sensor and arm kinematics. In [6], the mass and
COM of an object is estimated by tipping and leaning operations.
Based on a force sensing plate attached to the feet of humanoid
robots, another approach for estimating physical properties of
unknown boxes is proposed in [7]. The above methods require
measurements of force/torque sensors, which are not commonly
equipped on small-sized robots.

Force/torque estimation: Another relevant topic is robot in-
teraction force or joint torque estimation, which is applicable
to scenarios where force/torque sensors are unavailable. For
example, Smith and Hashtrudi-Zaad [8] and Yilmaz [9] propose
approaches for robot external force estimation. In these works,
joint torque of free motion is estimated by neural networks, but
motor torque sensors are still needed. In [10], steady-state joint
angle error is utilized to reconstruct interaction force analytically
for humanoid robots. There are also many works using neural
networks to infer interaction forces from visual data [18] or
video [19]. However, most previous works lack the analysis of
frictional torque and ignore the differences between joints.

Attention mechanisms: We design an attention model in the
proposed framework to improve the performance. As one of the
most important concepts in the fields of deep neural networks, at-
tention mechanisms are widely used in various applications [14],
[20], [21]. In the past few years, attention mechanisms have
also been introduced to problems about robots [22], [23], [24].
However, these works mainly utilize attention mechanisms to
solve graphical problems, rather than problems in mechanics
and robotics. Essentially, attention mechanisms are good at
focusing on the distinctive parts when processing large amounts
of information. We observed that this feature is suitable for
our scenario, where the errors of joint torque estimation for
individual joints are constantly changing. Hence, an attention
model is designed to evaluate the weights of joints dynamically
during robot motions.

III. METHODS

We consider a serial robot manipulator carrying an object
moves through multiple configurations. For each configuration,
the measurements are collected when all the joints reach steady
state. It is assumed that all of the kinematic and inertial param-
eters of robot links are known, and the joints of the robot are
controlled through PD controllers, which have been adopted as
the control strategy for many robots [10], [25]. A learning-based
framework is proposed to identify the mass and COM of the held
object from multiple samples at steady state. Fig. 1(a) illustrates
the training process of the proposed framework. By collecting
multiple steady-state samples in experiments with several known
objects, we train the torque model and attention model sequen-
tially. Our framework is tested with several unknown objects as
shown in Fig. 1(b). For each sample, the joint torque is estimated
by the torque model, and a weight matrix is generated by the
attention model. According to the outputs of networks, the mass
and COM of the unknown objects are solved analytically by
weighted least squares.

A. Problem Definition

Consider an N -degrees-of-freedom (DOF) robot carrying an
unknown object as illustrated in Fig. 2(a). M input samples are
received to identify the mass and COM of the object. The ground
truth value of mass is assumed to be m. A reference frame is
assigned by sticking an April tag [26] to the object. The rigid
body transformation from the tag frame to the robot base frame
can be obtained by camera. Therefore, the ground truth COM is
represented by the 3-dimensional coordinates of COM in the tag
frame tagpobj . Correspondingly, we denote the estimated inertial
properties as m̂ and tagp̂obj . For each target configuration, the
joints move to the desired position until stopping at the steady
state. The measurements of encoders are regarded as actual
positions. The desired joint position and actual joint position
do not coincide because PD controllers are used. Regarding the
i-th sample (i = 1, 2, . . . ,M ) at steady state, the desired joint
position and actual joint position are represented by qd,i and
qi, respectively. ωi refers to the joint angular velocity during
the process of the robot approaching steady state. We define the
direction of rotation sgn(ωi) as the sign ofωi. It should be noted
that qd,i, qi and sgn(ωi) are N -dimensional vectors, of which

the j-th elements qjd,i, q
j
i and sgn(ωj

i ) refer to the corresponding
variables of joint j. We represent the desired joint position, actual
joint position, and direction of rotation of all the M samples as
qd, q, and sgn(ω), respectively.

B. Neural Network for Estimating Joint Torque

We design a neural network to estimate robot joint torque
without force/torque sensors. The proposed torque model plays
two roles: (i) reconstructing the motor torque from encoder
discrepancies, and (ii) eliminating the effects of friction. There-
fore, the output of torque model is the estimated joint toque
corresponding to external force, including the gravitational force
due to the weight of robot itself, as well as the interaction force
at the end effector.
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Fig. 1. Block diagram of the proposed approach. (a) Training process. The training data are collected using known objects. The torque model is then trained
using the derived ground truth of joint torque. Subsequently, the attention model is trained based on the trained torque model. (b) Testing process. The testing data
are collected using unknown objects. The torque model is utilized to estimate the joint torque, while the attention model generates the weight matrix. The mass
and COM of the unknown objects are solved by weighted least squares.

Fig. 2. (a) Schematic of an N -DOF robot carrying an object. (b) Free body
diagram of the j-th link of the robot.

We leverage the above insights in designing the torque model,
which takes as input the joint position q, joint position error
(qd − q), and direction of rotation sgn(ω). For joints controlled
through PD controllers, the motor torque is approximately
proportional to the joint position error. So we take the joint
position error as input for motor torque reconstruction. During
the process of a joint approaching its steady state, the friction
torque is along the direction opposite to rotation. Moreover,
the magnitude of friction torque can be influenced by the joint
position. Therefore, the direction of rotation and the joint angle
are utilized to eliminate friction torque. Among the three inputs,
the steady-state joint position error is necessary in the recon-
struction of joint torque. If the joints are controlled through PID
controllers, the absence of joint position error would result in
a situation in which the same state would be associated with
multiple external forces.

As shown in Fig. 3, the torque model consists of N joint
representation learning modules1 and a torque estimator. To
learn the specific information of each joint, a separate multi-
layer perceptron (MLP) is utilized to embed the state of the
corresponding joint. For the i-th sample and the j-th joint, the
embedding is generated as:

hj
τ,i = φ(qji , q

j
d,i − qji , sgn(ωj

i );Θ
j
rep,τ ), (1)

1We use the term “representation learning” rather than “encoder” in the
machine learning sense to avoid confusion with joint encoders.

where φ(·) refers to the representation learning module and
Θj

rep,τ denotes the parameters of joint j’s representation learning

module in the torque model. Before embedding, qji and qjd,i
are normalized, and the direction of rotation sgn(ωj

i ) is con-
verted to a 2-dimensional binary vector, i.e. [1 0] for positive
direction, and [0 1] for negative direction. Therefore, the input
information of each joint state for representation learning is a
4-dimensional vector. After the representation learning process,
the embeddings of all the joints are concatenated, which models
the interactions between joints. Another MLP is designed as
the torque estimator, which takes as input the concatenated
embedding and outputs estimated joint torque as:

τ̂ i = ξ(h1
τ,i ‖ h2

τ,i ‖ · · · ‖ hN
τ,i;Θest), (2)

where ξ(·) refers to the torque estimator, Θest denotes the pa-
rameters of the torque estimator, and ‖ represents concatenation.

In the training process, the ground truth of joint torque can
be calculated analytically. Fig. 2(b) illustrates the free body
diagram of the j-th link. mjg indicates the gravitational force of
link. f j,j−1 and nj,j−1 are the force and moment applied on the
j-th link by the (j − 1)-th link. And f j,j+1 and nj,j+1 are the
force and moment on the j-th link by the (j + 1)-th link. When
the robot is stationary, the summation of force/moment exerted
on the link is zero. Therefore, the forces and moments on all the
joints from the end effector to the base can be derived recursively
by Newton-Euler equations. The torque on each joint can be
solved as the component of moment along the rotational axis.
The ground truth of joint torque of all the samples is denoted as
τ . Compared to the ground truth, we apply mean squared error
(L2 loss) on the estimated joint torque to train the torque model
as shown in Fig. 1(a).

Free-motion joint torque τ g is defined as the joint torque of
robot at free motion, which is due to the weight of robot itself
and irrelevant to the object at end effector. We can calculate τ g

recursively in a similar way as τ . The only difference is that the
interaction force at end effector is assumed to be zero. It should
be noted that both τ and τ g are computed using the actual joint
position q. For each sample, the difference (τ i − τ g,i) is the
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Fig. 3. Architectures of proposed neural networks. The first row illustrates the torque model and the attention model. These are more detailed descriptions of the
torque model and attention model blocks in Fig. 1. The second row illustrates the submodules in the torque model and attention model.

portion of joint torque related to the interaction force at end
effector.

C. Inferring Inertial Properties of Objects by Weighted Least
Squares

The closed-form relationship between joint torque and inertial
properties are derived in this subsection. Based on the derivation,
the mass and COM of object can be identified by weighted least
squares, taking as input multiple steady-state samples.

For the i-th sample, Jacobian matrix J i ∈ R6×N provides the
relation between joint torque and interaction force at end effector
as

τ i − τ g,i = Jᵀ
i F i, (3)

where (τ i − τ g,i) ∈ RN is the equivalent torque related to the
endpoint force, and F i ∈ R6 denotes the wrench applied to the
environment by the end effector. In the case of robot carrying an
object, the wrench can be written as

F i =
[
−fᵀ

i −nᵀ
i

]ᵀ
, (4)

where f i and ni represent the force and moment exerted on end
effector by the object.

Given a single sample, the joint torque can be estimated
through trained torque model, and the corresponding Jacobian
can be calculated analytically. Therefore, it is possible to solve
the wrench from (3) and use it for inferring object’s inertial
properties. Considering the scenarios when the DOF of robot is
less than 6 or the robot is at singular configurations, as well as
to improve the accuracy of inference, it would be better to take
multiple samples as input. However, the wrench is not fixed for
various robot postures. In order to process multiple samples, we
need to directly build the relationship between joint torque and
inertial properties.

When a robot carrying an object is at steady state, the force
and moment exerted on end effector are

f i = mg, (5)

ni = (0pobj,i − 0pee,i)× f i, (6)

where the 3-dimensional g denotes gravitational acceleration,
0pobj,i and 0pee,i denotes the coordinates of object’s COM and
end effector in base frame, respectively. By sticking an April tag
to the object as reference frame, the COM of object is represented
by the coordinates in tag frame tagpobj . Then, the coordinates
of object’s COM in base frame can be obtained as

0pobj,i =
0
tagRi · tagpobj +

0ptag,i, (7)

where 0
tagRi is the rotation matrix from tag frame to base frame

and 0ptag,i refers to the coordinates of tag in base frame. The
above two terms can be obtained from camera. Substituting
(5) and (7) into (6), and converting cross product to matrix
multiplication form, the moment can be written as

ni = m[g]ᵀ× · (0tagRi · tagpobj +
0ptag,i − 0pee,i), (8)

where the skew-symmetric matrix [g]× is generated from the
elements of g as

[g]× =

⎡
⎢⎣ 0 −gz gy

gz 0 −gx

−gy gx 0

⎤
⎥⎦ .

Next, substituting (5) and (8) into (4), the wrench at end effector
can be represented as

F i = Bix, (9)

where the matrix Bi ∈ R6×4 is a function of joint position qi

and tag information as

Bi =

[
−g O

−[g]ᵀ× · (0ptag,i − 0pee,i) −[g]ᵀ× · 0tagRi

]
(10)

and x is a 4-dimensional vector determined by the mass and
COM of object as

x =
[
m mtagpᵀ

obj

]ᵀ
. (11)

By substituting (9) into (3), we can obtain the following equa-
tion:

τ i − τ g,i = Aix, (12)
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where the matrix Ai ∈ RN×4 is obtained as

Ai = Jᵀ
i Bi. (13)

So far, we have extended the Jacobian to build the relation
between joint torque and inertial properties of object for a
single sample. For multiple samples, the relations in (12) can
be synthetically written as

τ − τ g = Ax, (14)

where vectors τ ∈ RMN and τg ∈ RMN , and matrix A ∈
RMN×4 are generated by stacking the corresponding variables
of M samples as

τ =

⎡
⎢⎢⎢⎢⎣
τ 1

τ 2

...

τM

⎤
⎥⎥⎥⎥⎦ τg =

⎡
⎢⎢⎢⎢⎣
τ g,1

τ g,2

...

τ g,M

⎤
⎥⎥⎥⎥⎦A =

⎡
⎢⎢⎢⎢⎣
A1

A2

...

AM

⎤
⎥⎥⎥⎥⎦ . (15)

In our framework, the estimated joint torque τ̂ of multiple
samples at steady state is obtained by the trained torque model.
The corresponding free-motion joint torque τ g and matrixA are
calculated analytically. Assuming that the amount of samplesM
is large enough so that (14) is overconstrained, we can obtain an
optimal approximation of vector x by weighted least squares.
The cost function is defined as

C = (Ax− (τ̂ − τ g))
ᵀW (Ax− (τ̂ − τ g)), (16)

where W ∈ RMN×MN is a diagonal weight matrix. The opti-
mal estimation of x minimizing the cost function is

x̂ = (AᵀWA)−1AᵀW (τ − τ g). (17)

Finally, the estimated mass and COM of the object can be solved
from (11).

D. Assigning Weights to Joints by Attention Model

In the process of inertial properties estimation, the cost func-
tion in (16) can be written as

C =

M∑
i=1

N∑
j=1

wj
i (A

j
ix− (τ̂ ji − τ jg,i))

2, (18)

where Aj
i ∈ R1×4 is the j-th row of Ai, τ̂

j
i is the j-th element

of τ̂ i, and τ jg,i is the j-th element of τ g,i. Regarding the i-th

sample and the j-th joint, (Aj
ix− (τ̂ ji − τ jg,i)) refers to the error

between the estimated torque and the torque derived from inertial
properties of object. It can be seen that C is the weighted sum of
square error, where the element of the diagonal of weight matrix
wj

i is the corresponding weight.
We could simply set the weight matrix W to an identity

matrix, which means that all the joints are treated equally.
However, it is better to adjust the weights dynamically as the joint
torque errors vary greatly in magnitude, for different joints or for
different samples. For example, since the torque of a joint close
to the end effector is usually smaller than the torque of a joint
close to the base, it is reasonable to increase the weights of the
joint close to the end effector appropriately. Moreover, when two

joints are parallel, which means they provide similar information
about the inertial properties of object, we can appropriately
reduce the weight of the joint with larger torque error, so that
the joint with smaller torque error contributes more.

In the proposed framework, we design an attention model
to generate the weights of joints dynamically. As shown in
Fig. 3, the attention model consists of representation learning
modules, a scorer and a softmax layer. Taking as input the i-th
sample, the model outputs an N -dimensional weight vector wi,
corresponding to theN joints. Firstly, the joint states are embed-
ded. Similar to torque model, the state includes joint position,
joint position error and direction of rotation. For each joint, a
separate MLP is designed as the corresponding representation
learning module. The representation learning modules in torque
model and attention model have the same architecture but the
parameters are not shared. The embedding of the j-th joint and
i-th sample can be represented as

hj
α,i = φ(qji , q

j
d,i − qji , sgn(ωj

i );Θ
j
rep,α), (19)

where Θj
rep,α refers to the parameters of representation learning

module of joint j in the attention model. The indices of joints
are then appended to the latent representations. The index of
each joint is represented by an N -dimensional binary vector.

For example,
[
0 0 1 0

]
refers to the third joint of a 4-DOF

robot. Next, another MLP is introduced as a scorer to generate
scores for all the joints according to the embeddings as

sji = γ(hj
a,i ‖ zj ;Θscorer), (20)

where γ(·) is the scorer, zj denotes the index of joint j, Θscorer

denotes the parameters of the scorer, and sji is the score of joint
j. Finally, the scores are normalized by a softmax function as

wj
i =

es
j
i∑N

j=1 e
sji
, (21)

where the output wj
i denotes the weight of joint j in the i-th

sample.
To estimate vector x by (17) from M samples, the atten-

tion model generates M weight vectors for the corresponding
samples. And the diagonal weight matrix W is generated as
W = diag(w1,w2, . . . ,wM ), of which the diagonal is the
concatenation of all the weight vectors.

The attention model is trained after the torque model training
process. In order to alleviate the influence of mass error on COM
estimation, we use the ground truth of mass to solve COM from
(11) in training process. While, in the testing process, COM is
solved based on the estimated mass. Regarding the loss function,
we apply L2 loss on both the estimated mass and COM. The loss
for attention model training Lattention is a weighted sum of mass
loss Lm and COM loss Lcom as Lattention = wmLm + wcomLcom,
where the weights wm and wcom are manually set.

IV. EXPERIMENTS

The proposed framework is verified on a 4-DOF robot
OpenMANIPULATOR-X as shown in Fig. 4(a). The joints from
base to end effector are joints 1, 2, 3 and 4. Fig. 4(b) illustrates the
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Fig. 4. (a) OpenMANIPULATOR-X robot manipulator. (b) Experimental
setup. (c) Training objects. (d) Testing objects.

experimental setup. The axis of joint 1 is in horizontal direction
so that the torque is not constant to zero. The training and testing
objects are shown in Fig. 4(c) and (d). We attach April tags to
the objects as reference frames.

Training Dataset: The training data consists of planned sam-
ples and random samples. The planned samples are generated
through the following steps: (i) The joint positions of samples
are uniformly distributed with 10◦ intervals on the joint space.
(ii) For each joint position, all the 24 = 16 possible directions
of rotation are collected. (iii) The robot carries no object (at
free motion), 50 g, 100 g and 150 g to collect the above samples
respectively, except for the samples that may collide. In addition,
9000 random samples are collected for each training object
(including no object). In summary, we collect 82144 samples for
training, including 46144 planned samples and 36000 random
samples. Since each step of inertial properties inference requires
multiple samples, we construct another training dataset for at-
tention model, in which each data consists of 64 samples. The
samples are randomly selected from the above training samples.

Evaluation metrics: In order to assess the performance of
the proposed approach for estimating mass, COM and joint
torque, we use the mean absolute error (MAE), normalized mean
absolute error (NMAE), and normalized root mean square error
(NRMSE) defined as

MAE =
1

n

n∑
k=1

|ŷk − yk| , (22)

NMAE =
1
n

∑n
k=1 |ŷk − yk|
yscale

× 100%, (23)

NRMSE =

√
1
n

∑n
k=1 |ŷk − yk|2
yscale

× 100%, (24)

where ŷk and yk (k = 1, 2, . . . , n) are the estimated value and
ground truth, and yscale is a scale value for normalization. The
actual mass is used as the scale value when calculating the error
of mass. With regard to COM, the difference |ŷk − yk| in the

above equations refers to the distance between the estimated
COM and actual COM, and the scale value is the length of
diagonal of the smallest cuboid that can enclose the object.
To evaluate the estimated torque, the scale value is set to the
maximum joint torque.

Baselines: We compare the proposed approach against the
following two baselines:
� Current sensor based method: The motors are equipped

with built-in electric current sensors. In the official demo
code of robot arm, the joint torque is computed by multi-
plying the current by a coefficient. We make some improve-
ments to this method as the first baseline. The sensor-based
estimated torque of the i-th sample and j-th joint is defined
as

τ̂ jsensor,i = KsensorI
j
i − sgn(ωj

i )τ
j
f,sensor + bjsensor, (25)

where Iji is the measurement of current sensor, and Ksensor

is a constant coefficient provided by the demo code. We add
a constant τ jf,sensor for each joint so that −sgn(ωj

i )τ
j
f,sensor

represents the friction torque, of which the magnitude
is fixed and the direction is opposite to the direction of
rotation. The last term bjsensor is a constant for eliminating
bias. Using the same training dataset of the proposed torque
model, constants τ jf,sensor and bjsensor are identified by curve
fitting.

� Position error (PE) based method: As an extension of [10],
the PE-based estimated torque is defined as

τ̂ jPE = Kj
PE(q

j
d,i − qji )− sgn(ωj

i )τ
j
f,PE + bjPE, (26)

where Kj
PE, τ jf,PE and bjPE are constants. The original

method assumes that the joint torque is proportional to the
joint position error. Similar to the sensor-based baseline, we
optimize this method by adding constants τ jf,PE and bjPE for
friction torque and bias. All the constant coefficients in the
above equation are obtained by curve fitting using the same
training data. For the two baselines, the inertial properties
of objects are solved using identity weight matrices.

Implementation Details: For each joint, min-max normaliza-
tion is applied to joint position, so that the normalized joint
position is within interval [0, 1]. Joint position error and joint
torque are scaled down so that the magnitude is less than or
equal to 1. In representation learning process, each joint state is
embedded using a 2-layer MLP. The 4-dimensional input vectors
are embedded as 12-dimensional vectors, and the hidden layer
has 12 dimensions. The torque estimator is a 3-layer MLP. The
dimension of input layer is 48 and the dimension of output layer
is 4. Both the 2 hidden layers have 64 dimensions. The scorer is a
2-layer MLP with 32 neurons in hidden layer. Scalar scores are
generated from 16-dimensional embeddings. The above mod-
ules are with ReLU non-linearity. All the parameters of models
are randomly initialized. The torque model is trained with a
batch size of 256 for 300 epochs with an initial learning rate of
0.0003. The attention model is trained with a batch size of 32 for
30 epochs with an initial learning rate of 0.0001. The weights
in the loss of attention model are wm = 1 and wcom = 0.3. We
use Adam optimizer for training.
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TABLE I
ERROR OF ESTIMATED INERTIAL PROPERTIES. SENSOR, PE, T-MODEL, AND T-A MODEL REFER TO THE SENSOR BASED METHOD, THE POSITION BASED METHOD,

PROPOSED TORQUE MODEL WITHOUT ATTENTION, AND THE PROPOSED TORQUE MODEL WITH ATTENTION

TABLE II
ERROR OF ESTIMATED JOINT TORQUE. THE UNITS OF MAE, NMAE, AND

NRMSE ARE N·MM, % AND % RESPECTIVELY

A. Validation of Inertial Properties Estimation

As shown in Fig. 4(d), we use 4 novel objects to evaluate the
proposed framework, which are abbreviated as Cube (41.50 g),
Red (60.37 g), White (88.09 g) and Black (138.92 g) in the
results of experiments. 1000 random samples for each object are
collected. Similar to training dataset, 64 samples are randomly
selected for a step of inertial properties inference. The testing
process is shown in Fig. 1(b). To eliminate the potential bias
of random selection, the identification process is repeated 1000
times for each object. Considering the error between networks
trained multiple times, we train 10 pairs of torque model and
attention model to evaluate the performance. Table I shows the
results of mass and COM estimation. It can be seen that all the
methods estimate the masses successfully. But the 2 baselines
fail to identify the COM. The torque model without attention is
able to estimate the COM, and the results are further improved
after adding the attention model.

B. Evaluation of Torque Model and Attention Model

Using the random testing samples, we evaluate the accuracy
of estimated joint torque. As shown in Table II, all the three
methods are capable of estimating joint torque, and the proposed
torque model outperforms the two baselines.

In order to evaluate the performance of attention model, we
calculate the mean weights of joints for the 4 testing objects, as
shown in Table III. Obviously, the weights of joint 4 is much
larger than the others. It meets our expectations as the MAE
of joint 4 torque is significantly smaller than others. Larger
weights prevent the contribution of joint 4 from being ignored.
Moreover, as the axes of joints 2, 3 and 4 are parallel to each
other, they actually provide similar information for inferring the

TABLE III
MEAN WEIGHTS ASSIGNED TO JOINTS

inertial properties. On the contrary, only the measurements of
joint 1 could identify the location of COM along the direction
of axes of joints 2, 3 and 4. Therefore, although the error of
joint 1 torque is considerable, the weight is still large enough
to provide the distinctive information. We can also observe that
the weights changes according to the masses of objects. For
example, as the object becomes heavier, the weight of joint
4 decreases while the other weights increase. Regarding the
torque model without attention, the results of Cube is worse
than others. Relatively speaking, the performance of torque
model with attention is more even, as the estimation of different
objects are of similar accuracy. In summary, the attention model
improves the accuracy by adaptively assigning weights to joints,
which adjusts the contributions of joints.

C. Estimating Switching Forces Along a Continuous
Trajectory

Besides the above testing experiments, we did an experiment
in the scenario of continuous trajectories with switching forces.
The robot reaches a series of configurations. The measurements
are collected at each configuration without stopping. During
the motions, the robot carries switching objects, resulting in
switching forces at end effector (Fig. 5(a)). We use a single
pair of torque model and attention model in this experiment.
Due to the proximity of the configurations, the samples provide
similar information, which makes it challenging to accurately
infer the inertial properties. To address this issue, 128 samples
of consecutive configurations are used for each step of inertial
properties identification. The vertical force is computed from
the estimated mass. And a 128-width mean filter is applied to
smooth the estimated force.

Fig. 5(b) shows that the proposed approach is able to estimate
the switching forces. The torque model without attention outper-
forms the baselines, and the attention model further reduces the
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Fig. 5. Results of continuous trajectory experiments. (a) Snapshots of robot
carrying objects in experiments. (b) Results and error of force estimation. (c)
Results of joint torque estimation.

force error. Parts of the joint torque results are plotted in Fig. 5(c).
It can be seen that the proposed torque model is applicable to
consecutive postures along a trajectory, and outperforms the
baselines.

V. CONCLUSION

A learning-based approach for estimating inertial properties
of unknown objects is proposed in this letter. Without using
force/torque sensors, we designed a torque model to reconstruct
joint torque from encoder discrepancies. The closed-form rela-
tion between joint torque and inertial properties of objects are
derived. Given multiple steady-state samples of robot carrying
an object, the mass and COM of object can be solved analytically
by weighted least squares. To adjust the weight matrix dynam-
ically in the inference process, an attention model is designed
to assign weights to joints. The proposed approach is verified
in experiments on a 4-DOF robot manipulator. In conclusion,
the proposed method achieves relatively accurate estimation of
mass and COM without using force/torque sensors.
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