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Learning to Predict Navigational Patterns From
Partial Observations

Robin Karlsson , Student Member, IEEE, Alexander Carballo , Member, IEEE, Francisco Lepe-Salazar ,
Keisuke Fujii , Member, IEEE, Kento Ohtani , and Kazuya Takeda , Senior Member, IEEE

Abstract—Human beings cooperatively navigate rule-
constrained environments by adhering to mutually known
navigational patterns, which may be represented as directional
pathways or road lanes. Inferring these navigational patterns from
incompletely observed environments is required for intelligent
mobile robots operating in unmapped locations. However,
algorithmically defining these navigational patterns is nontrivial.
This letter presents the first self-supervised learning (SSL)
method for learning to infer navigational patterns in real-world
environments from partial observations only. We explain how
geometric data augmentation, predictive world modeling, and
an information-theoretic regularizer enable our model to predict
an unbiased local directional soft lane probability (DSLP) field
in the limit of infinite data. We demonstrate how to infer global
navigational patterns by fitting a maximum likelihood graph to the
DSLP field. Experiments show that our SSL model outperforms two
SOTA supervised lane graph prediction models on the nuScenes
dataset. We propose our SSL method as a scalable and interpretable
continual learning paradigm for navigation by perception.

Index Terms—Vision-based navigation, semantic scene
understanding, continual learning, learning from experience,
motion and path planning.

I. INTRODUCTION

MOBILE robots perform tasks that involve traversing an
environment. To navigate rule-constrained structured

environments robots are required to correctly perceive and in-
terpret the environment. This problem is called scene under-
standing. Navigational patterns, or directional pathways, are a
core component of understanding how to traverse structured
environments [1]. In particular, efficient and safe multi-agent
navigation depends on each agent following mutually known
navigational patterns. The patterns can be defined by explicit
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Fig. 1. Method accumulates sensor observations into a common metric vector
space representing the partially observed world statex. A predictive world model
samples a set of diverse plausible complete world states x̂. The directional soft
lane probability (DSLP) model predicts two probability fields; the agent traversal
probability p(yi,j) and a multimodal directional probability distribution p(θi,j)
for each point (i, j). A fitted maximum likelihood graph corresponds to global
navigational patterns. The DSLP model can learn navigational patterns from
observed trajectories representing only a subset of all plausible trajectories.

rules or be derived from social conventions and emergent behav-
ior. However, learning to infer navigational patterns for complex
environments based on observable features is difficult due to
regional variation and noise including varying or missing surface
markings, geometries, and materials.
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Current methods for spatial navigation can be categorized
into mapping- and learning-based approaches. The mapping
approach [2] avoids the problem of automatized understanding
of environments by encoding human knowledge in the form of
lane maps and localizing the system within these maps. Creating
a priori navigation maps is a conceptually simple, interpretable,
and predictable way to safely navigate environments. In practice,
this approach is difficult to scale up, as map creation, main-
tenance, and verification are costly in terms of human labor,
typically limiting application to small predetermined environ-
ments. Additionally, dynamic navigational behavior like cor-
rectly avoiding parked cars or debris cannot be a priori encoded
in static maps. The learning approach involves training a model
to infer navigational patterns based on environmental context.
Some methods learn implicit patterns as part of accomplishing
the primary task [3], [4], [5]. Other methods learn explicit
patterns but require ground truth lane maps for training [6],
[7]. Methods learning from observational data alone are promis-
ing scalable solutions to infer navigational patterns, as driving
data can be obtained at a low cost. However, the real-world
performance of existing methods is fragile and unpredictable in
complex environments and lacks interpretability.

The human visual system comprises two subsystems [8], [9],
[10]. The vision-for-perception system located in the ventral
stream processes information in a slow, top-down manner to
create perceptual representations from ambiguous or incomplete
visual input by leveraging visual and semantic memory [9].
These representations support conscious mental processes such
as recognition, visual thought, and planning. The vision-for-
action system located in the dorsal stream processes informa-
tion in a real-time, bottom-up manner to perceive the entire
environment and infer behaviorally-relevant visual affordances,
including cues for spatial navigation [11].

In this letter we present a self-supervised method for learning
to infer navigational patterns from real-world partial obser-
vations as required for traversing unmapped real-world envi-
ronments. Our approach is inspired by the biological dorsal
visual pathway [9] and endows artificial intelligent agents with
a functionally similar self-improving system that learns to infer
visual affordances for spatial navigation [12].

The model learns general contextual environment features that
explain observed trajectories, and can thus infer navigational
patterns for newly encountered environments. Learning from
observed trajectories means learning from only a subset of all
plausible trajectories. We propose an information-theoretic reg-
ularizer to overcome the problem of false negative traversal ob-
servations resulting from partial observations. Our model com-
bines complementary aspects of mapping- and learning-based
approaches. It also produces an interpretable representation akin
to maps. Lastly, this model improves with additional experience
akin to continual learning [13] while avoiding catastrophic for-
getting by retaining a replay buffer of past experiences [14].

We identify the navigational pattern prediction problem based
on static environmental context as a sub-problem of the general
dynamic agent behavior prediction problem. The main differ-
ence is that we do not consider the influence of dynamic objects
such as parked cars and red traffic lights, or predict the movement
of particular agents. While both problems can be solved through
the same framework, we choose to remove dynamic object
information from the input representation in order to objec-
tively compare performance against ground truth lane graph
methods.

While we perform experiments in a real-world urban road
environment our method is applicable in any general structured
environment.

The contributions of our letter are three-fold:
� A self-supervised approach for learning to predict un-

biased traversability probability maps from real-world
partial positive-only observations using a principled
hyperparameter-free information-theoretic regularizer.

� Experimentally show that our method improves with addi-
tional observations and achieves better performance than
recent state-of-the-art (SOTA) supervised methods.

� Experimentally verify that leveraging a predictive world
model [15] and geometric data augmentation [16] improves
real-world performance.

The rest of the letter is organized as follows. Section II reviews
the SOTA and contrasts it with our work. Section III explains
how partial observations are transformed into complete world
states used as model input. Section IV explains our method and
model implementation. Section V explains the experiment setup.
Section VI present experimental results. Section VII concludes
the letter by discussing limitations and future improvements to
our method.

II. RELATED WORK

Path prediction: Recent works present methods to predict
multimodal paths for specific actors. Salzmann et al. [17] and
Baumann et al. [18] trains a convolutional neural network (CNN)
on bird’s-eye-view (BEV) environment representations to pre-
dict a dense map representing valid ego-vehicle paths using
a weighted dense classification error and future ego-vehicle
trajectories. Barnes et al. [19] trains a CNN on perspective
images with self-supervised labels generated from driving data.
Ort et al. [20] fuses high-level navigational guidance from a
coarse map with path generation reflecting the observed en-
vironment. Casas et al. [21] optimizes a model to predict an
environment map and possible paths for the ego-agent based
on images and point clouds using a ground truth lane map as
supervision. Prez-Higueras et al. [22] trains a CNN model to
predict a multimodal path affordance map between any two
points to be used as a prior for an RRT∗ path planner [23].
Kitani et al. [24] trains a Hidden Parameter Markov Decision
Process (HiPMDP) model using inverse reinforcement learning
and observation data. Ratliff et al. [25] presents an imitation
learning approach that maps input features to a cost map based on
example paths. Our approach expands on prior works by learning
to predict all plausible navigational patterns in the environment
independently of observed agents without depending on ground
truth maps for supervision.

Lane graph and map prediction: Homayounfar et al. [26]
trains a recurrent neural network (RNN) model to predict poly-
lines as road lanes in highway road scenes using ground truth
lane maps. An extension [27] introduces forking and merging
lane topologies. Guo et al. [28] predicts 3D road lanes from
perspective images using ground truth annotations. Zürn et al. [6]
trains a Graph-RCNN model to predict lane anchors and edges
using images and point clouds with ground truth lane map
supervision. Can et al. [7] trains a transformer model to detect
lane segments from images and subsequently connected into
lane graphs. Zhang et al. [29] trains a three-stage network
using ground truth map supervision to predict a dense lane map
and subsequently predict keypoints used to generate the graph.
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Mi et al. [30] presents a hierarchical coarse-to-fine approach to
train an attention graph neural network to generate road lane
graphs. Karlsson et al. [16] presents a self-supervised method
to train a directional soft lane affordance (DSLA) map from
single trajectories. A follow-up work [31] shows how to generate
discrete road lane graphs by searching for connected paths in the
DSLA map using the A∗ algorithm. Our method is a scalable
approach to predict lane graphs from partial observations with-
out requiring ground truth lane map annotations and yet achieve
better performance than supervised baselines [6], [7]. This work
extends [16], [31] by introducing a principled regularizer, a
sampling-based maximum likelihood graph generation method,
and demonstrates the approach on real-world data.

Another line of works consider the problem of predicting a
structured semantic representation of the environment akin to
human-annotated HD maps [2] from sensor observations and
ground truth maps. Li et al. [32] trains a multimodal network to
predict dense maps subsequently post-processed into vectorized
representations of map elements. An extension [33] directly
predicts vectorized map elements. Liao et al. [34] presents a
transformer model trained end-to-end to predict vectorized map
elements from camera images. Shin et al. [35] presents an
attention graph neural network approach. Ort [36] presents a
model-based approach to fit parametric map elements accord-
ing to observations and prior map information. Our approach
is complementary as it provides explicit navigational patterns
based on an environment representation.

End-to-end learning for autonomous vehicles: Originally pro-
posed by Pomerleau [37] and more recently repopularized by
Bojarski et al. [3], the end-to-end learning paradigm aims to
learn a driving model or policy mapping perception to control
by optimizing for an extrinsic goodness objective. Imitation
learning approaches [3], [4], [5] learn a policy that results in
similar behavior as expert examples. Reinforcement learning
(RL) approaches [38] optimize a policy to maximize an extrinsi-
cally defined reward such as time-to-human-override. Recently,
approaches learning an explicit predictive world model [39], [40]
show that robust policies can be learned from expert observation
only. Our method to learn explicit agent-agnostic navigational
patterns is an alternative approach to enhance explainability
of end-to-end learning, or incorporate an end-to-end learning
aspect into the conventional modularized mobile robotics sys-
tem [1].

III. PLAUSIBLE WORLD STATE INPUT GENERATION

Here we describe the pre-processing method shown in Fig. 1.
Sensor observations are accumulated into partially observed
world statesx, which in turn are transformed into plausible world
states x̂. The proposed model uses x̂ as input.

A. Partial World State Representation

We generate partial world states based on accumulated sensor
observations following the method described in prior work [15].
The method shares similarities with a hierarchical biological
model of human representation and processing of visual infor-
mation [41]. The agent is initialized within an unknown metric
vector space. Sensor observations are projected onto this com-
mon vector space at discrete timesteps. Semantic information is
inferred from images using a pretrained semantic segmentation
model and appended to coincident 3D points to form semantic
point clouds. Past semantic point clouds are integrated with new

Fig. 2. Geometric data augmentation generates diverse sample variations from
a single real sample. Spatial information (dense maps) and observed trajectories
(red lines) are transformed by the same function.

observations by scan matching using the ICP algorithm [43]
and SLAM [44] for loop closure. The accumulated semantic
point cloud is reduced to a five-layered 2D probabilistic BEV
representation x ∈ RI×J×C with dimension I × J elements,
andC denoting the number of semantic information channels. In
this work, C consists of five channels representing the semantic
attributes of a spatial point (i, j); we represent road probability
p(road) by a beta distribution, lidar reflection intensity ε as a
scalar value, and visual appearance by RGB values.

Dynamic objects are detected by a pretrained object detection
model and represented by 3D bounding boxes. Trajectory obser-
vations are generated by temporally tracking detected objects.
Dynamic objects are considered “moving” if motion is observed
or “static” otherwise. This classification allows filtering away
observations associated with moving dynamic objects while
keeping observations of static dynamic objects for training, as
they may influence how other agents navigate the environment
such as swerving out of the lane to avoid a parked car. The static
dynamic objects can be removed at inference time to provide an
agent-agnostic prediction of navigational patterns akin to a lane
map.

We leverage geometric data augmentation [16] to improve
model generalization performance by learning geometric in-
variance. Each sample is augmented by random rotation and
translation, and a polynomial warping function is applied to the
dense maps and observed trajectories

a0(ξ
′)2 + a1(ξ

′) + a2 = ξ (1)

where ξ is a substitute for spatial coordinates i and j, and ξ′
denotes warped coordinates. We create dense warp maps by
using the inverse function of (1) to map each warped coordinate
ξ′ to an original coordinate ξ. The coefficients a0, a1, and a2 are
derived by satisfying boundary conditions [16]. Fig. 2 shows
visual examples of a sample augmentation.

B. Predictive World Model

The predictive world model [15] samples diverse and plausi-
ble complete world states x̂ conditioned on partially observed
world states x as exemplified in Fig. 1. The world model is
functionally similar to the biological ventral cortical pathway
as the model disambiguates the partially observed environment
by leveraging past experience [9]. The world model is computa-
tionally conceptualized as an arbitrary conditioning generative
model and implemented by the recent SOTA hierarchical VAE
(HVAE) model VDVAE [45] with the encoder module replaced
by a posterior matching encoder [15]. The HVAE models the
joint distribution of observable variables p(r, ε, R,G,B) fac-
torized as the conditional distribution

p(r, ε, R,G,B) = p(R|G,B, r)p(G|B, r)p(B|r)p(ε|r)p(r)
(2)
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Fig. 3. (Top) Predictive world model is trained to reconstruct pseudo ground-
truth world states x∗

full and simultaneously optimize a secondary encoder
qφ(z|x) to predict a similar hierarchical latent distribution z as the primary
encoder qθ(z|x∗

full) from partially observed world states x. (Bottom) The
trained model samples a hierarchical latent distribution z from x to generate
complete plausible world states x̂.

using hierarchical latent variables z. Here r and ε denote road
and lidar reflection intensity, and RGB are image color channels.
The latent variable prior p(z) and posterior q(z|x) distributions
are factorized as

p(z) = p(z1|z2) . . . p(zK−1|zK)p(zK) (3)

q(z|x) = q(z1|z2, x) . . . q(zK−1|zK , x)q(zK |x) (4)

with random variables z modeled by normal distributions.
The world model learns to approximate the prior and pos-

terior distributions by the parameterized models qθ(z|x) and
pθ(x|z) using variational inference [46] and trained using self-
supervised learning to predict future observations from present
observations akin to the predictive coding problem [47]. Note
that the vanilla HVAE cannot learn to generate diverse complete
representations from partially observed representations only. We
follow the posterior matching optimization method visualized in
Fig. 3 and presented in prior work [15] to overcome this limita-
tion. The method trains a regular HVAE using pseudo ground-
truth world states x∗

full, and a secondary encoder qφ(z|x) to pre-
dict a similar hierarchical latent distribution z = {z1, . . . , zK}
as the primary encoder qθ(z|x∗

full) from x.
We generate pseudo ground-truth world states x∗

full using
a sequential process starting from the intermediate world state
xfull consisting of past and future observations as explained
in prior work [15]. The regular HVAE model is trained by
maximizing the hierarchical ELBO over xfull [15], [45]. The
second encoder is optimized by minimizing

DKL(qθ(z|x∗
full)||qφ(z|x))

=

K∑
k=1

Eq(z>k|x)
[
DKL(qθ(zk|z>k, x

∗
full)||qφ(zk|z>k, x))

]
.

(5)

At inference time the model uses the partially observed encoder
to generate a latent distribution qφ(z|x) that can be decoded
by pθ(x̂|z) into a completely observed plausible world state x̂

Fig. 4. Directional soft lane probability (DSLP) model uses a dual decoder U-
Net [48] model to transform a plausible world state x̂ into a soft lane probability
(SLP) map Ŷ and directional probability (DP) tensor Ŵ .

similar to a pseudo ground-truth world state x∗
full without the

need to observe the future.

IV. DIRECTIONAL SOFT LANE PROBABILITY MODEL

Here we present a method to train a model to predict unbiased
probability maps of local directional traversability. The model
input is the plausible world state x̂ described in Section III. We
also present a method for inferring global navigational patterns
from the local probability maps. See Figs. 1 and 7 for output
visualizations.

The model is implemented by a U-Net neural network [48]
with a single encoder and two decoders as illustrated in Fig. 4.
The first decoder outputs a probability map Y ∈ RI×J repre-
senting soft lane probabilities for elements in a grid map of
size I × J . The second decoder outputs a map of categorical
distributions W ∈ RM×I×J representing M direction interval
probabilities for each location (i, j). The methods for optimizing
both probabilistic outputs are explained below.

A. Soft Lane Probability (SLP) Modeling

The likelihood of each environment location (i, j) being
traversed by an unspecified agent is modeled by the predicted
probability value ŷi,j ∈ Ŷ and is called soft lane probability
(SLP). Learning to predict an unbiased Ŷ from partial observa-
tions is nontrivial, as the self-supervised learning signal contains
false negative traversal observations (i.e. lacking an observed
trajectory where traversals are probable). We formalize the prob-
lem as follows. Ideally we want to learn a distribution q(y) that
approximates the true distribution p(y). However, optimizing
q(y) according to the learning signal results in learning the
distribution of partially observed samples p̃(y). A principled
solution is to use a regularizer to decrease bias and make q(y)
better match p(y).

In this letter we present a semi-supervised objective
that enables learning an unbiased probabilistic prediction of
traversability based on an information-theoretic regularizer de-
rived from balancing the information contribution from positive
and negative partial observations in Y .

In information theory, the entropy H(y) of a distribution p(y)
is considered a quantity that measures information content. The
cross-entropy

H(p, q) � −
K∑

k=1

p(y = k) log(q(y = k)) (6)

measures the information overhead to compress a sample y ∼
p(y) using a code based on q(y) [49].
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Each partial observation Y contains two distinct groups of
traversal information; a set of true positives representing certain
information, and a set of true and false negatives representing
uncertain information. The contributed information of the set of
positive and negative observations are

H
(
Ypos ⊆ Y, Ŷ

)
= −

∑
i,j∈Ypos

yi,j log(ŷi,j) (7)

H
(
Yneg ⊆ Y, Ŷ

)
= −

∑
i,j∈Yneg

(1− yi,j) log(1− ŷi,j). (8)

We devise a regularizer based on balancing the information
contribution provided by (7) and (8) according to the ratio of
observations

αIB = |Ypos| / (|Ypos|+ |Yneg|) (9)

where |Y∗| denotes the number of positive and negative ob-
served elements (i, j). The balanced information contribution
H∗(Y |Ŷ ) is obtained by linearly interpolating the information
contributions according to the ratio of observations

H∗(Y |Ŷ ) = αIB H(Yneg|Ŷ ) + (1− αIB)H(Hpos|Y ).
(10)

Linear interpolation is a monotonic function that balances the
information contributions while preserving the total information
quantity

0 ≤ H∗(Y |Ŷ ) ≤ max(H(Ypos|Ŷ ), H(Yneg|Ŷ )). (11)

We formulate the problem specific optimization objectiveLSLP

as the mean balanced information contribution

LSLP = − 1

|Y |
∑
i,j∈Y

[αIB(1− yi,j)log(1− ŷi.j)

+ (1− αIB)yi,j log(ŷi,j)] (12)

where ŷi,j and yi,j is the predicted and observed soft lane
probability for the element located at i, j. |Y |denotes the number
of traversable elements. The information contribution ratio αIB

provides the optimal interpolation between positive and negative
traversal observations.

One can view (12) as the cross entropy objective with an
additional dynamic regularizer between positive and negative
observations. Experiments show that the balanced information
contribution cross-entropy objective (12) performs better than
finetuning a static hyperparameter weighting [16], and allows
learning probabilistic predictions despite occasional abnormal
observations unlike the barrier loss objective [31]. The negative
log likelihood NLLSLP of an observed sample y according to
a model prediction ŷ based on modeling p(y|ŷ) as a Bernoulli
distribution is

NLLSLP = −
∑
i,j∈Y

[yi,j log(ŷi,j) + (1− yi,j) log(1− ŷi,j)] .

(13)

B. Directional Probability (DP) Modeling

The likelihood of local traversal directionality at each location
(i, j) is modeled by the predicted vector ŵi,j called directional
probability (DP). The ŵi,j models a categorical probability

Fig. 5. Maximum likelihood graph is generated by connecting entry (•) and
exit (×) points by the most probable of many sampled paths given the predicted
DSLP field.

distribution representing the direction interval θ ∈ [0, 2π) by
M uniformly spaced intervals

wi,j=

(
p

(
θ∈

[
0,

2π

M

))
, . . . , p

(
θ∈

[
(M − 1)2π

M
, 2π

)))T

.

(14)

The learning signal is created by encoding observed trajectories
into wi,j as a discrete von Mises distribution. In the case of
multiple overlapping trajectories the individual distributions are
superimposed and renormalized. Learning to match distributions
improve multimodal prediction compared with learning to pre-
dict single values by maximum likelihood estimation [16].

The optimization objective LDP is formulated as learning to
predict the directional distribution by minimizing the mean KL
divergence between predicted ŵi,j and observed wi,j direction-
ality over all elements wi,j ∈ W

LDP =
1

|W |
∑

i,j∈W
DKL(wi,j ||ŵi,j). (15)

Note that the learning signal used to optimize the DP objective
(15) lacks false negatives and therefore does not require regu-
larization like the SLP objective (12).

The negative log likelihood NLLDP of an observed sample
wi,j according to a model prediction ŵi,j based on modeling
p(w|ŵ) as a categorical distribution is

NLLDP = −
∑
i,j∈Y

M∑
m=1

w
(m)
i,j log

(
ŵ

(m)
i,j

)
. (16)

C. Maximum Likelihood Lane Graph

Evaluating the goodness of local navigational patterns using
the predicted DSLP field is straightforward. To also evaluate
the usefulness of the predicted DSLP field for inferring global
navigational patterns, we present a sampling-based method to
generate a maximum likelihood road lane graph fitted to the
predicted DSLP field. The graph generation process is illustrated
in Fig. 5.

First, we infer entry and exit points at the edges of the
predicted DSLP field. A non-maximum suppression (NMS)
operation is performed on the SLP field Ŷ to find the most likely
path centers. Each point is designated as an entry and/or exit
point according to the predicted DP field Ŵ . Additional entry
and exit points are inferred from directional field regions which
are coherent but lack a NMS point.

Secondly, we incrementally build a graph by searching for
valid connecting paths between all entrance and exit points by a
sampling-based approach. A set of second-degree polynomial
spline paths is generated between an entry and exit pair by
randomly sampling a valid spline control point (i, j)∗ from a
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Fig. 6. Samples are partitioned into four nonoverlapping regions. Regions are
specified by bottom-left and top-right corners in world coordinates.

normal distribution with rejection sampling. The likelihood of
each sampled path is evaluated using the location and direction-
ality of M equidistant points along the path given the predicted
DSLP field using (13) and (16). The path with the lowest total
NLL is selected as the best path. Repeating this process results
in a set of most likely paths representing the maximum like-
lihood graph. A post-processing operation removes undesired
edges between neighboring lanes (i.e. u-turns) using a simple
distance threshold heuristic. Representing navigational patterns
by splines is a useful inductive bias, as agents tend to navigate
structured environments in a continuous and smooth manner.

V. EXPERIMENTS

We evaluate the model performance on the right-side driving
daytime Boston scenes in the nuScenes dataset [50] similar to our
baseline methods [6], [7]. The observation accumulation method
described in Section III-A generates a partially observed training
sample x every 1 m using accumulated observations from six
360◦ FoV RGB cameras and a top-mounted 32 beam lidar and a
single pretrained semantic segmentation model [15]. Each x is
augmented 20 times. Partitioning the generated training samples
into the nonoverlapping regions shown in Fig. 6 results in 60,960
(34.7 %), 40,960 (23.3 %), and 73,780 (42.0 %) samples for
regions 1 to 3. Evaluation region 4 contains samples generated
every 10 m without augmentation. We use a semantic segmenta-
tion model pretrained on two different public datasets [15]. We
accumulate observations using ground truth pose information
to reduce engineering effort, as prior work demonstrates the
feasibility of accumulation based on pose estimation [15]. The
plausible world state model input representation x̂ consists of a
five-layered 256×256 grid map encompassing a 51.2×51.2 m
region similar to prior work [6].

We conduct a model hyperparameter study and find that a
smaller 1.4 M parameter model generalizes best. The model as
depicted in Fig. 4 has a common 8-layered CNN encoder with
filter count increasing from 16 to 256, and two 8-layered CNN
decoders with bilinear upsampling and filter count decreasing
from 64 to 8. See the code for further implementation details. We
use the following benchmarks to evaluate our DSLP model. We
compare the global navigation pattern inference performance
against the two most relevant and recently published SOTA
supervised models STSU [7] and LaneGraphNet [6]. Both base-
lines are trained on nuScenes data [50] to predict lane graphs
using complete ground truth graphs as supervision. We compare

TABLE I
PERFORMANCE OF PREDICTED LOCAL PROBABILITY FIELDS

the local probability field estimation performance against the
prior self-supervised SOTA model called DSLA [16].

Local probability field estimation: We evaluate the predicted
soft lane Ŷ and directional Ŵ probability fields by computing
the summed negative log-likelihood (NLL) of the ground truth
lane map using (13) and (16). Lower NLL means the ground
truth lane map is more likely according to the model. Directional
accuracy measures the ratio of elements within ±45◦ of the
ground truth direction.

Global navigational pattern inference: We evaluate the use-
fulness of the predicted probability fields for inferring global
navigational patterns by computing the intersection over union
(IoU) and F1 score between the maximum likelihood graph and
ground truth lane map. Our method does not consider the spacing
of graph nodes as an integral part of navigational patterns and
thus does not view node displacement as a relevant performance
metric.

Ablation studies: We evaluate the advantage of our proposed
predictive world modeling approach [15] for learning navi-
gational patterns from sampled plausible completed worlds x̂
instead of partially observed worlds x. We conduct an experi-
ment using unaugmented samples to quantify the performance
contribution of our geometric data augmentation method [16]
on real-world data. We conduct experiments on dataset splits
including a different number of regions to estimate how perfor-
mance increases with additional data.

VI. RESULTS

Local probability field estimation: Table I presents evaluation
results for the predicted probability fields. Our proposed DSLP
model optimized with the information balance regularizer αIB

(9) predicts the least biased probability field among all models
trained and evaluated on accumulated past observation inputs.
We conclude that the probabilistic objective (12) substantially
reduces bias compared with the non-probabilistic DSLA affor-
dance objective [16]. Training and evaluating on accumulated
past and future observation inputs in an offline map creation
manner (i.e. full obs.) reduces bias, demonstrating that more
comprehensively observed environments result in better perfor-
mance. We performed experiments with different constant α
values to demonstrate the merit of the proposed hyperparameter-
free regularizer αIB (9). The best constant weight α value 0.1,
found over five hyperparameter experiments, results in worse
performance than using αIB . We demonstrate the merit of
dynamic, per-sample computed αIB values (9) by running an
experiment with the constant mean αIB value 0.122 computed
over all training samples, which results in worse performance.
See Fig. 7 for probability field visualizations.

Global navigational pattern inference: Table II presents re-
sults showing that the maximum likelihood graph fitted to
the probability field predicted by our self-supervised DSLP
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Fig. 7. Model output visualizations. The left column shows accumulated
partial observations x. The middle column shows plausible world states x̂
sampled from x. The right column visualizes the predicted probability fields
Ŷ and Ŵ as well as the maximum likelihood graph.

TABLE II
PERFORMANCE OF GLOBAL NAVIGATIONAL PATTERN INFERENCE

and prior DSLA model [16] from partially observed world
representations x, outperforms the supervised SOTA baselines
STSU [7] and LaneGraphNet [6] trained on ground truth lane
graphs. Our self-supervised method not only improves upon the
supervised baseline results while limited to the same training
data domain, but is also a scaleable solution for real-world
mobile robotics as the model can improve by continual learning
from new observational experience. While the baselines do not
specify train and evaluation regions for an ideal comparison, our
experiments in Table IV show our model surpassing the super-
vised baseline methods also when training on one region only,
demonstrating that the exact train and evaluation region split
is not critical for achieving our favorable results. We note that
the probabilistic DSLP model outperforms the non-probabilistic
DSLA affordance model [16], the proposed regularizer αIB (9)
outperforms the best constant hyperparameter regularizer α and
the mean αIB value, and that more comprehensively observed

TABLE III
ABLATION STUDIES

TABLE IV
PERFORMANCE WITH VARYING DATA AMOUNTS

environments result in better performance. See Fig. 7 for inferred
navigational path visualizations.

Ablation studies: Table III shows that leveraging the predic-
tive world model (WM) [15] and proposed data augmentation
(Aug.) [16] method reduces bias in the predicted probabilistic
fields. We note that the unaugmented experiment generates
output biased towards ego-agent trajectories, resulting in worse
overall NLL while the maximum likelihood graph remains accu-
rate. We believe this indicates the potential to further improve the
graph generation algorithm to better leverage the more accurate
probability field prediction. We do not explicitly evaluate the
performance of the world model itself as this is done in prior
work [15].

Table IV shows that increased observational experience re-
duces bias in the predicted probability field, providing evidence
that the model can be trained to infer an unbiased probability
prediction in the limit of infinite data

Inference time: We analyze the time taken for one iteration
of our proposed system as follows. The mean inference time
for the predictive world model and DSLP model is 0.175 sec
and 0.017 sec, resulting in a total mean time of 0.192 sec per
iteration or 5.21 Hz on an RTX 4090 GPU. We conclude that our
method is feasible to run in real-time as it introduces a 0.192 sec
overhead with a real-time SLAM implementation [43] operating
faster than sensor frame rates.

VII. CONCLUSION

In this letter, we present the first SSL method for training a
model to infer navigational patterns in real-world environments
from partial observations while achieving better performance
than SOTA supervised baselines. Here we identify limitations
and directions for future work. The representation of spatially
small but semantically important environmental cues, such as
road markings, is inefficiently represented by uniform grid maps.
Traffic information on signs is not represented at all. We propose
to instead detect and semantically draw road markings and signs
in the input representation. Graph generation can be improved
by inferring start and end points within the BEV, sampling
higher-order splines, and decomposing splines into a sparse
graph [31]. Understanding navigational patterns may require a
temporal memory of past observations to resolve ambiguity. We
propose an additional module that maintains a latent environ-
ment encoding by learning from sequences instead of i.i.d. data.
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