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Probabilistic Inference-Based Robot Motion
Planning via Gaussian Belief Propagation

Salman Bari , Volker Gabler , and Dirk Wollherr

Abstract—Robot motion planning via probabilistic inference
renders a unique viewpoint on the trajectory optimization prob-
lem, in which the joint distribution of motion objectives is rep-
resented as a factor graph. Thus, the objectives are solved by
obtaining the Maximum a Posteriori of the factor graph. While
this distinctly improves the computational efficiency by applying
least square optimization, the approach is incapable of handling
hard constraints directly. In this work, we put forth an alternate
perspective and argue that a message passing framework, such as
Belief Propagation, offers greater utility as a solution method for
robot planning problems. We present the theoretical formulation of
Gaussian Belief Propagation (GaBP) as a generic message passing
framework that exploits the structure of the factor graph to solve
multiple planning scenarios such as batch planning, incremen-
tal planning and re-planning. In addition, the GaBP algorithm
has been extended to handle hard state constraints by adopting
the Difference Map strategy. We benchmark our framework in
a simulation environment. The results show that our algorithms
outperform the state-of-the-art with respect to collision avoidance
and constraint handling ability within our benchmark. We close
this article with the outline of a real-world robotic application
within industrial disassembly.

Index Terms—Motion and path planning, probabilistic infe-
rence, constrained motion planning, factor graph, Gaussian belief
propagation.

I. INTRODUCTION

THE robot workspace influences the type of planning algo-
rithm required to generate a feasible trajectory from the

start position to the target position. If the workspace of the
robot contains only static obstacles, a batch planning [1], [2]
approach is used. In this case, the complete feasible trajectory
form start to goal state is determined by a planner. Then, a
lower-level controller is used to track the planned trajectory.
This approach does not work in a dynamic environment. An
incremental planning [3] strategy is required if moving ob-
stacles are within reach of a robotic manipulator. Another
possible scenario is re-planning [4], where a certain part of
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the trajectory has to be re-planned according to the partially
changed planning conditions, e.g. change in goal position during
robot motion. Re-planning requires only a partial update in the
planned trajectory. These different planning scenarios have been
mostly considered as separate planning problems in literature
and specific algorithms have been developed for each case.
Our study tackles the problem of multi-scenario robot plan-
ning and explores the message passing framework for finding
Maximum a Posteriori (MAP) estimation to generate optimal
trajectories.

Robot motion planning can be formulated as planning-as-
inference (PAI), which orchestrates the planning problem on
a graphical model and then utilizes the already existing and
established algorithms for finding MAP [5], [6]. The PAI offers
the utility of approximate inference algorithms to compute fast
solution as compared to other optimization and sampling-based
planning approaches [7]. The computation of the MAP in a
factor graph using message passing approaches, such as Belief
Propagation (BP) [8], involves local communication among
nodes in the graph to determine marginal distributions of variable
nodes. This characteristic of message passing algorithms can
be harnessed to develop motion planning algorithms that can be
employed in different planning scenarios.

In this letter, we explore the potential of GaBP as a message
passing framework for solving robot motion planning problems.
We also address one of the major limitations of Gaussian Pro-
cess Motion Planning (GPMP2), its incapability to handle hard
constraints. We begin by outlining the theoretical framework for
solving batch planning problems. Then, a novel method to en-
force hard state constraints in configuration space has been pro-
posed. This is achieved by applying the Difference Map (DM)
approach to satisfy constraints via bound projections. Moreover,
conditional dependencies in the factor graph nodes have been
highlighted, which results in a clear distinction between local
and global graph reasoning. Then, the property of local conver-
gence is exploited to formulate local sub-graphs. Based on these
sub-graphs, GaBP has been extended to Incremental Gaussian
Belief Propagation (iGaBP) to address incremental planning and
re-planning problems.

We evaluate the proposed algorithm in an exemplary simula-
tion setting using a 6-DoF COMAU robot manipulator. A com-
parative analysis with state-of-the-art probabilistic inference
and optimization-based motion planning algorithms has been
performed. The results show the superior performance of the
proposed approach in simulated planning scenarios with respect
to success rate and constraint handling. In addition, we showcase
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a real-world application example for an industrial Waste Elec-
trical and Electronic Equipment (WEEE) disassembly setting
and discuss the key findings along with limitations and future
work.

II. RELATED WORK

Planning-as-inference has been used to solve planning and
sequential decision-making problems [9], [10]. Eventually, the
same idea was adopted by the robotics community to solve tra-
jectory optimization and related motion planning problems [5].
In this approach, a multi-variate description of the robot action
or state is represented as a factor graph and MAP estimate
is computed based on the desired planning objective [6]. Re-
cently, the GPMP2 framework [7] has been proposed which
represents the prior trajectory as a Gaussian Process (GP)
generated from a linear time variant, stochastic differential
equation (LTV-SDE), and finds collision-free trajectories with
fast numerical least square optimization. MAP inference of
probabilistic graphical models is equivalent to least square opti-
mization solution as per inference-optimization duality [11]. In
order to tackle re-planning scenario, GPMP2 proposes Bayes
tree formulation to perform incremental trajectory updates.
Recently, a stochastic interpretation of GPMP2 has also been
proposed [12] that takes into account uncertainties by means
of Gaussian variational inference. However, GPMP2 does not
fully exploit the underlying structure of the factor graph as
it considers the solution of the entire factor graph holistically
by fusing all motion objectives. The fusion of motion objec-
tives also limits the ability of this approach to deal with hard
constraints.

The application of the message passing approach as a solu-
tion method for a motion planning problem has not yet been
studied in detail. Early work on robot planning via probabilistic
inference [5], [6] adopts a similar message passing approach
but it does not provide detailed investigation of its utility. More
recently, the GaBP-based inference approach [13] has been used
to solve a multi-robot planning problem. The proposed algorithm
is very similar to our work as it also employs GaBP but multiple
planning scenarios are not investigated. We fill this research gap
by complementing [13] and discussing the GaBP approach that
exploits factor graph structure to generate trajectories in multiple
planning scenarios, which differs from multimodel trajectory
optimization [14] that generates multiple solutions based on
various cost functions.

We rely on Danny Bickson’s GaBP algorithm [15] to solve
non-linear factor graph for batch planning. We leverage the
insights from our earlier work [16], which suggested that op-
timizing the local nodes of the factor graph offers greater
sensitivity to obstacle avoidance. However, it should be noted
that the approach proposed in our previous work [16], which
utilized the min-sum message passing algorithm and numerical
optimization for local node belief computation, differs from the
approach we present in this letter. We also propose the sub-graph
formulation and incremental inference via GaBP which leads
to a message passing approach capable of planning in various
real-world scenarios.

In addition, we address hard constraints handling using GaBP.
Typically, constraints can be modeled in soft manner as proposed
in GPMP2 or the joint limits can be imposed by clamping such
that each optimization update follows the limits as proposed
in [17]. While recent work [18], [19] has targeted the con-
strained optimization solution of factor graphs, they still rely
on traditional constrained optimization approaches similar to
optimization-based planning algorithms [20]. In context of con-
straint satisfaction via message passing, Difference-map Belief
Propagation (DMPB) [21] has been proposed for low-density
parity-check codes in signal processing research based on DM
and divide-and-concur methodology [22]. In this letter, we apply
DM principles to propose bound projection to deal with joint-
limits in robot planning.

III. PRELIMINARIES AND BACKGROUND

Robot trajectory is represented as θ(t) : t→ RD, where D
is the dimensionality of the state and θ(t) is a continuous time
function that maps time t to robot joint states θ in configuration
space. Following Mukadam et al. [7], robot trajectory is sampled
from a continuous time GP,

θ(t) = [θ0, ..., θN ]T ∼ N (μ(t),K) , (1)

that is parameterized by N states for a set of times t =
t0, . . . , tN , where μ(t) is the mean vector and K(t, t′) is the
covariance function matrix. The robot workspace χ ⊂ RD is
divided into obstacle-space χobs ⊂ χ and free-space χfree ⊂ χ.
The robot planning problem is characterized as finding the robot
trajectory θ∗(t) ∈ χfree. The state constraints are represented as
θmin and θmax.

A. Trajectory Optimization as Probabilistic Inference

Formally, we are interested in finding the optimal state se-
quence θ∗0:N that maximizes the conditional posterior p(θ|e).
The prior on the trajectory is defined as p(θ) that incorporates
initial belief over θ. Whereas, l(θ; e) is the likelihood of states
θ with respect to conditional events e on the trajectory such
as collision avoidance and constraints. Given the prior and
likelihood, the optimal trajectory θ∗ is computed by obtaining
MAP estimation,

θ∗0:N = argmax
θ

p (θ|e)︸ ︷︷ ︸
p(θ)l(θ;e)

,

s.t. θ∗ ∈ χfree,

θ∗0 = θstart and θ∗N = θgoal,

θmin < θ∗ < θmax. (2)

The robot motion planning problem formulation in (2) consists
of two components, prior and likelihood. Adopting the same
methodology as in [7] to define the prior as a structured kernel
generated from LTV-SDE, the GP prior of θ results in

p (θ) ∝ exp

{
−1

2
‖θ − μ‖2K

}
, (3)
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where ‖θ − μ‖2K is the Mahalanobis distance. The kernel K
induces smoothness and it can also be used to put soft constraints
on start state θstart and goal state θgoal. The likelihood function
l(θ; e) which specifies the probability of avoiding obstacles is
defined as

l (θ; e) = exp

{
−1

2
‖h (θ)‖2Σobs

}
, (4)

where h(θ) represents the vector-valued obstacle cost, and Σobs

is a hyperparameter matrix.

B. Factor Graph Formulation

A factor graph G = (Θ,F , E) is used to model a belief over
continuous, multivariate random variables θ with respect to
conditional probability density functions (PDFs)

p (θ|e) ∝
M∏

m=1

fm (Θm) , (5)

where fm ∈ F are factors that are attached to the corresponding
variable nodes Θm ∈ Θ via the edges E of the factor graph. The
trajectory prior (3) is formulated as prior factors

p (θ) ∝ fp0 (θ0) f
p
N (θN )

N−1∏
i=0

fGP
i (θi,θi+1) , (6)

where fp0 (θ0) and fpN (θN ) act as soft constraint factors that
provide the functionality of θ∗0 = θstart and θ∗N = θgoal. The GP
prior factor fGP

i is defined as

fGP
i (θi,θi+1) = exp

{
−1

2
‖Φ(ti+1, ti)θi − θi+1

+μi,i+1‖2Qi,i+1

}
, (7)

where Φ(ti, ti+1) is a state transition matrix and Qi,i+1 repre-
sents power spectral density matrix (see [23] for details).

Similarly, the collision-free likelihood (4) is factorized via
unary factors f obs

i

l (θ; e) =

N−1∏
i=1

f obs
i (θi). (8)

Finding the most probable values for θ from a factor graph is,

θ∗ = argmax
θ

M∏
m=1

fm (Θm). (9)

This factor graph formulation as shown in Fig. 1 is a structured
representation of the planning problem, where the system state is
represented as number of state variables. An inference algorithm
on the factor graph is used to compute the posterior distribution
over all trajectories fulfilling the planning objectives imposed
through attached factors.

IV. GAUSSIAN BELIEF PROPAGATION FOR ROBOT PLANNING

In this section, we outline the equations for GaBP algorithm
to compute MAP in (9). We first present the theoretical for-
mulation of our GaBP-based batch planning algorithm that can

Fig. 1. A general factor graph architecture for robot motion planning problem
representation.

handle hard bounded-variable constraints. Then, iGaBP has been
proposed to generate trajectories for incremental planning and
re-planning scenarios.

A. GaBP as a Solution Method for Batch Planning

GaBP is a message passing framework [8] for computing
the marginals of a joint distribution via local communication
among nodes in a factor graph. The factor graph in (9) contains
non-linear factors restricting the direct applicability of GaBP,
which by design solves linearized factor graph. Therefore, we
outline an iterative strategy for solving linearized factor graph.
Following Bickson’s linear GaBP [15] and using similar nota-
tions, we start with the assumption that the planning factor graph
only contains unary and binary factors.

Assumption 1: A robot planning problem can be fully de-
scribed by a pair-wise factor graph G, which consists of two
kinds of factors. Unary factors (also called self-potentials), φi :
Θ→ R ∪ {∞} that are attached to corresponding variable θi,
and binary factors (also called edge potentials) ψij : Θ×Θ→
R ∪ {∞} connected to two consecutive variables θi, θj where
{ij} ∈ E .

Message passing equations for the pair-wise factor graph can
be divided into two types of messages. Messages passed from
variables to factor nodes, denoted asmθ �→f , and messages passed
form factor nodes to variable nodes, denoted asmf �→θ. Denoting
the adjacent nodes of a factor node asΘf and the adjacent nodes
of a variable node as Fθ, the messages from an arbitrary factor
fk are iteratively communicated as

mfk→θ (θi) =
∑

Θfk
\θi
fk (Θfk) +

∏
Θfk

\θi
mθ→fk (θj) , (10)

where\denotes the set-theoretic difference andθj is the variable
node adjacent toθi. In case of pair-wise factor graphsθj = θi±1.
The messages traversing from variable to factor node is

mθj→fk =
∏

b∈Fθj
\fk

mfb→θ (θj) . (11)

Given the messages from adjacent factor nodes, the marginal
belief of a variable node is approximated via

b (θi) =
∏

k∈Fθi

mfk→θ (θi) . (12)

Following [15], we use the canonical representation to derive
the equations for messages among nodes and marginal means.
As all the factors in the graph (9) have the quadratic energy
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Algorithm 1: GaBP for Batch Planning.

function represented in exponential form, edge potentials ψij

and self potentials φi can be written in canonical form as

ψij (θi,θj) = exp

{
−1

2
θi Λij θj

}
, (13)

φi (θi) = exp

{
−1

2
θi Λii θi + ηi θi

}
, (14)

where Λ is the data matrix also called precision matrix and η
is the observation matrix. Similarly, the alternate representation
of the factor graph is

f (θ) = exp

{
−1

2
θΛ θ + ηθ

}
, (15)

where mean μ and precision Λ are related by η = Λμ.
As the obstacle factor function h(θ) is non-linear, the energy

is not quadratic in θ, meaning the factor is not Gaussian dis-
tributed. To approximate the Gaussian form of the factor graph,
a first order Taylor series expansion is applied for non-linear
factors f(θ) to find its approximate values θ close to θ̄

f (θ) ≈ h
(
θ̄
)
+ J

(
θ − θ̄

)︸ ︷︷ ︸
δθ

, (16)

whereJ is the Jacobian which is a multi-variate partial derivative
∂h
∂θ |θ=θ̄

at the linearized state θ̄ with δθ
Δ
= (θ − θ̄) being the

state update vector. Then, the linear form in terms of information
and precision matrix is,

η = JΛ
[
Jθ̄ + μ− h

(
θ̄
)]
,

Λ = JΛ J. (17)

Finding the MAP estimation in the linearized graph Λδθ − η
translates to solving the vector-matrix linear equations [15] as,

δθ∗ = argmin
δθ

‖Λδθ − η‖ . (18)

Fig. 2. Updated graph with constraint factors.

The structure of the matrix Λ is dictated by the graph topology.
As per Bickson’s methodology [15], the messages among nodes
are proportional to normal distributions with precision as,

Λij = −Λ2
ijΣi/j ,

δθij = −ΣijΛijδθi/j . (19)

The (19) represents the messages propagated in the GaBP al-
gorithm. The marginals are computed as follows (cf. [15], Sec.
2.3),

δθ∗i = Σi/j

⎛
⎜⎝Λiiδθii︸ ︷︷ ︸

φi(θi)

+
∑

k∈Θfk

Λkiδθki︸ ︷︷ ︸
mfk→θi

⎞
⎟⎠ , ∀i . (20)

Similarly, the precision can be calculated as

Λi = Λii +
∑

k∈N(i)

Λki , ∀i . (21)

The solution for the non-linear factor graph is then updated
according to the linear graph solution δθ as

θ∗ ← θ + δθ∗ (22)

In order to impose hard constraints to the factor graph so-
lution in (22), we introduce a constraint graph as shown in
Fig. 2. We leverage the constraint satisfaction methodology from
DM, which is an approach based on divide-and-concur pro-
jections [22] for constraint satisfaction that has been extended
to message passing framework DMPB [21]. In this approach,
for each constraint imposed on a variable, a replica of that
variable is created in an updated constraint factor graph [21]
and then DM-based divide-and-concur approach is used for
constraint satisfaction. Instead of divide-and-concur projection
as in [21], we propose the bound projection denoted by PB .
The messages from constraint factor nodes to variable nodes are
updated according to

mfc �→θ = θ + [PB (θ)− (θ)] , ∀i , (23)

where, the PB represents the bound projection and defined as,

PB (θ) =

{
θ if θmin ≤ θ ≤ θmax

θmin if θ < θmin

θmax if θ > θmax

. (24)

Algorithm 1 entails the details of solving batch planning
problems including constraint handling via bound projection.
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Fig. 3. Proposed sub-graph Gsub
i structure for incremental inference. The

figure represents the inclusion of the factors required to update the solution
of a single variable θi.

Note that the constraint factors are not Gaussian and these are
not included in the message passing iterations of belief update.
The major benefit of the proposed approach is that the DM
methodology step of the GaBP algorithm is only activated in
case of constraint violation making the overall approach more
efficient. The algorithm proposed in this section solves the com-
plete factor graph, however, an incremental strategy can also be
devised (next Sec.) that can solve the factor graph incrementally.

B. Incremental Inference Via GaBP

In this section, we exploit the local convergence characteristic
of GaBP for finding an incremental solution of the factor graph.
Due to the factorized structure of the planning problem, global
inference can be achieved by individually solving many interde-
pendent local sub-problems [16]. We propose the formation of
local sub-graphs and solving them incrementally for individual
variable nodes that leads to global MAP estimation of the entire
factor graph. The sub-graph for θi is,

Gsub
i =

i+1∏
m=i

fGP
m (θm−1,θm)

i+1∏
m=i−1

f obs
m (θm) . (25)

Fig. 3 shows the proposed sub-graph structure for finding local
MAP estimation for θi. In order to obtain θ∗i , the variable nodes
Θsub = {θi−1,θi,θi+1} are initialized according to (3). Al-
though the value of θi+1 is also partially optimized, we consider
its value to be initialized from prior p(θ) as it helps in inducing
smoothness as per GP prior. The solution for the sub-graph is
obtained from GaBP as outlined in Algorithm 1. However, it is an
independent node optimization. Solving individual sub-graphs
incrementally leads to full graph optimization resulting in θ∗

(for detailed convergence analysis, cf. [16], Appendix A).
For incremental planning, the key idea is to optimize only

the next variable node instead of the entire factor graph. As
a result, only one graph node θi is optimized at a time-step
and the full optimized trajectory θ∗ is generated incrementally.
Note that the proposed incremental inference approach iGaBP
is different from GaBP; the batch optimization of the complete
graph is replaced by an iterative local optimization of each node
that has the capability to cater moving obstacles in a dynamic
environment. iGaBP can also be used for re-planning scenario.

A naive way to solve the re-planning problem in case of partial
modifications in planning conditions is to solve the entire factor
graph. However, it is an in-efficient approach for real-world
robotic applications. iGaBP offers the functionality to generate
trajectory conveniently by simply updating the graph settings to
changes and solving only the local sub-graph.

V. IMPLEMENTATION DETAILS

The GaBP-based message passing framework has been im-
plemented on top of Georgia Tech Smoothing and Mapping
(GTSAM) library similar to GPMP2. The implemented algo-
rithm has two layers: the top layer is programmed in MATLAB
and incorporates robot kinematic model, obstacles and trajectory
characteristics, the lower-level GaBP solver is implemented in
C++, augmenting the GTSAM library.

A. Prior and Likelihood

We use a constant-velocity prior similar to [7] with a Marko-
vian state consisting of position and velocity in configuration
space. The trajectory is generated from LTV-SDE [23]. Similar
to recent state-of-the-art motion planning algorithms [2], [7],
the robot collision body is represented by a set of spheres. The
obstacle cost function is obtained by computing hinge loss

c(d) =

{−d+ ε if d ≤ ε
0 if d > ε

, (26)

for the spheres. d represents the signed distance from the sphere
to the closest obstacle surface in the workspace, and ε is the
safety distance. For likelihood in (4), the Σobs is defined as

Σobs = σ2
obsI. (27)

The trajectory prior is initialized as a constant velocity straight
line with N = 11 states from the start state to the goal state.
The term σobs puts weight on observing the obstacles. We set
σobs = 0.0015 and ε = 0.2 for our manipulator planning tasks.

B. Motion Constraints

Motion constraint handling is very crucial in real-world mo-
tion planning tasks. There are two kinds of constraints that
we encounter in real-world implementation of motion planning
algorithms. We handle the equality constraints in a soft manner
similar to [7] by imposing them directly into the trajectory prior.
To prevent joint limit violations, we use the GaBP as outlined
in Section IV-A.

VI. EVALUATION

We benchmark the proposed algorithms on an exemplary mo-
tion planning task: finding collision-free trajectories in a simu-
lated WEEE disassembly cell. WEEE disassembly is a process in
the recycling procedure in which the components of the WEEE
devices such as PC-towers and Microwave ovens are dismantled.
For that purpose, the robot is mounted with end-effector tools to
perform the disassembly of the electronic devices. A COMAU
6-DOF racer robot arm has been used for benchmarking the
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TABLE I
RESULTS OBTAINED FOR 24 BATCH PLANNING PROBLEMS

Fig. 4. Trajectory (in red) generated by GaBP and iGaBP for different planning scenarios. (a) Successful batch planning trajectory via GaBP. (b) Batch planning
result in case when goal pose is inside the PC-Tower. (c) Incremental planning result when PC-Tower is placed on the table during robot motion at t = 4 time-step.
(d) Trajectory re-planning via iGaBP in case of a changed goal pose during motion.

TABLE II
RESULTS OF 12 INCREMENTAL PLANNING PROBLEMS

TABLE III
RESULTS OF 12 RE-PLANNING PROBLEMS

proposed algorithms. All the benchmarks have been run on an
x86_64 of 12th Gen Intel 24-Core i9-12900 K system.

Comparing different motion planning algorithms is a diffi-
cult task mainly due to the inconsistent mechanisms used for
planning problem formulations, solution methodologies, and
planning environments. In order to keep the comparison fair, we
select the planning algorithms that use similar methodologies
as the proposed approach and benchmark on two fundamental
criteria: success rate and computation time. Comparative anal-
ysis of the proposed algorithms has been performed against
GPMP2, GPMP2-inter and TrajOpt [24]. Planning conditions
and parameter values have been kept identical for all cases. In
the case of GPMP2-inter, GP interpolation has been performed
by adding factors and the resulting output of the algorithm is
an interpolated trajectory with the total statesN = 51. Whereas
for GaBP, trajectory interpolation is not part of the algorithm

Fig. 5. Overall planner implementation architecture for WEEE Disassembly
Cell.

and it has been performed as a separate step before trajectory
execution for real-world experiments.

A. Batch Planning Benchmark

We evaluated the proposed algorithm for 24 unique batch
planning problems for three different scenarios of PC-Tower
disassembly that include, the trajectory going around it and
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Fig. 6. Robot configurations during pick and place task for PC-Tower. (a)–(e) Robot attempting to pick the PC fan inside the PC-Tower, whereas (f)–(j) show
the dropping of PC fan to designated goal pose.

TABLE IV
RESULTS OF 24 BATCH PLANNING PROBLEMS FOR WEEE DISASSEMBLY

also going in and outside of the PC-tower. For each scenario,
different start and end configurations have been tested. In order
to make the planning problem more challenging, the start and
end configurations have been kept very close to the body of
PC-tower.

The results for batch planning are summarized in Table I.
Overall, GPMP2 offers fast solutions but it comes at the behest
of lower success rate. GPMP2-inter takes more time to converge
but the success rate is better than GPMP2 as the obstacle factors
have also been attached to the interpolated states. As the num-
ber of states considered increases, TrajOpt [24] demonstrates
improved performance, but this improvement comes at the cost
of increased computation time. GaBP offers better collision
avoidance capabilities due to the local message communication
among graph nodes. The role of unary obstacle factors and
their associated cost is more critical than the binary factors,
making GaBP more sensitive to obstacles. For a larger number
of states, the scalability of GaBP is constrained by the increased
communication among graph nodes, leading to longer compu-
tation times. Nevertheless, this limitation can be overcome by
implementing parallel processing of messages.

B. Incremental Planning Benchmark

Fig. 4(c) shows the resulting trajectory within a dynamic
environment, in which the PC-Tower is placed on the table at
time-step t = 4. The average time per iteration from Table II
indicates the computing efficiency of the proposed approach. We

observed that the trajectory smoothness does get affected in case
of individual node optimization via iGaBP. However, this is not a
major concern as, even in real-world implementation, trajectory
interpolation takes place after the planning phase which handles
the overall smoothness.

C. Re-Planning Benchmark

We benchmark the re-planning results against Incremental
Gaussian Process Motion Planning (iGPMP2). Fig. 4(d) shows
the trajectory produced in the case when goal pose is changed
during motion. The resulting re-planned trajectory is the updated
trajectory given the new goal pose. iGaBP computes only the
portion of the factor graph in which the planning conditions
have been changed, making the re-planning faster as presented
in Table III.

D. Performance Evaluation for WEEE Disassembly

The performance of the proposed algorithm has also been
tested for WEEE disassembly in a real-world pilot setup. The
software stack for WEEE disassembly motion planner is shown
in Fig. 5. The robot is mounted on one edge of the disassembly
table. We implemented the planner as a ROS Action Server.
The client (a high-level task planner) can send the request to
the Planner action server to plan and execute the trajectory.
The trajectory is interpolated via piece-wise cubic B-splines
before executing it on the robot. Fig. 6 shows the robot trajectory
produced for the pick-and-place task of PC-Tower disassembly
procedure.

The batch planning results in Table IV for the WEEE disas-
sembly cell indicate the necessity of handling hard constraints
in real-world implementations as the 6-DoF COMAU robot
in combination with the end-effector toolchain is prone to
run into joint limits. In GaBP, no joint limit violations were
observed, while GPMP2 had 4 out of 24 planning tests with
violated joint limits. The activation of constraint violation check
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in Algorithm 1 causes the computation time for GaBP to in-
crease, as more iterations are required for convergence. Putting
the constraint factors on interpolated states can further improve
the performance of GPMP2-inter. However, it is not expected to
perform better than GPMP2.

VII. LIMITATIONS AND FUTURE WORK

The proposed algorithm is limited in a sense that it can only
handle hard inequality constraints. However, we did not find it
limiting in our real-world experiments as joint limits are more
crucial that are tackled via proposed GaBP algorithm. Further-
more, The graph structure matrix Λ ∈ Rm × n is not square
(m �= n) in (17). We transform the matrices toΛT

n×m Λm×n �→
Λn×n and ΛT

n×m ηm×1 �→ ηn×1 which needs to be computed
prior to running messages which add extra computational
load. The methodology proposed in (cf. [15], Sec. 7.1) can
be adopted to overcome this in future work. Also, incremental
planning and re-planning have been only tested in simulation for
the WEEE disassembly cell due to the COMAU robot missing
a real-time joint control interface for incremental execution.

For future work, we plan to investigate the distributed prop-
erties of GaBP to address its scalability limitations. The local
sub-graph formulation and solution proposed in Section IV-B
allows for parallel processing and different messaging schedules
that can further increase the computing efficiency, possibly
bringing it at par with GPMP2. Furthermore, GaBP can run
continually in the background and compute the inference as
new data arrives. We plan to explore further the similar kind
of capabilities e.g. just-in-time computation of GaBP for robot
planning.

VIII. CONCLUSION

The problem targeted by this work is a standard kinematic
motion planning for a robot manipulator in the presence of
obstacles and joint limit constraints. We argue the case of
GaBP as a solution method for MAP estimation of proba-
bilistic inference-based robot motion planning. We highlight
that the GaBP framework offers the utility to cater batch plan-
ning, incremental planning and re-planning scenarios. Further,
our investigation emphasizes the necessity of handling hard
constraints. It has been observed that handling the joint limit
constraints in soft manner reduces the success rate of planning
algorithms in real-world robot settings. The investigation and
experiments performed in this work also indicated that the GaBP
has the right structural and computational properties to act as
a generic framework to produce motion trajectories in various
real-world planning scenarios. Its ability to handle hard con-
straints further strengthens its suitability for such applications.
For future work, an exciting research direction is the examination
of distributive properties of GaBP that could further improve its
computing efficiency.
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