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CollisionGP: Gaussian Process-Based Collision
Checking for Robot Motion Planning

Javier Muiioz ¥, Peter Lehner”, Luis E. Moreno

Abstract—Collision checking is the primitive operation of motion
planning that consumes most time. Machine learning algorithms
have proven to accelerate collision checking. We propose Colli-
sionGP, a Gaussian process-based algorithm for modeling a robot’s
configuration space and query collision checks. CollisionGP intro-
duces a Polya-Gamma auxiliary variable for each data point in the
training set to allow classification inference to be done exactly with a
closed-form expression. Gaussian processes provide a distribution
as the output, obtaining a mean and variance for the collision check.
The obtained variance is processed to reduce false negatives (FN).
We demonstrate that CollisionGP can use GPU acceleration to
process collision checks for thousands of configurations much faster
than traditional collision detection libraries. Furthermore, we ob-
tain better accuracy, TPR and TNR results than state-of-the-art
learning-based algorithms using less support points, thus making
our proposed method more sparse.

Index Terms—Collision avoidance, Gaussian processes, machine
learning, motion planning.

I. INTRODUCTION

ATH planning is the task of creating a path to move a robot

from a start configuration to a target configuration while
avoiding self-collisions and collisions with the environment.
Most path planning solutions are calculated in the configuration
space (C-space) of the robot rather than in the Cartesian space
of the environment. In the C-space, each dimension represents
a degree of freedom (DoF) of the robot [1]. As the number of
DoFs of the robot increases, the dimensionality of the C-space
grows, thus increasing the complexity of the path planning
problem. To plan collision-free paths, path planning algorithms
rely on collision checkers. The algorithms determine if a specific
configuration belongs to the free configuration space C't,.c. or to
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the configuration space blocked by obstacles C5. The queries
to the collision checker are the most computationally expensive
primitive operation of path planning algorithms, accounting for
about 90% of the computation time [2].

The configuration space can be modeled by standard machine
learning techniques, allowing the model to receive queries from
the path planning algorithm. However, such a model is rendered
invalid when any aspect of the environment changes. Compu-
tationally expensive models with millions of weights, such as
Artificial Neural Networks (ANNs), cannot be updated by an
algorithm fast enough to be useful in changing environments. In
this letter, we introduce a novel approach to collision detection
using Gaussian processes (GPs), aimed to building a lighter and
computationally less expensive model that reduces the compu-
tation time spent on collision checking during path planning
applications.

We propose CollisionGP, a lightweight GP model based on
Polya-Gamma auxiliary variables for binary classification [3].
This is the first application of GPs to the problem of checking
collisions in the configuration space of a robot, to the best of
our knowledge. Other methods, however, use GPs for motion
planning [4], [5], [6]. The main advantages of GPs is that they
are easy and fast to train since their number of hyperparameters
is significantly smaller than other methods such as ANNSs, and
they provide a full probabilistic distribution as the output of
the model. This allows us not only to determine if a query
point belongs to Cyyee or Cops, but to measure the uncertainty
of the model about that prediction. We use this uncertainty
measure to weight the decision boundary towards eliminating
false negatives, which would lead to a collision of the robot
with an obstacle or with itself. This is extremely important in
critical applications such as chemical waste handling or surgical
robotics.

We choose the rational quadratic kernel with automatic rele-
vance determination (ARD) as the GP kernel, which improves
the model accuracy by ruling out the DoFs that do not directly
influence the collisions. To obtain a lightweight model, we use
a set of inducing points to perform the predictions on the path
planning algorithm queries. We demonstrate that few inducing
points are needed to obtain trustable and accurate C-space maps.
Moreover, we show that an algorithm can update the model fast
enough to adapt to changing environments while keeping the
number of inducing points constant.

II. RELATED WORK

Machine learning techniques have been previously employed
to model the C-space of arobot and accelerate collision checking
in path planning.
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Pan et al. [7] use support vector machines (SVMs) to generate
an accurate decision boundary between C'y;.c. and Cop for two
objects, and present an active learning strategy to improve this
boundary iteratively. In our case, the computations of Colli-
sionGP can be processed online and the algorihtm does not need
a new model for every pair of objects.

Arslan et al. [8] use a Bayesian classifier to compute two ap-
proximate probability density functions to determine C',... and
Cops based on the available data, and then use the Bayesian rule
to predict if a query point belongs to C'¢y.ce or Cops. CollisionGP
has the advantage over naive Bayes classifiers of being able to
provide a predictive variance for the model outputs.

Danielczuk et al. [9] use a neural network that learns collisions
from scenes, represented as point clouds, and is able to predict
collisions for 6 DoF object poses within the scene. However, they
need 1 million scene/object point cloud pairs and more than 2 bil-
lion collision queries to train the network and they need a camera
with depth perception to perform collision checks. They show
the applicability of the method with a robot performing tabletop
rearrangement tasks. Kew et al. [10] present ClearanceNet and
CN-RRT, a neural network collision checking heuristic and a
planning algorithm, respectively. CN-RRT uses the capability of
ClearanceNet to process batches of thousands of collision checks
to efficiently and quickly plan paths. Qureshi et al. [11] use
Motion Planning Networks, a neural network that encodes the
workspace given a point cloud and computes collision free paths
for the robot. The training is done via expert demonstrations,
using 4000 demonstrations for 100 different workspaces. The
neural network is able to generate multiple collision free paths
for a single combination of start and goal configurations in a
finite time due to its stochastic behavior. Ichter et al. [12] use
learned critical probabilistic roadmaps to plan robot motions.
For this purpose, they train a neural network with previously
created probabilistic roadmaps with critical zones calculated via
betweenness centrality [13]. The main advantage of CollisionGP
over neural network approaches is that our method relies on
a limited set of data points and can be updated with dynamic
obstacles, while neural networks require tens of thousands of
data points and are not as flexible. Also, CollisionGP does not
require a lot of data and parameter tuning for training, not having
to choose the architecture or needing to optimize the hundreds
to millions weights of the network. Moreover, CollisionGP can
provide full probabilistic distributions as model predictions.

Pan et al. [14] store prior query samples and use k-NN (k-
nearest neighbor) search to find prior query samples that are
close to the new query configuration. Then, they estimate the
probability that the new query configuration belongs to Ctycc
or Cyps based on the found query samples. CollisionGP has the
advantage of being scalable, since all collision checks are not
stored in hash tables that grow larger with the dataset size, and
it is also able to provide predictive variances.

Han et al. [15] train a different classifier for each DoF of the
robot, obtaining better results than SVMs and KNNs trained
on all DoFs at the same time. CollisionGP improves on this ap-
proach by using automatic relevance determination to determine
the relevance of each dimension, instead of user inputs, and can
predict variances for the model outputs.

Das et al. [16] propose Fastron, a learning-based algorithm
that uses a support vector machine to classify points belonging to
Cree and Cgps. They demonstrate that they can train the model
and query collision checks an order of magnitude faster than
state-of-the-art collision libraries, making it capable of adapting
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to dynamic environments. They demonstrate the applicability
to robots by performing pick and place and surgery tasks.
CollisionGP improves on this approach by using automatic
relevance determination for the model inputs, which makes it
able to maintain its accuracy with any robot, and by being able
to provide uncertainty values for the model outputs.

III. METHODOLOGY

This section describes the components of the CollisionGP
algorithm. We begin by describing the binary classification
problem applied to GPs. Then, we provide an overview of the
kernel selection for the task. Next, we go into the details of
generating the dataset and creating and training the GP model. In
the next subsection we show how the proposed algorithm takes
the generated output mean and variance to make predictions
on the query points. Then, we highlight the capability of the
model to take advantage of CUDA and use batches of data
as inputs instead of single query points, which can parallelize
the computations and provide faster predictions as evaluated
in a comparison with the traditional FCL method. Finally, we
showecase the ability of the model to quickly adapt to changes in
the environment while keeping the same model size by sampling
around the current inducing points locations.

A. Polya-Gamma Auxiliary Variables: Binary Classification

Gaussian processes in the context of classification do not sup-
port exact inference with a closed form expression. One possible
solution is to introduce additional latent variables that restore
conjugacy. We introduce a Polya-Gamma auxiliary variable for
each data point in the training dataset. The Polya-Gamma [3]
distribution (PG) is a univariate distribution with support on the
positive real line. In our context PG is interesting because if w;
is distributed according to PG(1, 0) then the logistic likelihood
o(-) for data point (x;, y;) can be represented as:

1
= 2Bu~paao [oxp (3uifi = 5 17)]

o(yifi) =

where y; € {—1,1} is the binary label of data point 4, and f;
is the Gaussian Process prior evaluated at input x;, in this case
(90,1, - - -, q;] where g; is the position of joint j of the robot. The
crucial point is that f; appears quadratically in the exponential
within the expectation. In other words, conditioned on w;, we
can integrate out f; exactly, just as if we were doing regression
with a Gaussian likelihood.

Wenzel et al. [17] demonstrate that this binary classifica-
tion method is up to two orders of magnitude faster than the
state-of-the-art, while being competitive in terms of prediction
performance, and is capable of working with datasets with tens
of millions of datapoints.

Inference in exact GP models typically has a time complexity
of O(n?), with n the number of data points in the model, and
O(n) and O(n?) for computing the mean and variance respec-
tively. This makes exact GP models unfeasible when dealing
with large datasets, although the development of libraries like
GPyTorch [18] allow using GPU acceleration, which makes
them faster to train and make predictions. Hensman et al. [19]
propose an approach to reduce the complexity to O(m?), where
m is the number of inducing points.
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To train the GP model, we need to optimize both the kernel
hyperparameters and the inducing points parameters, i.e. their
locations, the variational covariance matrix, and a variational
mean vector that controls the inducing points. These last two
parameters will be optimized using natural gradient updates,
since they are invariant to reparametrization of the variational
family and provide second-order optimization updates. The
kernel hyperparameters and the inducing points locations are
optimized using the Adam optimizer. The loss function used for
the optimizer is the variational evidence lower bound (ELBO),
which is commonly used to optimize variational GPs. Equation
(1) shows the variational ELBO loss function [19]:

N
Leso ~ Y Eq(sy logplyi] fi)] — KL[g(w)[[p(w)] (1)

i=1

where N is the number of datapoints, g(u) is the variational dis-
tribution for the inducing function values, ¢( f;) is the marginal of
p(fin, x;)q(u), KL is the Kullback-Leibler divergence [20], and
p(u) is the prior distribution for the inducing function values.

B. Kernel Selection

The kernel function k(x1,x2) compares a configuration x
to x2 by mapping to some feature space and taking an inner
product. This function should provide a large value for similar
configurations (meaning they are strongly correlated) and a
small value for dissimilar configurations. The kernel selected
for this application is the RQ (rational quadratic) kernel, which
can be seen as a scale mixture (an infinite sum) of RBF (radial
basis function) kernels with different characteristic lengthscales.
The RQ kernel is given by:

—
kro(x1,x2) = (1 + i@h —x2) O (x1 — X2)> (2)
where © is a lengthscale parameter, and « is the rational
quadratic relative weighting parameter. In this particular case,
we train a different lengthscale for each degree of freedom of
the robotic arm, since the movement in some of these degrees
of freedom clearly has more influence in collisions than others.
A typical choice for GP models is to add a vector of automatic
relevance determination (ARD) [21] hyperparameters ©,

Fraba.x2)= (1 b o (1 — xa) Tdiag(©) (1 X2)>a

2a
3
where diag(©) is a diagonal matrix with d entries © along
the diagonal, with d the number of dimensions of the input
data. Intuitively, if a particular ©; has a large value, the kernel
becomes independent of the i-th input, effectively removing it
automatically. Hence, irrelevant dimensions are discarded.

C. Dataset Generation and Model Creation

To create the dataset, a uniformly random set of N unlabeled
configurations X are generated, and the true labels Y are pro-
vided by the FCL collision detection library [22]. To deal with
the joint limits of the robot, we map the bounded d-dimensional
joint space to a d-dimensional input space [—1, 1]%. To map the
joint values q;o;n¢ to the input space g;nput, We use:

Qinput = (2Qjoint — qQu — QI) @ (Qu - ql) (4)
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Fig. 1. Mean and variance obtained when performing collision checks on all
available points for the first two DoF of the KUKA iiwa robot. (a) Mean values
obtained when making predictions for all points. (b) Variance values obtained
when making predictions for all points.

where ¢; and g,, are vectors containing the lower and upper joint
limits, and @ performs element-wise division.

Once the dataset is ready, the PG likelihood and the GP model
are initialized and their hyperparameters tuned as explained in
Section III-A. Then, collision checks are performed with the
updated model to evaluate its accuracy.

D. Making Predictions

To make predictions with the GP model for a test point x,,
we use:

p(f. |y) = / p(f. | Wa(uydu = N(f* | e 0?) )

where the prediction mean is y, = K., K} p and the vari-
ance 02 = K., + K KL (O KL — 1) Ko U is the set
of inducing points of size m, the matrix K,,,, denotes the kernel
matrix between the test point and u, and K. the kernel value
of the test point. Fig. 1 provides an example of collision checks
for the first two DoF of a KUKA iiwa manipulator, using 128
inducing points. The obtained mean values are in the interval
[0,1], since they are normalized with a Bernoulli distribution.
The points predicted as free points in space have mean values
closer to zero, while the points predicted as obstacles have mean
values closer to one. The variance reflects the obstacle borders,
as the variance values are close to zero in the free space and
inside of the obstacle, but reach their maximum values in the
borders between C'fy.ce and Cops.

When the algorithm decides based solely on the mean to
determine if a point belongs to C'fy.c. or Cops, taking all points
with a mean equal or greater than 0.5 as obstacles and the points
with a mean lower than 0.5 as free space, we risk obtaining false
negatives, i.e. points classified as free space when they actually
belong to an obstacle, which would lead to collisions when
executing a motion with the robot. To prevent false negatives,
we take advantage of the fact that GPs provide the variance o
in addition to the mean p, and propose a new decision value to
classify the points, v, as

y=p+Bx*o (6)

where (3 is the variable than modifies the influence of the variance
o in the decision.
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changing arm

/ configuration

changing obstacle
positions
fixed base pose

Fig. 2. RViz model of the robot used for the experiments. It consists of a
KUKA KMR mobile base with a KUKA iiwa robot arm. Red boxes represent
obstacles in the environment.

E. Updating Model in Dynamic Environments

To avoid retraining the whole model when the environment
changes, the algorithm updates the model based on the induc-
ing points locations. The already placed inducing points and
a determined number of points A sampled uniformly around
the workspace are checked and labeled with the FCL method.
The algorithm updates the model with the information from the
new dataset. This uniform distribution of A over the workspace
allows to scan the environment for possible new obstacles and
to grasp a general vision of all possible obstacle modifications
or displacements.

As the inducing points are already well placed in the training
phase, it would be a waste to delete them completely for updating
purposes, since we assume slight changes in the environment. It
would be a tradeoff between accuracy and updating time, as the
updating time in case of deleting all inducing points would be
the same as the initial training time.

IV. EXPERIMENTS

In this section we evaluate CollisionGP against Fastron [16], a
state-of-the-art machine learning method for collision checking,
for 2, 4 and 7 actuated DoFs of a 7 DoF robot in 15 different
environments with 4 obstacles. An example of test environment
is shown in Fig. 2. We compare the number of inducing points,
query times, training times and updating times for both static and
dynamic environments with a dataset of N = 10000 training
configurations and A = 1000. The Fastron and CollisionGP
CPU tests run on an Intel Xeon E5-1620 v3 @3.5 GHz processor,
and the CollisionGP GPU tests run on an Nvidia RTX 3060
graphics card.

A. Effect of ARD on the Kernel Lenghtscales

To study the effect of the application of ARD to this particular
robot, we observe the lenghtscale values of the RQ kernel for all
DoFs of the robot. Table I shows that the first two DoFs have the
highest influence in the collisions, while the DoFs at the end of
the robot have lower influence. A lower lengthscale translates
into a higher significance in the GP model. The seventh DoF of
the robot is the rotation of the end effector, and since there is no
tool attached, this joint has no influence on the collisions.
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TABLE I
LENGTHSCALE OBTAINED FOR EACH DIMENSION FOR EACH ROBOT DOF

Lengthscale of DoF

1 2 3 7 5 6 7
2 038 044 - - - - -
3023 030 1576 - . . .
4 030 041 089 095 - - -

No.DoF s 58 038 067 089 643 - .
6 026 035 065 081 525 526 -
7026 035 060 085 766 755 7.61

B. Selection of B

To select 3 for this particular case, we evaluate the two, four
and seven DoF models for different values § to see how the
accuracy, TPR (True Positive Rate) and TNR (True Negative
Rate) evolve. Fig. 3 shows the evolution of the TPR and TNR
as [ rises. Note that for values of 5 > 0.5 the TPR is above
0.95 while the TNR holds at above 0.85, effectively reducing
the number false negatives to an acceptable threshold. In the
following experiments we select 8 = 0.5 for all DoFs.

C. Batch Computations

PyTorch allows to process the data in batches, which makes
predictions faster since the software parallelizes the necessary
calculations. Fig. 4 shows the necessary time to compute a
certain number of collision checks at once for the FCL method
and for CollisionGP using the CPU and the GPU with CUDA.

Fig. 4 shows the mean and standard deviation of the time
needed to compute collisions for the GP models based on the
number of configurations and inducing points. The CPU imple-
mentation shows that the prediction times grow exponentially
as the number of configurations increase, while for the GPU
implementation they increase linearly. Note that the GPU imple-
mentation is the fastest and most efficient method, and that the
computation times for CollisionGP exhibit a narrow confidence
interval, while the FCL method has a wider confidence interval.

D. Selecting the Number of Inducing Points

To select the number of inducing points for each DoF case,
we train the models for different sets of inducing points to
evaluate the model performance as the number of inducing
points increases. Fig. 5 shows the accuracy of the models when
actuating two, four and seven DoFs of the robot depending on
the number of inducing points selected and using 5 = 0.5. The
accuracy gradually increases as the number of inducing points
increases until the value reaches a limit, which is the maximum
possible accuracy that can be achieved with CollisionGP for the
selected f3.

To illustrate the performance of both Fastron and CollisionGP
in the C-space, we provide an example with the first two DoFs of
the robot manipulator, since a visualization in two dimensions
allows for a qualitative comparison. Fig. 6 shows the obtained
C-space for Fastron and CollisionGP, and the mean and variance
maps obtained for the CollisionGP model with 128 inducing
points when actuating the first two DoFs of the robot. The C-
spaces obtained with both CollisionGP and Fastron are very sim-
ilar to the ground truth, although CollisionGP uses less inducing
points and also provides a measure of uncertainty, which results
in the highlighting of obstacle borders. As most manipulators
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TPR and TNR v TPR and TNR v TPR and TNR v
1.00 and sk 1.00 and sk 1.00 and sk
0.95 0.95 0.95
0.90 0.90 0.90
0.85 0.85 0.85
0.80 0.80 0.80
— TPR — TPR — TPR
0.751 — TNR 0.751 — TNR 0.751 — TNR
—— Accuracy —— Accuracy —— Accuracy
0.70 T T T 0.70 T T T 0.70 T T T
0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0
B B B
(a) Two DoF (b) Four DoF. (c) Seven DoF.
Fig. 3. TPR and TNR of CollisionGP for values of 3 for the seven DoF robot in five different scenarios with four static obstacles.
600 Prediction time (ms) vs Number of configurations 12lg?d*ediction time (ms) vs Number of configurations CPU ng'ediction time (ms) vs Number of configurations GPU
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% 200 400 600 800 1000 % 2000 4000 6000 8000 10000 % 2000 2000 6000 8000 10000
Number of configurations Number of configurations Number of configurations
(a) FCL (b) CPU (c) GPU.
Fig. 4. Prediction time vs number of configurations for different numbers of inducing points for the seven DoF case. The step increases and the spikes in the

GPU implementation could be related to the VRAM allocation of the GPU managed by the CUDA implementation, as they are produced in the same number of

configurations for all inducing points.

100 Accuracy vs Number of inducing points

100

Accuracy vs Number of inducing points

100 Accuracy vs Number of inducing points

64 128 256 512
Number of inducing points

1024

(a) Two DoF

Fig. 5.
static obstacles.

2048

16 32

(b) Four DoF

64

128
Number of inducing points

today contain revolute joints, the C-space is smooth even for
non-smooth obstacles and can be approximated well by the GP.

E. Accuracy, TPR and TNR

Fig. 7 shows accuracy, TPR and TNR comparisons between
CollisionGP and Fastron in the fifteen simulated environments.
Three of these environments are shown in Fig. 6. Both methods
achieve similar results in the two DoF case, but CollisionGP

16 32 64 128 256 512

Number of inducing points

256 512 1024 2048 1024 2048

(c) Seven DoF

Accuracy of the CollisionGP model for 8 = 0.5 with different numbers of inducing points for the seven DoF robot in fifteen different scenarios with four

mantains the accuracy, TPR and TNR for the four and seven
DoF cases, while the values for Fastron decrease as the number
of DoFs increases.

Table II shows query time, training time and number of
inducing points comparisons for CollisionGP and Fastron. Col-
lisionGP is the sparsest method and has the fastest query times
of both methods for all DoFs, while Fastron achieves the fastest
training times. The GPU implementation is significantly faster
than the CPU implementation. Query times for CollisionGP are
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(d) GP mean (e) GP variance

Fig. 6. Example environments and C-space approximations using Fastron and the proposed GP classification method. Column (d) shows the inducing points of
the GP.
1.0 1.0 1.0
0.8 0.8 0.8
0.6 0.6 0.6
0.4 0.4 0.4
021 mm Gp 021 mm GP 021 mm GP
EEE Fastron HEE Fastron EEE Fastron
0.0 0 0.0
Accuracy TPR TNR Accuracy TPR TNR Accuracy TPR TNR
(a) Two DoF (b) Four DoF. (c) Seven DoF.
Fig. 7. Accuracy, TPR and TNR for Fastron and CollisionGP in fifteen different scenarios with four static obstacles.

considered when predicting 10000 configurations. Notice that
Fastron is compiled in C++, while CollisionGP is executed in
Python, which can affect the query and training times. We expect
CollisionGP to be even faster, when programmed and compiled
in C++ as well. In terms of computational cost, both methods
have a complexity of O(m?). We evaluated the signifance of the
results with the two-sample T-test for the seven DoF comparative
measures. The resulting p-values are all below 1077, proving
high statistical significance.

F. Accuracy, TPR and TNR in Dynamic Environments

Fig. 8 shows accuracy, TPR and TNR comparisons between
CollisionGP and Fastron after updating the models in dynamic

environments, where all boxes are moved up to 10 cm away from
their initial positions after the initial training has finished and the
first static GP model is created. We assume the obstacles stay
in a fixed position while resampling the environment. As in the
static environment test, CollisionGP achieves more consistent
and higher scores than Fastron, for every evaluated number of
DoFs. The scores for the seven DoF case are significantly lower
when evaluating Fastron.

Table III shows query time, training time and number of
inducing points comparisons for CollisionGP and Fastron after
updating the models in a dynamic environment. Since we sample
m + A new configurations, the sampling times for Fastron are
higher since m is higher. However, the model update is faster
for the Fastron method. When taking into account the sampling
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1.0 1.0 1.0
0.81 0.81 0.8
0.64 0.64 0.6
0.44 0.41 0.4
021 mm GP 021 mm GP 021 mm P
N Fastron N Fastron B Fastron
0.0 0.0 0.0
Accuracy TPR TNR Accuracy TPR Accuracy TPR TNR
(a) Two DoF (b) Four DoF. (c) Seven DoF.
Fig. 8. Accuracy, TPR and TNR for Fastron and CollisionGP in fifteen different scenarios with four dynamic obstacles.

TABLE I
PERFORMANCE OF COLLISIONGP AND FASTRON IN FIFTEEN DIFFERENT
SCENARIOS WITH FOUR STATIC OBSTACLES, WITH GROUND TRUTH
COLLISION DETECTION COMPUTED USING FCL

GP (GPU) GP (CPU) Fastron
Two DoF
m 128 128 298.64 + 49.6
Query time (us) 2.150 +£0.76 61.89 +1.01 76.62 £ 3.59
Training time (s) 0.446 + 0.07 0.496 £+ 0.04 0.140 + 0.07
Accuracy 91.59 4+ 3.57 91.59 £+ 3.57 98.97 + 0.35
Four DoF
m 256 256 1575.60 + 312.59
Query time (us)  2.803 + 0.65 65.23 £ 1.05 80.87 + 1.66
Training time (s) 0.467 4+ 0.07 0.727 £0.05 0.112 + 0.02
Accuracy 84.36 4+ 3.83 84.36 + 3.83 89.35 + 1.66
Seven DoF
m 512 512 2917.80 & 563.34
Query time (us) 4.724 +0.32 75.91 £1.22 91.02 +4.44
Training time (s) 0.684 4+ 0.07 1.988 4+ 0.02 0.254 + 0.05
Accuracy 84.47+3.92 84.47+ 3.92 66.88 4 4.97

The bold entities indicate the best obtained values in each row.

TABLE III
PERFORMANCE OF COLLISIONGP VS. FASTRON IN FIFTEEN DIFFERENT
SCENARIOS WITH FOUR DYNAMIC OBSTACLES

GP (GPU) GP (CPU) Fastron
Two DoF
m 128 128 145.1 £37.5
Sampling time (s)  0.78 £0.37 0.78 £0.37 1.02 £0.51
Updating time (s)  0.011 +0.008  0.18 4 0.006 0.003 £ 0.003
Total (s) 0.79 £0.37 0.97 £0.37 1.02 £0.51
Accuracy 90.95+1.48 90.95+1.48 85.92 + 10.79
Four DoF
m 256 256 1316.2 £ 160.77
Sampling time (s) 0.64 £0.35 0.64 £0.35 2.324+0.97
Updating time (s) ~ 0.017 £ 0.02 0.23 +0.02 0.009 £ 0.003
Total (s) 0.657 +£0.37 0.87+£0.37 2.33 £0.97
Accuracy 86.61 £+ 2.22 86.61 £+ 2.22 88.65 + 1.68
Seven DoF
m 512 512 2732.0 £ 319.64
Sampling time (s) 0.43 +0.22 0.43 +0.22 3.49 £1.78
Updating time (s)  0.033 £ 0.02 0.38 £ 0.01 0.03 £ 0.007
Total (s) 0.46 +£0.24 0.82 +0.23 3.52+1.79
Accuracy 86.45 +2.52 86.45 + 2.52 69.13 + 3.29

The bold entities indicate the best obtained values in each row.

time plus the updating time, CollisionGP is able to obtain an
updated model up to 7 times faster in the case of the seven DoF
experiment. We evaluated the signifance of the results with the
two-sample T-test for the seven DoF comparative measures. The
resulting p-values are all below 1078, proving high statistical
significance.

V. DISCUSSION

The data obtained from the experiments suggests that GPs
are able to provide an effective probabilistic approach to con-
figuration space modeling and collision checking. The exper-
iments show that the proposed method CollisionGP achieves
greater accuracy, TPR and TNR values than the state-of-the-art
algorithm Fastron, due to ARD and the ability to use the pro-
vided variance to determine which areas are more dangerous for
possible collisions. CollisionGP is also more sparse, resulting
in faster update times and faster prediction times, as shown in
Tables II and III, where the query times for CollisionGP are up
to 38 times faster than Fastron in the two DoF case, and the
updating time for CollisionGP is 7 times faster than Fastron for
seven DoF. However, training times are slower, as CollisionGP
optimizes the hyperparameters of the kernel and the inducing
points for a fixed number of iterations, while Fastron uses a
custom training loop with a termination condition to update
a matrix of weights. Another limitation of CollisionGP is the
slow prediction time when making a collision query of a single
configuration. We recommend to use batches and predict more
than 10000 configurations at once, taking advantage of the array
algebra of PyTorch. The prediction times can be further reduced
by using a GPU to perform the necessary computations. We
could also perform the calculations for the mean of the GP only,
reducing the computational complexity from O(m?) to O(m).

Nonetheless, we believe that the variance gives us valuable
information about the configuration space that other methods
cannot provide. FCL has a high standard deviation in Fig. 4
because the method employs a broad phase and a narrow phase,
and configurations close to obstacles require more computation
time. Based on the results of our previous publication [23], we
expect a decrease in computation time by a factor of two to
ten when replacing FCL with CollisionGP in a realistic motion
planning problem: One query requires 5000 to 10000 collision
checks. If the planning algorithm queries collision checks in
large batches, computation time will decrease significantly, as
shown for example in [24].

When directly comparing Fastron and CollisionGP in Fig. 6,
the obtained C-spaces show that Fastron accurately models the
sharp corners and edges while CollisionGP does not. However,
we believe that CollisionGP achieves a good enough repre-
sentation while being more sparse. Furthermore, it provides
a probabilistic approach to model the C-space, with the vari-
ance being higher around the obstacle borders. High variance
provides crucial information for the application and raises
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awareness to regions where the computed motion should be
investigated with a convential collision checker. CollisionGP
could be implemented with deep kernel methods trained in dif-
ferent scenarios to improve the accuracy. However, while deep
kernel methods have several advantages over standard Gaussian
processes, such as improved model flexibility and ability to
handle larger datasets, they also have some disadvantages com-
pared to standard Gaussian processes, such as computational
complexity, interpretability, overfitting, data requirements and
hyperparameter and architecture tuning.

While learning-based algorithms cannot replace conventional
collision checking algorithms in all applications, we suggest to
use the technology in combination with collaborative robots. As
the manipulators guarantee safe interaction, collision checking
and motion planning algorithms need to minimize the chance of a
collision and not necessarily eliminate it completely. This allows
the robot to leverage the computational advantage of Colli-
sionGP, while avoiding collisions in most motions. However, one
disadvantage of CollisionGP compared to conventional collision
checking algorithms is that it does not provide information about
which link is colliding.

The TNR, TPR and accuracy for Fastron decreases as the
number of DoFs increases (Fig. 7). This can be due to the fact
that CollisionGP optimizes a separate kernel lengthscale for each
DoF, while Fastron considers all DoFs to have the same weight
and sets a fixed value of a. One advantage of keeping a fixed
value of « is that the training times are shorter.

VI. CONCLUSION

In this work, we proposed and validated the CollisionGP al-
gorithm, which models the configuration space for collision de-
tection. CollisionGP allows collision detections to be performed
an order of magnitude faster than traditional collision checking
algorithms such as FCL when using batches. We also showed
that CollisionGP is more sparse than Fastron, a state-of-the-art
machine learning algorithm for collision checking, achieving
faster predictions and model updating times. Furthermore, to
the best of our knowledege CollisionGP is the first collision
checking algorithm that uses GPs, providing not only a mean
estimate, but also the predictive variance, which gives a measure
of uncertainty about the prediction and is useful to eliminate false
negatives. This is specially important for critical applications
where the final path could be checked with FCL to ensure that
no collisions are produced.

Using GPs with PG auxiliary variables for probabilistic col-
lision checking opens some interesting lines of future work in
robotics. One possible future application of CollisionGP is for
robots with many DoF, such as humanoid robots. The large C-
spaces require exploration of many states and thus fast primitive
operations, such as collision checking. Another future work is
the implementation of CollisionGP with different batch path
planners in real environments to test its efficiency. The code for
CollisionGP can be found in https://github.com/jmunozmendi/
CollisionGP.
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