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Autonomous Navigation System in Pedestrian
Scenarios Using a Dreamer-Based Motion Planner

Wei Zhu and Mitsuhiro Hayashibe , Senior Member, IEEE

Abstract—Navigation among pedestrians is a crucial capabil-
ity of service robots; however, it is a challenge to manage time-
varying environments stably. Recent deep reinforcement learning
(DRL)-based approaches to crowd navigation have yielded numer-
ous promising applications. However, they rely heavily on initial
imitation learning and colossal positive datasets. Moreover, the
difficulties in accurately localizing robots, detecting and tracking
humans, representing and generalizing reciprocal human relation-
ships restrict their deployment in real-world problems. We propose
a Dreamer-based motion planner for collision-free navigation in
diverse pedestrian scenarios. Our RL framework can completely
learn from zero experience via a model-based DRL. The robot
and humans are first projected onto a map, which is subsequently
decoded into low-dimensional latent state. A predictive dynamic
model in the latent space is jointly created to efficiently optimize
the navigation policy. Additionally, we leverage the techniques of
system identification, domain randomization, clustering and Li-
DAR SLAM for practical deployment. Simulation ablations and
real implementations demonstrate that our motion planner out-
performs state-of-the-art methods, and that the navigation system
can be physically implemented in the real world.

Index Terms—Autonomous vehicle navigation, human-aware
motion planning, reinforcement learning.

I. INTRODUCTION

AUTONOMOUS driving systems are becoming prevalent
in human society because of their promising prospects of

high efficiency, safety, and intelligence. Additionally, an aging
society, labor shortages, and noncontact services during the pan-
demic promoted the research and development of autonomous
mobile robots in hospitals, restaurants, hotels, etc. [1]. However,
socially aware robot navigation is a highly complex task because
it involves mapping and localization, human detection and be-
havior analysis, social rules, and decision and planning [2].

On one hand, the modules of perception and motion planning
are separately studied by autonomous driving companies and
research institutes [3]; thus, human–vehicle interaction is not
considered. Moreover, the surrounding humans are individually
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detected and tracked, and their motions are independently ana-
lyzed; therefore, the reciprocal relationships among pedestrians
are excluded. On the other hand, state-of-the-art algorithms
proposed by academia assume that states such as human num-
ber, position, and speed are fully known and simply focus on
motion planning, which limits their generalizability and hinders
sim-to-real transfer [4], [5], [6], [7].

In the earlier stages, rule-based motion planners played a
dominant role in crowd navigation. Two pioneering approaches
include optimal reciprocal collision avoidance (ORCA) [8] and
the social force model (SFM) [9]. However, their one-step plan-
ning framework resulted in short-sighted, unsafe, and unnatural
behaviors [10]. To plan motion over a long horizon, an intuitive
strategy is to first predict human trajectories based on a model
and subsequently select an optimal path for robots [11], [12].
Nevertheless, human motion models generally focus on indi-
viduals, ignoring the social relationships among pedestrians.

Recently, crowd navigation has switched to learning-based
methods because of their prominent capability of represent-
ing the latent features of human–human and human–robot in-
teractions and planning optimal navigation paths at a long
time-scale. The collision avoidance with deep reinforcement
learning (CADRL) algorithm [13] and its extension, socially
aware CADRL (SA-CADRL), are the main algorithms used in
the field of learning-based crowd navigation. These approaches
feed all human states, such as positions and speeds, into deep
neural networks (DNNs) to extract the implicit reciprocal motion
features of humans, which are further fed into deep reinforce-
ment learning (DRL)-based policy neural networks to learn an
optimal motion planner. However, these two methods are not
generalized to human numbers; thus, DNNs need to be redefined
and retrained when the human number changes. Therefore, a
subsequent algorithm, long short-term memory reinforcement
learning (LSTM − RL), leverages LSTM to represent the rela-
tional motion features of humans to allow arbitrary human num-
bers [14], [15]. Because the inputs of LSTM neural networks are
sorted by the distance between the robot and each human in de-
scending order, the relationship among humans is not reciprocal.

To comprehensively describe the reciprocal relationship
among pedestrians, the attention mechanism and graph convo-
lutional network (GCN) are broadly embedded in DRL-based
crowd navigation [5], [6], [10], [16]. However, the aforemen-
tioned navigation algorithms assume fully known human states,
including human number, position, and speed, and rely heavily
on imitation learning and colossal positive datasets collected
by rule-based methods such as ORCA, which may result in
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an early sub-optimum. Moreover, precisely tracking humans
and estimating their speeds is difficult in the real world owing
to various uncertainties; thus, sim-to-real transfer is a crucial
challenge for these methods.

To let go of the assumption of fully known human information
in simulations, directly using raw sensor data is a promising
alternative [17], [18], [19], [20], [21]. The reciprocal relationship
among pedestrians is extracted from consecutive raw sensor data
such as high-dimensional LiDAR scans with DNNs. However,
direct handling of raw sensor data is inefficient. Consequently,
imitation learning and colossal positive datasets are required to
initialize DNNs. In addition, the lack of open-source solutions
limits further development and comprehensive ablation.

Our study addresses these shortcomings in a comprehensive
manner. First, we only detect humans and obtain their positions
while excluding human tracking and speed estimation. After
localizing the robot and humans, we create an RGB map that can
be maturely processed using autoencoder algorithms to represent
the instant relationship between humans and the robot. Accord-
ingly, our algorithm can free the assumption of fully known
environments and improve generalizability with respect to the
human number and speed. In addition, inspired by the Dreamer
approach, a model-based RL to address long-horizon tasks from
images purely by latent imagination [22], we create a dynamic
model with recurrent neural networks (RNNs) to accumulate
history information and predict future states over a long horizon,
thus reducing the probability of local optima. Moreover, the dy-
namic model can facilitate policy learning via the model-based
DRL framework; thus, we can completely learn an optimal navi-
gation policy without any imitation learning or a massive dataset.
The contributions of this study are summarized as follows.
� A complete and publicly accessible autonomous naviga-

tion system among pedestrians is developed. We precisely
obtain the robot pose using a LiDAR SLAM algorithm,
and extract humans via a clustering approach. Moreover,
we plan robot motion using a model-based DRL framework
to avoid pedestrians and reach a target with a high success
rate and navigation efficiency.

� We propose a Dreamer-based motion planning algorithm
that can efficiently obtain an optimal motion planner and
be generalized to arbitrary human number, variable human
speed, and complex human relationships.

� We reproduce several state-of-the-art algorithms for more
comprehensive ablation and ensure they are open-sourced.
Additionally, sufficient sim-to-real experiments are imple-
mented using domain randomization and system identifi-
cation techniques.

The code of the whole project is publicly available at https://
github.com/zw199502/navigation_among_pedestrians and the
video is shown at https://youtu.be/KM2WPpQBfrI.

II. RELATED WORK

A. Navigation System

A complete navigation system integrates perception, decision,
planning, and control modules, which are broadly researched
and developed for autonomous driving vehicles [3], [23]. How-
ever, these modules are studied separately in both industry and

academia. Although there are several mature and open-source
solutions, such as Apollo1 and Autoware,2 publicly accessible
navigation systems among pedestrians are rare in the commu-
nity of service robots. In this study, we construct a complete
navigation system, in which the perception and control modules
are derived from mature methods and decision and planning are
achieved by a novel Dreamer-based motion planner.

B. Motion Planning Among Pedestrians

In the early stage, rule-based motion planners constituted
mainstream crowd navigation, such as ORCA [8], SFM [9],
and trajectory-prediction-based path optimization [11], [12].
With the rapid development of deep learning, researchers and
engineers are focusing on learning-based methods, wherein
DRL-based navigation algorithms are attractive because of their
promising representation and optimization capabilities [5], [6],
[10], [13], [14], [15], [16], [18], [19], [20], [24], [25], [26].
CADRL [13] is a pioneering study in the use of DRL for
social navigation. However, its value function neglects the social
relationships among pedestrians, as it only considers the robot’s
full state and one pedestrian’s observable state. LSTM − RL [14]
improves upon CADRL by leveraging LSTM to represent pairs
of the robot’s state and all pedestrians’ states, but its ability to
capture reciprocal relationships is limited since pairs are ordered
by distance and then fed into LSTM networks. Socially aware RL
(SARL) [10] and relational graph learning (RGL) [16] represent
state-of-the-art extensions to CADRL and LSTM − RL by using
self-attention mechanisms and graph convolutional networks,
respectively, to capture interactions and reason about relations
between agents. However, these methods assume fully known
pedestrian information and require massive positive datasets for
learning, leading to degraded performance in real-time settings.
EGO [18] and LSTM − EGO [21] offer a more direct mapping of
raw sensor data to navigation actions, but open-source solutions
for replicating their results are scarce. We propose an open-
source Dreamer-based motion planner that can learn completely
from zero experience and release the ideal assumptions of fully
known environments.

C. Dreamer

The Dreamer algorithm is a reinforcement learning agent
that addresses long-horizon tasks from images purely by latent
imagination [22], which yields a large number of achievements
in simulated environments, such as Atari games and MuJoCo
robots [22], [27], [28], [29]. Conversely, we focus more on
real implementations of collision-free and socially aware robot
navigation by leveraging the key idea of the Dreamer algorithm.
A map is created to represent complex scenarios with variable
human numbers and random initial states. A dynamic model
with a map as a unique observation is learned to represent social
relationships among humans. The learned model can facilitate
learning complex behaviors, thereby enabling the robot to learn
an optimal navigation policy without any prior experience.

1[Online]. Available: https://github.com/chrislgarry/Apollo-11
2[Online]. Available: https://github.com/autowarefoundation/autoware
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Fig. 1. Framework of Dreamer-based motion planner with image observation.
The multi-layer perceptron (MLP) is used for learning and inference. The
encoder network (Enc) comprises convolutional neural networks (CNNs), while
the decoder network (Dec) is constructed using transposed CNNs. To propagate
historical information, recurrent neural networks (RNNs) are employed in the
dynamics module.

III. APPROACH

We first illustrate the formulation of the problem of naviga-
tion among pedestrians with model-based RL and subsequently
describe the details of the model creation and navigation policy
learning using the Dreamer algorithm. In addition, we introduce
a completely autonomous navigation system with perception,
planning, and control modules. Fig. 1 shows the overview of the
Dreamer-based motion planner.

A. Problem Formulation

We formulate the problem of crowd navigation as a partially
observable Markov decision process (POMDP) defined by a
tuple (S,H,A,P,R,O, γ), where S represents the stochastic
state space, H is the deterministic history feature space, A
denotes the action space, P is the state transition model, R
represents the instant reward space, O is the observation space,
and γ is a discount factor.

The unique observations are the sequenced RGB images
(ot, ot+1, . . . , ot+K), each of which illustrates the instanta-
neous positions of humans and the robot. We decode the high-
dimensional image ot+τ into the stochastic latent state st+τ
using considerably fewer variables. In addition, historical state
information is accumulated as deterministic feature ht+τ . Given
action at+τ , stochastic state st+τ , and hidden information ht+τ ,
the next state st+τ+1 and accumulated feature ht+τ+1 can be
derived from the state transition model P . Given policy π, we
can represent the expectation of the value function starting from
state st+τ as follows:

vπ(st+τ ) = Eπ

[ ∞∑
i=1

γi−1rt+τ+i

]
, (1)

where rt+τ+i is the instant reward in state st+τ+i. The goal is
to determine policy π∗ to maximize the value function.

B. World Model

1) Observation: Instead of directly using fully known pedes-
trian states, including the human number, position, and speed [5],
[6], [10], [13], [16], or clumsily dealing with raw sensor
data [18], [19], we create a map using only the position infor-
mation of humans and the robot. Therefore, we can reduce the
uncertainties of human tracking, speed estimation, and trajectory

Fig. 2. Image observation with the position information of humans and the
robot.

prediction; generalize our method; and maturely process high-
dimensional image observations via representation learning.
Fig. 2 depicts the image observation with the shape (128, 128, 3).
Let the size of the motion area be L× L. Thus, the image
resolution is Ir = L/128.

The image has three RGB channels, with the R channel
representing humans and the B channel depicting the robot. We
assume that the human is a circle with radius rh, and the human
circle is projected as deep red pixels with the value pr = 255,
as shown in Fig. 2. The pixel value pr is zero when the pixel
is not occupied by a human. Similarly, the robot is assumed to
be a circle with radius rr, which is represented by deep blue
pixels with a value pb = 255. By contrast, we inflate the robot
circle to define an uncomfortable zone between the robot and
humans. The blue pixel value pb decreases when the pixel is far
from the robot rim, and becomes zero when the pixel is outside
the uncomfortable area. Note that the G channel is not used to
represent the goal position in our current work because we fix
the robot goal and randomize the robot’s initial position, which
is reasonable because the positional relation between the robot
and the goal is relative.

2) Reward and Discount Factor: The reward function is
defined according to the image observation. We first add the
R and B channels together to yield a new 2D matrix ma. If any
value of ma is equal to 510, a collision occurs, the reward is
the minimum rc = −0.6, and the discount factor γ is zero. In
addition, the reward becomes ro = −0.1 when the robot rim is
outside the motion area, and γ remains zero. Another case of
zero γ is when the goal distance dg from the robot is less than
the threshold dr, that is, when the robot reaches the target. The
reward is the maximum rg = 1.0. If the robot does not collide
with humans, reach the target, or stay outside the motion area, γ
is γ̄ = 0.99, and the reward is a combination of the goal distance
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and the uncomfortable index. The maximum inma ismmax
a and

the uncomfortable index is defined as du = (mmax
a − 255)/255.

In summary, the reward function and discount factor are defined
as follows:

(r, γ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(−0.6, 0) if collision,

(−0.1, 0) else if outside,

(1.0, 0) else if reaching,

(0.8 · dg/L− 0.6 · du, 0.99) else.
(2)

3) Action: We utilize a quadruped robot, which is an omni-
directional mobile robot. Accordingly, we define the action as
two orthogonal velocities vx and vy. Additionally, vx and vy
are continuous instead of discrete, as defined in state-of-the-art
approaches [5], [6], [10], [13], [16]; therefore, we can generate
smoother motions in the physical world.

4) Autoencoder: We leverage autoencoder technology [30]
to reduce the dimension of the image observation and extract
the motion features of humans and the robot from sequenced
observations. As illustrated in Fig. 1, we first encode the image
observation ot with convolutional neural networks (CNNs) to
extract the feature qt which is an intermediate vector. Next,
we project the combination of qt and deterministic history
information ht onto the posterior latent state ŝt with a multi-
layer preceptor (MLP). Subsequently, we concatenate ht and ŝt
and decode the concatenation to restore the observation image
ôt with transposed CNNs. The autoencoder is summarized as
follows:

qt = Eθ(ot), (3a)

ŝt ∼ pŝθ(qt, ht), (3b)

ôt ∼ pôθ(ŝt, ht), (3c)

where θ denotes the weights of the world model network. The
loss function of autoencoder can be derived from the likelihood
probability represented as below:

L(t+τ)
AE =̇ log(ot+τ |ôt+τ ). (4)

Because motion planning is executed in the latent state space,
while the reward rt and discount factor γt are defined in the
original observation space, we need another two networks com-
posed by MLP to predict r̂t and γ̂t from the concatenated ht and
ŝt:

r̂t ∼ pr̂θ(ŝt, ht), (5a)

γ̂t ∼ pγ̂θ (ŝt, ht). (5b)

Similar to the loss function (4), another two additional loss
functions can be obtained as follows:

L(t+τ)
R =̇ log(rt+τ |r̂t+τ ), (6a)

L(t+τ)
D =̇ log(γt+τ |γ̂t+τ ). (6b)

5) State Transition Model: It is prohibitively challenging to
construct a state transition model in the original observation
space with high dimensions; therefore, we model the motions
of humans and the robot in the latent state space. We utilize

the categorical latent variables to represent the latent state with
32 classes multiplied by 32 variables (shown in Fig. 1), based
on the fact that categorical distributions can naturally capture
multi-modal uncertainty of stochastic state transition [31]. Given
the posterior latent state ŝt, action at, and history motion infor-
mation ht, the next latent state s̃t+1 and the next hidden history
information ht+1 can be predicted using a gated recurrent unit
(GRU) neural network as shown in Fig. 1:

ht+1 = fθ(ŝt, at, ht), (7a)

s̃t+1 ∼ ps̃θ(ht+1). (7b)

where fθ which is composed by a GRU and ps̃θ constructed
by a MLP correspond to the dynamics shown in Fig. 1. The
prior distribution s̃t+τ is required to be similar to the posterior
distribution ŝt+τ derived from the autoencoder model; thus, the
fourth loss function can be defined as the Kullback–Leibler (KL)
divergence:

L(t+τ)
KL =̇− βKL(ŝt+τ ||s̃t+τ ), (8)

where β is a constant factor weighing the KL divergence loss.
6) Overall Loss Function: Given an episode obtained from

the interaction between humans and the robot, we select a
sequence starting from time step t and ending at t+K, whereK
is a constant. We fill zero to elongate the episode when its length
is less thanK + 1 because of early collision, outside motion, or
target reaching. The overall loss function along the sequence is
represented as follows:

LALL=̇Epθ

[
K∑
τ=1

[
L(t+τ)
AE + L(t+τ)

R + L(t+τ)
D + L(t+τ)

KL

]]
.

(9)
All world model networks, including (3a), (3b), (3c), (5a), (5b),
(7a) and (7b), are jointly updated using this single overall loss
function.

C. Motion Planner

The state transition model in compact latent space enables tra-
jectory prediction in the long horizon without high-dimensional
image observation, which results in a low memory footprint
and speedy predictions of thousands of imagined trajectories
in parallel [22]. As shown in Fig. 1, starting from the latent
state ŝt+τ and history information ht+τ , a considerable number
of episodes with H horizon can be swiftly generated. Con-
sequently, we can efficiently leverage imagined episodes to
optimize the navigation policy.

For the imagination process, we create an actor network and
a critic network using MLP to map the current latent state and
historic motion information into the action and value function,
respectively:

āt+τ ∼ pāφ(s̄t+τ , h̄t+τ ), (10a)

v̄t+τ ∼ pv̄ψ(s̄t+τ , h̄t+τ ), (10b)

where φ and ψ denote the weights of the actor and critic net-
works, respectively. Additionally, the reward r̄t+τ and discount
factor γ̄t+τ are predicted using (5a) and (5b), respectively. With
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the imagined episode having a long horizon, we can evaluate the
value function with a multi-step RL framework because it yields
a better unbiased estimation than the one-step RL algorithm [32]:

vi(sκ)=̇ E(pr̂θ,p
γ̂
θ ,p

s̃
θ)

[
h−1∑
n=κ

(γ̄n−κn r̄n) + γ̄h−κh v̄ψ(sh)

]
,

i = 1, 2, . . . , H,

h = min(κ+ i, t+ τ +H),

vλ(sκ)=̇ (1− λ)

H−1∑
n=1

(λn−1vn(sκ)) + λH−1vH(sκ), (11)

where λ is another discount factor that weighs the value function,
and κ ranges from t+ τ to t+ τ +H . We have two objectives:
to determine a policy to maximize the value function, and to
minimize the error between the estimated value function and the
predicted value from the critic network. Therefore, the weights
of the critic and actor networks can be updated as follows:

min
ψ

E(pθ,pφ)

(
t+τ+H∑
κ=t+τ

1

2
‖v̄meanκ − vλ(sκ)‖

)
, (12a)

max
φ

E(pθ,pφ)

(
t+τ+H∑
κ=t+τ

vλ(sκ)

)
, (12b)

where v̄meann is the mean of the distribution v̄κ.

D. Algorithm Summary

In the simulation, we assume that the human motion is gen-
erated by ORCA [8]. Additionally, the robot is assumed to be
invisible to humans; otherwise, it will be difficult to differentiate
whether our motion planner is effective or whether humans avoid
the robot. The simulation is reset when collision, outside motion,
target reaching, or timeout occurs. When the episode length
is greater than tmax, it is terminated as a timeout. We use the
step function to update the positions of humans and the robot
and obtain the instant reward and discount factor. Simulation
interaction samples are collected to update the world model. We
subsequently utilize the world model to imagine episodes in the
latent space, which are used to update the motion planner. Next,
a motion planner is used to generate new simulation episodes.
We alternately update the world model and motion planner until
a stable navigation policy is acquired.

E. Complete Navigation System

As stated in existing studies, wheeled mobile robots can local-
ize themselves with the wheel odometer [5], [6], [10], [13], [16],
which however drifts heavily with the increase in motion time.
External motion capture systems are commonly used to precisely
obtain the robot position and orientation [15], [17]. Nevertheless,
such systems are expensive and impractical in a real human
society. A navigation system without any accurate and internal
localization module is incomplete and cannot be applied to
society. Additionally, these studies have not focused on publicly

accessible real-world implementations, such as human detec-
tion, speed estimation, and trajectory prediction. Conversely,
we leverage the LiDAR odometry and mapping (LOAM) SLAM
algorithm [33] to accurately localize the robot. In addition, we
extract humans using a clustering approach [34]. Because we
can obtain the sequenced position information of humans and
the robot, we can extract the latent motion feature using our
algorithm without individually estimating the human speed and
future trajectory. Because our algorithm directly outputs two
orthogonal velocities vx and vy , we need to further match vx
and vy to the speed command of the quadruped robot used
for practical implementations. We found that the actual speed
generated by the official controller was significantly different
from that of the desired command. Therefore, we use the system
identification technique to calibrate the desired speed command
to be consistent with the actual speed [35]. We made our system
open-source for easier deployment in the autonomous navigation
community.

IV. SIMULATION AND REAL IMPLEMENTATIONS

We used three simulation scenarios: Simulation one is for
a comprehensive comparison, Simulation two is designed to
verify the generalizability of our method, and Simulation three
is constructed for sim-to-real transfer. Subsequently, we directly
deployed the policy learned in Simulation three into various real
scenarios without any retraining or fine-tuning.

A. Simulation

1) Training for Comparison: The side length of the motion
area isL = 10m. Similar to the original settings of RGL [16], we
assume a human number fixed at 5, human radius rh = 0.3 m,
and each human is randomly initialized around a circle with a
radius of 4 m. The initial position is (x(i)0 , y

(i)
0 ), and the goal is

(−x(i)0 ,−y(i)0 ). The i-th human moved back and forth from these
two positions with a preference speed of 1 m/s. Additionally,
reciprocal motion among humans is generated by ORCA [8]
with the robot being invisible. The robot radius was rr = 0.3 m
and the maximum values of vx and vy were both 1 m/s. For a
fair comparison, we assumed that the robot moves from (−4.0,
0.0) m to (4.0, 0.0) m. We reproduced seven popular baselines:
one is a non-learning method namely ORCA [8], whereas the
other six are learning-based approaches, called CADRL [13],
LSTM − RL [14], SARL [10], RGL [16], EGO [18], and LSTM
− EGO [21] respectively.

The ORCA algorithm assumes that the agent’s states, includ-
ing shape, size, position, and speed, are fully known. Based on
this information, it generates an optimal collision-free action in
one step. However, this one-step planning approach may result
in short-sighted, unsafe, and unnatural behaviors. In contrast,
DRL-based crowd navigation algorithms, which utilize a value
function that can represent accumulated return over a long
horizon, have become increasingly popular due to their ability
to address these issues. For example, CADRL was a pioneering
study in this area, but its value function only considered the
pair of the robot and one human, making it unable to represent
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Fig. 3. Learning ablations. At certain time step, we evaluate the policy 100
times and calculate the corresponding success rate of collision-free and target-
reaching navigation. CADRL and LSTM − RL have a stable learning process
while the training of another two baselines SARL and RGL vibrates intensely.
EGO and LSTM − EGO can not reach a high success rate of crowd navigation
and their learning is notably unstable.

relational interactions among humans. As a result, LSTM − RL
was developed to pair the robot with all humans, but it still
only captures partial interactions because it sorts the pairs by
distance before feeding them into the LSTM networks. To more
comprehensively represent social interactions among humans,
SARL utilizes a self-attention mechanism to capture interactions
within pedestrians, while RGL embeds a graph convolutional
network to reason about relations between agents and compute
interactions between them. However, these methods all require
fully known human states. In contrast, EGO and LSTM − EGO
can handle both static and dynamic obstacles of different shapes,
sizes, and numbers, as they directly map raw sensor data to
navigation actions. EGO uses continuous LiDAR scans, while
LSTM − EGO uses one frame of LiDAR scan and embeds
LSTM to deal with sequential scans. However, a downside of
these methods is the difficulty of efficiently learning a feasible
navigation policy. While the other four have open-source solu-
tions, publicly accessible resources for EGO and LSTM − EGO
are rare. Therefore, we specially created a simulator that could
generate 2D LiDAR scans and constructed neural networks
for policy learning. We named our method navigation among
pedestrians with a Dreamer-based motion planner (NPD). The
learning processes of the six methods are illustrated in Fig. 3,
and the final evaluation is shown in Table I. Please note that
Fig. 3 displays the success rate of 100 evaluation episodes. Each
episode may result in success, collision, overtime, or outside
motion. Our analysis revealed that when the success rate was at
or above 90%, the number of collision cases decreased to less
than 5, sometimes even to 1, whereas most of the cases were
overtime. Notably, in overtime cases, the robot was very close to
the target. We hypothesized that the image resolution may have
contributed to this phenomenon. As the robot was approaching
the target, we reclassified the overtime cases as success in the
final 500 tests.

TABLE I
FINAL EVALUATION

Because baselines CADRL, LSTM − RL, SARL, and RGL
initialized the neural networks with imitation learning and fill the
experience pool with a large number of positive samples ahead
of the training, they could swiftly learn a feasible navigation
policy. Although EGO’s initialization was same, its learning
was notably unstable and it could only reach a success rate
of 0.54. The initial data settings of LSTM − EGO were same
as ours, however, its success rate was 0.52, significantly lower
than our method’s. In addition, LSTM − EGO required the
longest navigation time, averaging 15.08 s. We found that the
success rates of all the baselines which require prior initialization
became zero at all times when we removed imitation learning
and the massive positive dataset. Conversely, our method could
completely learn from zero experience and yielded a stable con-
vergence and high success rate, which indicates that our method
does improve learning efficiency. As shown in Table I, our
approach quantitatively either outperformed or behaved similar
as the other six learning baselines with respect to both the success
rate and average navigation time. We found that the failure of
our method initially occurred when two of the humans closely
surrounded the robot. Additionally, the collision occurred within
five time steps of 1 s. We believe that this short sequence results
in the most of the remaining 1% failures. Although ORCA
requires a short navigation time, it produced the lowest success
rate, whereas our method was able to adequately balance the
navigation time and success rate. Because our final goal is to
deploy the navigation policy on real robot platforms, real-time
performance should be another evaluation factor. The time used
to generate an action when given observations is referred to
action time. ORCA’s action time was only tens of microseconds
because ORCA is a non-learning approach. However, CADRL,
LSTM − RL, SARL, and RGL required tens of milliseconds
to derive an action because they only have a value network
and need to inquire each action choice to obtain the best one.
On the contrary, EGO, LSTM − EGO, and NPD(ours) have
both an actor network and a critic network, therefore, they
are able to quickly access an optimal action from the actor
network. Because the planning frequency in the real world is
5 Hz, our method’s action time (3.3e-3) is acceptable for real
implementations. The aforementioned test assumes that human



3842 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 6, JUNE 2023

Fig. 4. Training in complex environments.

motions follow ORCA rules. We also deviated the human action
originally generated using ORCA by adding uniform noises with
the bound of 0.2 m/s. The success rate of our method could still
reach 94%, which indicates the generalizability of the trained
policy with respect to human motion modals.

2) Training for Generalizability Verification: We trained our
model in a more challenging navigation task to further verify
the generalizability of our approach. Similar to the scenario
shown in Fig. 2, the motion area is 10 × 10 m. Differently,
the obstacle number in the revised environment is up to 7,
which makes the training scenario denser and more complicated.
Moreover, the number of moving humans changes from 1 to 4.
Additionally, we add rectangular static obstacles whose number
is variable from 1 to 3 and side length ranges from 0.3 m to 0.4 m.
Baselines CADRL, LSTM − RL, SARL, and RGL assume that
the obstacles are circles and their number is fixed during the
whole training, whereas baselines EGO and LSTM − EGO are
independent of obstacle number and shape. We choose LSTM −
EGO as the ablation simply because it is a more recent study. The
training process is depicted in Fig. 4. Although the environment
becomes complex, our method can still reach a 93% success
rate, significantly outperforming LSTM − EGO whose success
rate is below 40% at all times.

3) Training for Policy Transfer: To enable sim-to-real trans-
fer, we leveraged the domain randomization technique to im-
prove the generalizability of the simulated navigation policy. Be-
cause the maximum sideward speed of the real quadruped robot
was 0.27 m/s, we first constrain the maximum vy as 0.27 m/s
and the maximum vx 0.3 m/s. Note that we did not enlarge the
forward speed vx for slow and stable motion in our small real
scenarios with a size 3× 3 m. Different from the simulation
configurations considered for comparison, we narrowed the
motion area toL = 6 m, and the human number changed from 1
to 3. Additionally, we randomized the initial robot position while
keeping the goal fixed at (1.0, 0.0). Moreover, the initial human
position was randomized over the entire motion area, while the
human goal was distributed around the margin of the motion
area. The preference speed of humans ranges from 0.15 m/s to
0.3 m/s. For RL-based baselines, obtaining a feasible navigation
policy is challenging if the environment significantly changes.
Moreover, certain baselines, such as CADRL and SARL, do not
allow variable human numbers during training. Although we
introduced a large number of stochastics, our algorithm could
produce stable policy optimization while LSTM − EGO failed

Fig. 5. Learning process with stochastic configurations in simulation. Dif-
ferent from the training for comparison, this training is executed in stochastic
environments with variable human numbers and distributions to learn a more
generalized navigation policy. NPD considers the robot’s collision margin as a
circular shape, whereas NPD-CM uses a more accurate collision margin that is
a circumscribed rectangle around the physical robot. RGL’s learning is omitted
because its success rate is zero at all times.

in obtaining a feasible navigation policy, as shown in Fig. 5. The
trained policy achieved a 95% success rate in the final evaluation
with 500 random settings.

In addition to comparing with the learning-based baselines
LSTM − EGO and RGL, we conducted ORCA as another
ablation. We found that ORCA could significantly improve
navigation success rate from 0.47 to 0.98 when human number
was decreased from 5 to 3. Although ORCA (0.98) outperformed
our method (0.95) in simulation, we found that the robot was
inclined to move outside of the specific area in real scenarios.
The possible reason may be inaccurate human tracking and
speed estimation. Conversely, our method only needs human
positions, without considering the errors of human tracking and
speed estimation, therefore, our approach is able to proficiently
deal with various real-world scenarios.

To align the robot collision margin with the actual robot plat-
form, we replaced the inflated circular margin with a rectangular
one. This modification enabled us to match the collision margin
of the simulated robot with that of the real robot platform. The
collision margin has a length and width of 0.5 m and 0.3 m,
respectively, identical to the collision margin of our real robot
platform. The corresponding learning is illustrated in Fig. 5,
which indicates that our method can deal with different robot
collision margins.

B. Real Implementations

We deployed the policy learned from the simulation on a
quadruped robotic platform equipped with a Velodyne VLP-16
LiDAR. The tests are shown in the attached videos. Although
the human number changed from 1 to 3 and human motions
are diversified, our simulated navigation policy could be di-
rectly transferred into real scenarios without any retraining or
fine-tuning, which shows the potential of our method to model
complex reciprocal human relations and navigate robots among
pedestrians in the real world.

V. CONCLUSION

This letter presented an autonomous navigation system with
a Dreamer-based motion planner. We let go of the assumption
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of fully known human states and only utilized the human posi-
tion information. The human positions and robot location were
projected onto a image. From the sequenced image observa-
tions, we extracted reciprocal relationships among pedestrians
through representation learning. In addition, we created a state
transition model using the extracted latent information to imag-
ine episodes for reinforcement learning. Sufficient simulation
ablations demonstrated that our method could learn from zero
experience with high efficiency and outperformed state-of-the-
art algorithms. In addition, we leveraged the techniques of
system identification, domain randomization, clustering, and
LiDAR SLAM to enable sim-to-real transfer. Adequate real
implementations illustrated the potential of our method to model
complex reciprocal human relations and navigate the robot
among pedestrians in the physical world. Our future study will
focus on accurate human detection, precise robot localization,
and universal navigation policy.
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