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Abstract—Visual-audio navigation (VAN) is attracting more and
more attention from the robotic community due to its broad appli-
cations, e.g., household robots and rescue robots. In this task, an
embodied agent must search for and navigate to the sound source
with egocentric visual and audio observations. However, the exist-
ing methods are limited in two aspects: 1) poor generalization to un-
heard sound categories; 2) sample inefficient in training. Focusing
on these two problems, we propose a brain-inspired plug-and-play
method to learn a semantic-agnostic and spatial-aware represen-
tation for generalizable visual-audio navigation. We meticulously
design two auxiliary tasks for respectively accelerating learning
representations with the above-desired characteristics. With these
two auxiliary tasks, the agent learns a spatially-correlated repre-
sentation of visual and audio inputs that can be applied to work
on environments with novel sounds and maps. Experiment results
on realistic 3D scenes (Replica and Matterport3D) demonstrate
that our method achieves better generalization performance when
zero-shot transferred to scenes with unseen maps and unheard
sound categories.

Index Terms—Vision-based navigation, representation learning,
reinforcement learning.
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I. INTRODUCTION

EMBODIED agents should be able to navigate to different
locations to complete downstream tasks such as goal-

specific tidying and delivering items. Most robot navigation is
currently limited to pure visual input from scenes [1], [2], [3],
[4], [5]. From a bionic perspective [6], [7], [8], we humans can
integrate audio information with visual observations to improve
the ability to perceive objects and scenes, such as locating the
position of an invisible object [9]. Consequently, it is advisable
for an intelligent agent to learn how to perceive and leverage
multi-modal information, including vision and audio, to achieve
better navigation performance.

With the recent development of the Soundspaces [10] simula-
tion environment, researchers have begun to study leveraging
both audio and visual information for navigation [10], [11],
[12]. In visual-audio navigation (VAN) task, testing sets include
heard and unheard sound categories: 1) heard sound categories
mean the same sound categories group with the training set, 2)
and unheard sound categories are never heard sound categories
by the agent during the training procedure. For training sets,
in some specific and typical scenes, we can provide almost
any kind of sound that might be present in these scenes. For
example, in a restaurant, a service robot may only need to learn to
listen to service bells and customer greetings. However, in some
atypical and complex scenes, we cannot provide all possible
sound categories to learn because of the wide range of sounds
that the agent will confront, such as a guard robot that should
be able to react to odd sounds, activate the guard procedure and
find where the odd sounds occur. Therefore, intelligent agents
need to handle unheard sound categories. Even though the state-
of-the-art (SOTA) methods attain∼ 90% success rate [10], [11]
in Replica environments [13] with heard sound categories, their
success rates drop to∼ 50% when navigating to unheard sound.
Besides, existing methods use pure reinforcement learning loss
(e.g. critic loss and actor loss) to train an agent in a simulator
and thus need about 3 M∼13 M steps to converge due to low
sample efficiency, which takes several days. It is important
to develop an algorithm with high sample efficiency for this
task.

Humans are sensitive to sounds, and even infants who know
nothing about sound categories can perceive the general orienta-
tion of sound [14]. Motivated by the previous observation, in this
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paper, we refer to the human auditory processing mechanism. A
dual-pathway model of auditory processing exists in the human
brain where sound semantic information (what path) and sound
spatial information (where path) are segregated into different
brain areas [15], [16], [17], [18]. Semantic information contains
sound category and other category-related information, such as
the percussive feeling of metal [19]. Spatial information includes
the distance and direction of sounds and other location-related
information, such as the phase difference between two ears [16],
[20]. Semantic information changes with the sound category,
leading to difficulties in learning generalizable semantic repre-
sentations of unheard sound categories. In contrast, spatial infor-
mation does not change [21], [22], [23], enabling the potential
for generalizing to unheard sound categories. As a result, we opt
to maintain different attention levels to different information in
the features, i.e., to neglect semantic information and enhance
spatial information.

Concretely, based on the human auditory mechanism, we
propose a plug-and-play method encouraging agents to learn
task-relevant representations from multi-modal inputs. To im-
prove sample efficiency and generalization in the VAN task,
we design two auxiliary tasks that provide additional train-
ing signals. These two tasks enable the agent to discover the
intrinsic spatial correlations between visual and audio inputs.
That can make it possible to apply the learned representation
to environments with unseen sounds and maps. In one auxiliary
task, we use a gradient reversal layer to create an adversarial
relationship between an audio encoder and an audio classifier to
ignore semantic information. In the other auxiliary task, we use
temporal information from visual and auditory inputs to predict
the relative direction of a sound, thereby enhancing spatial infor-
mation. Because our method is plug-and-play, it can be applied
to various VAN backbone algorithms using the same settings. In
our experiments, we use two SOTA algorithms, AV-Nav [10] and
AV-Wan [11] as the backbones. We demonstrate the superiority
of our proposed method on two realistic 3D scene datasets,
Replica [13] and Matterport3D [24], with strong generalization
to scenarios with unheard sound categories and fewer training
steps. In summary, our contributions are listed as follows:

1) We observe that paying different attention to semantic and
spatial components in sounds can improve the sample ef-
ficiency and the generalization of visual-audio navigators
on unheard sound categories.

2) We meticulously design two auxiliary tasks. One task uses
an adversarial mechanism to neglect semantic informa-
tion, and the other task predicts a relative direction to
enhance spatial information.

3) The experiments on two sets of realistic 3D scenes, Replica
and Matterport3D, show that our method can achieve
better generalization performance in fewer training steps.

II. RELATED WORK

Visual-Audio Navigation: In this task, an agent should navi-
gate to the sound source by utilizing egocentric visual and audio
observations. The task is challenging because of the complexity
of the room structure itself and its effect on sound propagation,

which leads to the fact that the agent cannot precisely estimate
the loudness and direction of the sound to make decisions. Sev-
eral existing studies [10], [11], [12], [25], [26] demonstrate the
importance of fusing visual and audio modalities in navigation
tasks and show good performance in scenes with heard sound
categories. Some works [10], [11], [12] do not explicitly focus on
sound semantics and perform better on heard sound categories
than unheard sound categories. Semantic-aware methods [25],
[26] explicitly exploit the sound semantic information and learn
the association between semantic information and scene repre-
sentations to reason about the sound source location, e.g., hear-
ing water dripping means the agent may need to go to the kitchen
or bathroom. However, these semantic-aware methods [25], [26]
can only deal with heard sound categories, including heard
sound instances and unheard sound instances, while our method
focuses on the generalization towards unheard sound categories.
We argue that neglecting semantic information enhances the
navigation generalization on unheard sound categories and does
little harm or even improves the performance of heard sound
categories.

Auxiliary Task: It is not a new concept to train a reinforcement
learning (RL) agent with auxiliary tasks. Auxiliary tasks are
commonly used to improve the sample efficiency and attempt
to build up state representations by predicting supplemental
variables about important aspects of RL tasks, such as terminal
state prediction [27], agent modeling [28], [29], [30], return
prediction [31], [32], and depth prediction [33]. Designing aux-
iliary tasks for a specific goal can be challenging, especially
when the input contains multiple modalities. It is important to
ensure consistency between the auxiliary tasks and the main
task; otherwise, the auxiliary tasks will only train the agent to
accomplish the auxiliary goals or hinder performance on the
main task. Our method introduces two auxiliary tasks for visual-
audio navigation by referring to the human auditory mechanism.
One is to predict the relative direction between the agent and the
sound source location. Furthermore, the other is to force the
agent to omit semantic information in sounds by adversarial
learning.

III. METHOD

We follow the basic settings in AV-Nav [34] and AV-Wan [11]
for the AudioGoal Navigation task. The task initializes an agent
in the environment (a scene with single or multiple rooms)
without the map of the environment. In each episode, a sound
source is set in the environment, continuously emitting sounds
that the agent can receive. The agent is required to navigate to
the sound source using visual and audio information. All initial
settings for the episodes are pre-generated, including the agent’s
initial position, the location of the target sound, the category of
sound, and the room used for navigation, in order to avoid overly
simplistic episodes.

In order to improve sample efficiency and make the navigation
policy generalizable to unheard sound categories, we focus on
extracting the generalizable components of the sounds referring
to the human auditory mechanism. The contents of sounds
contain two main components: semantic information and spatial
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information. When the sound source location and robot position
remain constant, the semantic information changes with the
sound category, but the spatial information remains the same.
Our method is therefore composed of two main tasks for learning
the generalizable representation: 1) Semantic-Agnostic Learn-
ing (denoted in green in Fig. 2) learning semantic-agnostic rep-
resentation by an adversarial mechanism between audio encoder
and audio classifier, and 2) Spatial-Aware Learning (denoted in
red in Fig. 2) learning spatial-aware representation by predicting
the angle of sound relative to the agent by using a temporal
representation containing visual and auditory information.

Since the initial settings for each episode are pre-generated
rather than randomly selected at the beginning of the
episode [10], without the Semantic-Agnostic Learning, the nav-
igation policy will implicitly memorize the sounds used in
each training episode (i.e. over-fitting on the training episodes),
so its generalization will be weakened. Without Spatial-Aware
Learning, Semantic-Agnostic Learning may mistakenly neglect
the spatial information, making it also ignored by the agent (the
most extreme case is that the audio encoder will output the same
features for any audio input).

The additional processing of representations by these two
tasks allows the agent to learn task-relevant features much faster,
thus improving sample efficiency.

A. Semantic-Agnostic Learning

When receiving a sound, a human may not know what the
sound category exactly is but can estimate the sound source
location [35], [36], [37], and even an infant who knows nothing
about the world can roughly localize the sound source [38],
[39], which shows that spatial information alone is sufficient
for humans to locate sounds. Inspired by the research above,
we argue that in AudioGoal navigation tasks for intelligent
agents, spatial information of the sound is enough for locating
and perceiving the sound. While semantic information changes
with the sound categories, it increases the difficulty for agents
to learn generalizable semantic representations. Moreover, for
some atypical scenes (e.g., guard robots facing odd sounds),
sounds and scenes are not closely related. Therefore, learning
semantic-agnostic representations should not harm the navi-
gation performance on both heard sound categories but could
enhance the generalization of unheard sound categories.

Concretely, learning semantic-agnostic representations
means that, with an agent fixed in a certain location and
sound source in another certain location, the method outputs
the same representation when taking sounds with different
semantics. To equip the representations learned by the method
with the semantic-agnostic property, we design an auxiliary
task in which an audio encoder needs to weaken the ability of
the audio classifier to distinguish the current sound semantic
category while the audio classifier attempts to distinguish the
sound semantic category corresponding to an audio feature.
The adversarial training forces the audio encoder to learn
semantic-irrelevant representations.

Therefore, we use an adversarial mechanism between an
audio encoder parameterized by θA and a 4-layer fully

connected network audio classifier (AC) parameterized by θC .
To implement this adversarial mechanism, we employ a gradient
reversal layer [40] between the audio classifier and the audio
encoder by multiplying a factor −λ on gradient flow reflecting
the adversarial intensity:

λ =
2b

1.0 + e−10∗
n
N
− b (1)

where n denotes the number of currently completed episodes,
N denotes the number of total episodes and b denotes the bound
of the adversarial intensity. And the parameters are optimized
as follows:

θC ←− θC − μ
∂LC

∂θC
(2)

θA ←− θA − μ

(
∂LO

∂θA
− λ

∂LC

∂θA

)
(3)

where μ denotes the learning rate, LC denotes Cross Entropy
Loss, and LO denotes other loss related to θA such as Actor and
Critic Loss in reinforcement learning.

B. Spatial-Aware Learning

Semantic-agnostic learning ignores navigation-irrelevant in-
formation but does not encourage the agent to learn navigation-
relevant representations. Although reinforcement learning pro-
vides reward signals to help the agent extract navigation-relevant
features, during the initial exploration phase, the agent may not
catch sight of reward signals but can rapidly learn neglecting the
semantic information of the sound from the adversarial audio
classifier to minimize the adversarial optimization objective.
This rapid learning could lead to the audio encoder incorrectly
ignoring spatial information as well, resulting in its output being
insensitive to changes in the agent’s position. On this occasion,
the agent cannot navigate to the sound source. Predicting sound
location as an auxiliary task can effectively provide an additional
training signal to help the agent extract spatial information and
assist in navigation policy learning.

We use a 4-layer fully connected network as the location
predictor (LP) with temporal features generated by a Time-series
Model as input to predict the pitch and yaw angles of the sound
source relative to the agent, denoted as β and α in Fig. 1,
respectively. In practice, we do not predict the angle directly
but predict the sine and cosine of the angle. The sine and cosine
predictions avoid the periodicity of the angle that leads to the
non-uniqueness. We use the Mean-Squared Loss as the auxiliary
loss function. The gradients generated by the loss of the LP are
utilized to update the Audio Encoder, the Visual Encoder, and
the Time-series Model. These models can thus learn to extract
features containing spatial information for RL’s actor and critic
to learn navigation policy better.

C. Training Details

We use SoundSpaces [10] as our simulator, enabling realistic
audio rendering. The SoundSpaces simulator discretizes scenes
into uniformly distributed navigability graphs so that the agent
can only move one node to a naviagble neighboring node in the
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TABLE I
TESTING RESULTS ON HEARD AND UNHEARD SOUND CATEGORIES

Fig. 1. Problem Setting. The robot should navigate to the sound source location
with the visual-audio observation, no matter what category of sound is being
played. In this example, the agent is in the bedroom initially and locates the
sound in its front-left direction. α and β are the yaw and pitch angles of the
sound source relative to the agent.

graphs. Where there are obstacles there are no nodes. Thus the
action space A has only four actions: MoveForward, TurnLeft,
TurnRight and Stop. The Soundspace removes episodes where
the distance from the start position to the target position is less
than 4 m and episodes where the shortest path is almost a straight
line (ratio of geodesic to Euclidean distance less than 1.1).

Since we apply our method on AV-Nav [10] and AV-Wan [11],
we follow the design of their reward function, in which the agent
is given a +10 reward if the agent executes action Stop at the
sound source location, +1 reward on AV-Nav or +0.25 reward
on AV-Wan if the agent reduces the geodesic distance to the
sound source location and an equivalent penalty if the agent
increases the geodesic distance and −0.01 for time penalty.

We train all learnable models jointly with Proximal Policy
Optimization (PPO) [41]. Each episode contains 150 steps, and
the success criterion is met if the agent executes the action Stop
at the sound position in 150 steps.

IV. EXPERIMENTAL RESULTS

A. Experiment Settings

Environments and Datasets: We use the same audio and visual
dataset and train/val/test splits as AV-Nav [10] and AV-Wan [11]
to demonstrate the improvement of our method. We use the same
simulator, SoundSpaces [10], with two real-world 3D scene
datasets, Replica and Matterport3D (MP3D), for training and
testing our method along with train/val/test splits of 73/11/18

TABLE II
ABLATION STUDY FOR OUR METHOD ON AV-NAV

sound categories. Replica is a relatively small scene dataset
with an average area of 47.24 m2 and train/val/test splits of
9/4/5 scenes. Matterport3D has relatively large scenes with an
average area of 517.34 m2 and train/val/test splits of 57/10/12
scenes. We also follow basic configuration and hyper-parameters
from AV-Nav and AV-Wan and only use depth maps as visual
information.

Metrics: We evaluate our method on the following metrics:
1) Success Rate (SR): the fraction of successful episodes.
2) Success Weighted by Path Length (SPL) [42]: we weigh

the success by the ratio of the execution path length to the
shortest path length.

3) Success Weighted by Number of Actions (SNA) [11]: we
weigh the success by the ratio of the executive action
numbers to the minor action numbers.

We use the model with the highest SPL on the validation set
for testing and reporting the table results.

Baselines: We compare our methods with the following base-
lines:

1) Random: An agent randomly selects an action in action
space A. The episode ends when executing Stop.
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Fig. 2. Training Pipeline. At each time step t, our method uses depth images (Dt) and spectrograms (At) as inputs for navigation. During the training procedure,
an Audio Classifier (AC, parameterized by θC ) enforces the model to neglect semantic information via adversarial training supervised by LC . Concurrently, the
temporal features (Ot) are given to a Location Predictor (LP) to pull out the sound source direction (α, β) supervised by LP . α and β are the yaw and pitch angles
of the sound source relative to the agent. Action Selection samples from the probability distribution generated by Actor to obtain action at. After executing at in
the environment, the environment returns a reward signal rt. At the end of each RL epoch, we train the Audio Encoder (parameterized by θA), the Audio Classifier
and the Location Predictor simultaneously.

2) Direction Follower(DF) [11]: This method pretrains a
model to predict the direction of arrival (DoA). An agent
sets an intermediate goal K meters away in the predicted
direction and plans to navigate there. We set K = 2 in
Replica and K = 4 in Matterport3D.

3) AV-Nav [10]: It is a state-of-the-art VAN method that
makes decisions using visual-audio fusion features with
temporal sequences.

4) AV-Wan [11]: It is a state-of-the-art VAN method that
builds geometric and acoustic maps and uses them to
predict an intermediate goal adaptively. AV-Wan uses the
Dijkstra [43] shortest path algorithm to compute the path
from the current node to the intermediate goal.

B. Quantitative Comparison

We apply our method on AV-Nav [10] and AV-Wan [11] and
test baselines and our method referred by Ours+AV-Nav and
Ours+AV-Wan on unheard sound categories in Table I.

Random performs poorly on both datasets, showing that the
difficulty of the task and the robot is supposed to make good use
of visual and audio cues. Direction Follower uses only audio in-
formation for decision making, while visual information is only
used for path planning, so Direction Follower performs worse
than the method that fuses information from both modalities to
make decisions.

After applying our method, AV-Nav and AV-Wan achieve sig-
nificant improvements on Replica and Matterport3D datasets on

unheard sound categories, proving that our method works well
for different backbone algorithms and datasets. In particular,
on Replica, our method gains about 50% SPL improvement
on the previous works. The results on AV-Nav and AV-Wan
demonstrate the advantages of our method where we optimize
the features and represent them in a more task-specific manner.
We also test our method on heard sound categories, shown in
Table I. The results show that our method improves perfor-
mance slightly, showing that our method does not trade per-
formance on the heard sound categories for generalizability by
impairing it.

Considering that there exist domain gaps between the real
world and the simulator, such as audio and depth noise, we add
these two parts of noise to the environment to simulate the real
world and demonstrate the robustness of our method following
the setting of audio noise and depth noise from AV-Wan [11].
We conducted experiments on noise levels ranging from 20 to
50, with intervals of 10. Notice that, while AV-Wan [11] only use
telephone in the noise experiments as the target sound, our work
focuses on the generalization ability towards unheard sound
categories, so we use all the sound categories in the testing set
as target sounds instead. The results are shown in Table III. Note
that even with different noise levels, our method still improves
the performance of the previous works. With different levels
of noise, the performance of our method shows no significant
degradation and exhibits strong robustness. The robustness to
noise can indicate that our method has the potential to be used
in the real world.
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Fig. 3. Learning Curve on testing sets. We plot the testing results of the previous works and ours during training in both Replica and MatterPort3D environments
with AV-Nav and AV-Wan as backbones, respectively. We plot a horizon dashed purple line across the highest SPL value of the previous works as a benchmark.
We also draw vertical dashed lines for the previous works and ours in their corresponding colors, to indicate where their SPL values are greater than or equal to the
benchmark for the first time. Our method can outperform the previous works with fewer training samples.

Fig. 4. Trajectory Visualization for different sound categories. We visualized agent trajectories using our method and AV-Nav, respectively with the same set
of start and end position episodes in the same scene. In each episode, the agent needs to navigate from the yellow point to the red point. The name at the bottom
represents the category of sound, which means that each column has a different sound. Agent path fades from dark blue to light blue as time goes by. Green is the
shortest geodesic path in continuous space. We aim to show that our method yields the same trajectory for different sound categories, which shows that the features
we learn are indeed semantic-agnostic. The first row shows our results, and the second row is the results from AV-Nav. AV-Nav may fail in some episodes, e.g., the
first three columns, and run quite differently when navigating to different sounds, while our method navigates to the goal in all four episodes and keep trajectory
consistent in these episodes.

C. Sample Efficiency and Learning Curve

To demonstrate our method’s high sample efficiency, we
show the learning curves on the testing set on the Replica and
MatterPort3D with both AV-Nav and AV-Wan as backbones.
Fig. 3 shows that our method can achieve higher performance
than the final results of the previous works, with fewer samples
than the previous works needs to converge. We compare the
number of samples required by ours and the previous works,
using the highest point of the previous works as a benchmark. In
Fig. 3(a), (c), and (d), our methods require fewer samples, and
the performance still grows as the samples grow. In Fig. 3(b),
although there is no significant sample difference between ours
and the previous works, our method is more stable in the later
stages and the performance continues to grow.

D. Trajectory Visualizations

We visualize the trajectories using our method and AV-Nav
under four categories of sounds, shown in Fig. 4. We refer

to the same start agent position and the same sound source
location within the same scene as the same task. To view the
trajectory generation process, please watch the attached video. In
the first line of Fig. 4, our method can come out of the trajectory
equivalent to the shortest path in various sounds consistent
with each other. In the second line, however, AV-Nav either
fails to complete the task or the trajectory is very complex and
inconsistent.

We also visualize the trajectories in different scenes, shown
in Fig. 5. Our method can generate more efficient trajectories
within different scenes than AV-Nav.

E. Ablation Studies and Analysis

Table II shows the ablation results of the audio classifier
and the location predictor components of our method. Remov-
ing either the audio classifier or the location predictor leads
to a reduction in performance. Notably, reducing the location
predictor hurts the performance more than reducing the audio
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Fig. 5. Trajectory Visualization for Different Scenes. We visualized navigation trajectories using our method and AV-Nav in various scenes. The name at the
bottom represents the scene. In each episode, the agent needs to navigate from the yellow point to the red point. Agent path fades from dark blue to light blue as
time goes by. Green is the shortest geodesic path in continuous space. The first row shows our results, and the second row is the results from AV-Nav. AV-Nav may
fail in some episodes, e.g., the second and third column, or take a complex route, e.g., the first, third, and fourth column. Our method finds a good path to the end
point in all four episodes.

TABLE III
AUDIO NOISE EXPERIMENTS

classifier does in Matterport3D. Compared to Replica, scenes
in Matterport3D have bigger areas; thus, spatial information is
more helpful in completing tasks in Matterport3D.

In addition, the audio classifier provides an adversarial train-
ing mechanism, which implicitly boosts the model’s generaliza-
tion by forcing the model to ignore the semantic information
of the audio inputs. Meanwhile, the model can benefit from
the auxiliary localization task’s additional training signals and
directly improve navigation performance.

V. CONCLUSION AND DISCUSSION

This work focuses on the generalization and sample efficiency
problem for VAN tasks. The different properties of spatial and
semantic information inspired us to reduce the generalization
gap between unheard and heard sound categories and learn
task-relevant representations fast. Therefore, we propose a plug-
and-play method to narrow the performance gap on unheard
and heard sound categories by neglecting semantic information
while enhancing spatial information. Evaluations on Replica and
Matterport3D show that our method significantly outperforms
the baseline on the unheard sound categories and slightly im-
proves the heard sound categories. Learning curves show that
our method has better sample efficiency than baselines. We also
conducted audio and depth noise experiments to demonstrate
the robustness of our method to depth image noise and varying

levels of audio noise. The results show that our method performs
well even with noisy inputs.

In the future, we will further explore the methods to enhance
the generalization in more challenging visual-audio navigation
settings, e.g., real-world development and complex environ-
ments. 1) Real-world development (sim2real transfer) involves
the challenging task of transferring reinforcement learning mod-
els trained in simulated environments to real robots. Due to
the significant sim2real gap in both audio and visual modal-
ities, conducting experiments in the real world remains diffi-
cult. To overcome this challenge, we must address the discrep-
ancy between simulation and reality and improve the model’s
generalization ability. One potential solution is to apply bi-
directional domain adaptation to align the feature distributions
of simulation and reality during training. Additionally, exploring
meta-reinforcement learning algorithms may enable the agent to
efficiently mitigate domain drift during test time. 2) In complex
environments, the agent must handle interference from multiple
sound sources and uncertainty from moving sound. To tackle
scenarios with multiple sound sources at similar volume levels,
we can leverage semantic information and sound source separa-
tion algorithms [44], [45] to filter out the target sound source as
input to the navigator. Moreover, we can augment the training
process with a multi-agent game [46] to automatically generate
diverse and challenging distracting or moving sources, further
enhancing the robustness of the system.
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