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A Recursive Lie-Group Formulation for the
Second-Order Time Derivatives of the Inverse
Dynamics of Parallel Kinematic Manipulators

Andreas Müller , Shivesh Kumar, and Thomas Kordik

Abstract—Series elastic actuators (SEA) were introduced for
serial robotic arms. Their model-based trajectory tracking control
requires the second time derivatives of the inverse dynamics so-
lution, for which algorithms were proposed. Trajectory control of
parallel kinematics manipulators (PKM) equipped with SEAs has
not yet been pursued. Key element for this is the computationally
efficient evaluation of the second time derivative of the inverse
dynamics solution. This has not been presented in the literature,
and is addressed in the present letter for the first time. The special
topology of PKM is exploited reusing the recursive algorithms
for evaluating the inverse dynamics of serial robots. A Lie group
formulation is used and all relations are derived within this frame-
work. Numerical results are presented for a 6-DOF Gough-Stewart
platform (as part of an exoskeleton), and for a planar PKM when
a flatness-based control scheme is applied.

Index Terms—Parallel kinematic manipulator (PKM), inverse
dynamics, series-elastic actuators (SEA), feedback linearization,
flatness-based control, O(n)-algorithm, Lie group SE(3).

I. INTRODUCTION

S ERIES elastic actuators (SEA) were introduced as actuation
concept for serial kinematic robotic arms [1] as a means to

provide inherent compliance (a key characteristics of collabora-
tive robots (cobots)). Lightweight arms were proposed in order
to reduce the moving mass. Along this line, parallel kinematics
manipulators (PKM) equipped with SEA possess lower moving
mass, and thus lower reflected inertia at the end-effector (EE),
compared to serial robots, which serves as criteria for safety
assessment [2], [3], [4]. They would hence be perfectly suited as
inherently compliant agile robotic manipulators and cobots. Yet,
SEA-actuated PKM (SEA-PKM) have exclusively been used as
force-controlled support devices [5], [6], [7]. The dynamics of
SEA-PKM is expressed as

MtV̇t +CtVt +Wgrav
t = JT

IKu (1)
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Mmq̈m = τττ − u (2)

where the equations of motion (EOM) (1) govern the PKM
dynamics in task space (see Section III), and (2) the actuator dy-
namics, with Mm = diag(m1, . . .mna

) defined by the reduced
inertia moment mi of the ith drive unit, and the vector τττ of
actuator torques/forces. Both are coupled via the elastic forces
u = K(qm − ϑa), where K = diag(k1, . . . kna

) describes the
SEA compliance, with stiffness coefficient ki associated to drive
i. Here ϑa denotes the coordinate vector with the na actuated
joints, qm the vector of na motor coordinates, and Vt the task
space velocity of the platform. The PKM mechanism is actuated
by the elastic forces u, which are transformed to task space with
the inverse kinematics Jacobian JIK (i.e. ϑ̇a = JIKVt).

Problem: Position and trajectory tracking control of SEA-
driven robots necessitate model-based feedforward control.
Flatness-based exact feedback linearization control methods are
well established for SEA-actuated serial robotic arms [8], [9],
[10]. Since the model (1), (2) is formally identical to that of
SEA-actuated serial robots (except the IK Jacobian), they can
be directly adopted to SEA-PKM. The EE (task space) motion is
used as flat output, and it is known that the vector relative degree
of this control system with input τττ is {4, . . . , 4}, and {3, . . . , 3}
if damping is included in (2). That is, the PKM state and the input
τττ can be expressed in terms of EE pose, task space velocity Vt,
and its time derivatives V̇t, V̈t,

...
Vt. To this end, (1) is solved for

qm. Substituting this solution, and its second time derivative in
(2) yields τττ , which serves as feed-forward control. The crucial
aspect of the flatness-based control is that it involves the first
and second time derivative of the EOM (1). For serial robotic
arms, recursive second-order inverse dynamicsO(n) algorithms
were proposed [11], [12] using classical vector formulations
of rigid body kinematics. Recursive Lie group formulations
were proposed in [13], [14] employing compact expressions
for rigid body twists complementing the inverse dynamics al-
gorithms in [15], [16], which can be seen as generalization of
the spatial vector algebra [17], [18]. Also a closed form Lie
group formulation was reported in [19]. All these approaches for
serial kinematics robots are direct extensions of recursive inverse
dynamics formulations. In contrast, the derivatives of the inverse
dynamics solution for PKM is more involved due to the presence
of loop constraints. The latter can be resolved and incorporated in
the EOM in various different ways, and the modeling approach
dictates the complexity of the higher-order inverse dynamics
algorithm, which is thus crucial to for development of SEA-PKM
into robotic manipulators. The best suited modeling method is
the one proposed for non-redundant fully parallel PKM with
simple limbs reported in [20], [21] and [22]. In this method,
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each limb is regarded as a serial chain, and their motion is
expressed in terms of the platform motion by means of the
inverse kinematics solution of each limb. For each limb, this
resembles a task space formulation of serial robots. This was
developed into a task space formulation for general redundant
PKM with simple limbs in [23] and with complex limbs in [24],
[25] using a Lie group framework (although the basic concept
does not depend on it). The important implication is that the
higher-order inverse dynamics problem boils down to merging
the higher-order inverse dynamics of the individual limbs with
the higher-order inverse kinematics of the PKM.

Contribution: In this letter, for the first time in the literature,
a second-order inverse dynamics algorithm for computing the
second time derivative of (1) for non-redundant PKM with sim-
ple limbs is proposed. It builds upon the dynamics formulation
introduced in [23], [24] and the recursive inverse dynamics
algorithms for serial robots introduced in [13], [14] using a
Lie group formulation. For an accessible introduction to the
general Lie group formulation, the reader is referred to [16],
[26], while a summary of the particular formulation used in this
letter can be found in [27], [28]. Due to space limitation, the
algorithm is presented for kinematically non-redundant PKM
only, while it is applicable to general fully parallel PKM. The
actual (flatness-based) control using the presented second-order
inverse dynamics solution will be topic of a forthcoming publica-
tion. This letter provides the algorithmic foundation, as [8]-[14]
do for serial robots.

Organization: Section II recalls the kinematic modeling of
PKM emphasizing that a single limb can be treated as a serial
kinematic chain. The closed form inverse dynamics formulation
is summarized and expressed in a form suited for computing
time derivatives in Section III. The new algorithm for computing
the 4th time derivatives of the inverse and forward kinematics
is presented in Section IV, which is then used for the second
time derivative of the inverse dynamics in Section V. Numerical
results are presented in Section VI for a 6UPS Gough-Stewart
platform (GSP) and a planar 2-DOF 3 RRR PKM. Outlook and
suggestions for future research are given in Section VII.

II. KINEMATICS

A. Kinematic Topology

A fully parallel PKM consists of a moving platform connected
to the fixed platform (ground) by L limbs. Each limb is (in
this letter) a serial kinematic chain (therefore called simple). A
typical example is the GSP whose topological graph is shown
in Fig. 1(a). Following the common convention, technical joints
are modeled as combination of 1-DOF joints, so that each limb
l = 1, . . . , L comprises Nl = 6 joints (edges). Topologically,
the PKM consists of L congruent sub-graphs connected to the
platform, one is shown in Fig. 1(b). This gives rise to a tailored
kinematics modeling, where the kinematics of each sub-graph
is described in terms of the platform motion.

B. Forward and Inverse Kinematics of Limbs

Denote with ϑ(l) ∈ V
Nl the vector of Nl joint coordinates of

limb l when connected to the platform. The velocity ’forward
kinematics’ of limb l gives the platform twist Vp in terms of the
6×Nl forward kinematics Jacobian of limb l

Vp = Jp(l)ϑ̇(l). (3)

Fig. 1. (a) Topological graph of a Gough-Stewart platform. (b) Sub-graph
corresponding to one limb including platform.

This relates platform twist and joint rates ϑ̇(l) when the platform
is connected only to the separated limb l.

The platform of the PKM, i.e. when connected to all limbs, has
DOF δp ≤ Nl, and only δp components of Vp are independent.
The task space velocityvector Vt is introduced accordingly
comprising the δp relevant components of the platform twist
Vp. This is formally expressed as

Vp = PpVt (4)

with a unimodular 6× δp velocity distribution matrixPp, which
assigns the δp components of the task space velocity to the
components of the platform twist. This relates platform twist
and task space velocity. The latter is used in the task space
formulation of EOM. The intermediate step via the platform
twist is crucial to account for general PKM.

Consider the platform when only connected to limb l. The
platform has DOF δp(l) ≥ δp, which is the generic rank of Jp(l),
whereas the serial chain has DOF Nl ≥ δp(l). If δp(l) = δp, the
PKM is called equimobile [23], [24], i.e. there is a δp(l) ×Nl

submatrix Jt(l) of Jp(l) so that Vt = Jt(l)ϑ̇(l). For a non-
equimobile PKM (δp(l) > δp, i.e. the platform has a different
mobility when connected to the kinematic chain of a single limb
and when connected to all limbs), only δp(l) rows correspond
to the task space velocity, while the remaining δp(l) − δp rows
represent constraints on the platform motion. This is expressed
with help of a δp(l) × δp velocity distribution matrix Dt(l) so
that

Dt(l)Vt = Jt(l)ϑ̇(l). (5)

The δp(l) ×Nl matrix Jt(l) is the task space Jacobian of limb l,
formally defined as Jt(l) := Pt(l)Jp(l), with δp(l) × 6 selection
matrix Pt(l). The latter simply extracts the relevant rows from
the forward kinematics Jacobian. Throughout the letter, it is
assumed that the PKM is kinematically non-redundant, i.e.
δp(l) = Nl, and Jt(l) is a full rank Nl ×Nl matrix, implying
that the mechanism DOF δ is equal to δp.

Introducing the inverse kinematics Jacobian of limb l,F(l) :=

J−1
t(l)Dt(l), the solution of the inverse kinematics problem at

velocity and acceleration level is, respectively,

ϑ̇(l) = F(l)Vt, with F(l) := J−1
t(l)Dt(l) (6)

ϑ̈(l) = F(l)V̇t + Ḟt(l)Vt. (7)
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Fig. 2. (a) Tree-topology model of Gough-Stewart PKM. Platform connected
to one limb. (b) Corresponding spanning tree.

C. Kinematics of Associated Tree-Topology System

A tree-topology system is introduced by eliminating cut-
joints, which is a standard approach in multibody dynamics [18],
[29], [30]. A fully parallel PKM possesses L− 1 fundamental
cycles. Taking into account the special topology of PKM, the
L− 1 joints connecting the platform to the respective limb are
selected as cut-joints. That is, a spanning tree is introduced so
that the platform is the leaf of one serial chain, i.e. the platform
remains attached to one limb while it is disconnected from the
remaining L− 1 limbs. W.l.o.g., limbs l = 1, . . . , L− 1 are cut
off from the platform. In the tree-topology system, the platform
is then connected to limb L, shown in Fig. 2 for the 6-DOF GSP.

Denote with ϑ̄(l) ∈ V
nl the nl tree-joint coordinates of limb

l = 1, . . . , L− 1 when disconnected from the platform (this is
ϑ(l) with variables of the cut joint connecting to the platform
removed), and with F̄(l) the nl × δp submatrix of J−1

t(l) obtained
by eliminating the rows corresponding to the variables of the cut-
joint connecting the limb to the platform. Then ˙̄ϑ(l) = F̄(l)Vt.
In case of the GSP, the 3-DOF spherical joints are cut, and the
remaining L− 1 chains have nl = 3 joint coordinates. Limb L
does not contain cut-joints, and comprises the platform in the
tree-topology, so that ϑ̄(L) = ϑ(L) are the corresponding NL

tree-joint coordinates.
Summarizing the tree-joint coordinates of all limbs, i.e.

˙̄ϑ(l), l = 1, . . . , L− 1 and ϑ̇(L), in ˙̄ϑ, and the corresponding in-
verse kinematics Jacobians, i.e. F̄(l), i = 1, . . . , L− 1 andF(L),
of the limbs in F̄, gives rise to the velocity inverse kinematics
solution of the tree-topology mechanism

˙̄ϑ = F̄Vt (8)

which determines all tree-joint velocities in terms of the task
space velocity satisfying the loop constraints.

The velocity inverse kinematics of the PKM is expressed by
means of the inverse kinematics Jacobian JIK as

ϑ̇a = JIKVt (9)

where vector ϑa comprises the coordinates ϑi(l) corresponding
to the actuated joints. For non-redundantly actuated PKM, ϑa

are generalized coordinates. For many PKM with simple limbs
(serial chains), the inverse kinematics Jacobian can be deter-
mined easily [21], [31] (see Table 6 in [32]). For PKM with
complex limbs, this is more involved [24], [25]. With the above
inverse kinematics solution of the mechanism (8), the inverse
kinematics of the PKM is already available, however. The IK

Jacobian consists of the rows of F̄ corresponding to the actuated
joints. This will be exploited when computing derivatives.

III. CLOSED-FORM INVERSE DYNAMICS OF PKM

To derive the dynamics EOM of the PKM, the EOM of the
tree-topology system introduced above are derived first, and
the constraints are imposed using the above inverse kinematics
solution. The EOM of the tree-topology system split into the
EOM of the L individual limbs.

A. Joint Space Formulation of EOM of Individual Limbs

The EOM of limb l = 1, . . . , L can be written in the standard
form, as for any tree-topology MBS, as

M̄(l)
¨̄ϑ(l) + C̄(l)

˙̄ϑ(l) + Q̄grav
(l) = Q̄(l) (10)

where M̄(l)(ϑ̄(l)) is the generalized mass matrix,

C̄(l)(ϑ̄(l),
˙̄ϑ(l)) the generalized Coriolis/centrifugal matrix,

Q̄grav
(l) (ϑ̄(l)) generalized forces due to gravity, and Q̄(l)

represents all applied forces including actuation forces.
Friction, contact, and other forces are omitted, for simplicity.
Expression (10) is indeed the EOM of a serial robot. These
equations possess compact closed form expressions that were
formalized by means of the spatial operator algebra [18], [33],
[34], which is conceptually similar to the natural orthogonal
complement approach [20], [35]. Using matrix Lie group
methods, all expressions are intrinsically given in terms of the
screw coordinates and frame transformation matrices [16], [28].
These equations can also be evaluated with O(nl) complexity
using recursive Lie group algorithms [15], [16] that will be
employed for the higher-order inverse dynamics in Section IV
and V.

B. Task Space Formulation of EOM in Closed Form

If the PKM is kinematically non-redundant, δ = δp, the PKM
motion is determined by the platform motion. Then the EOM
(10) govern the dynamics of a separated limb. The overall task
space formulation of EOM of the PKM is (omitting EE-loads)
given in (1) with the δ × δ generalized mass matrix and Corio-
lis/centrifugal matrix

Mt(ϑ) :=

L∑
l=1

F̄T
(l)M̄(l)F̄(l) (11)

Ct(ϑ, ϑ̇) :=

L∑
l=1

F̄T
(l)(C̄(l)F̄(l) + M̄(l)

˙̄F(l)). (12)

The generalized forces due to gravity are

Wgrav
t (ϑ) :=

L∑
l=1

F̄T
(l)Q̄

grav
(l) . (13)

C. Inverse Dynamics Formulation

The inverse dynamics problem is to compute the actuation
forces u for given motion of the PKM and applied wrenches.
Instead of using the closed form EOM (1), the inverse dynamics
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solution is expressed as

u = J−T
IK

L∑
l=1

F̄T
(l)Q̄(l)(ϑ(l), ϑ̇(l), ϑ̈(l)) (14)

using the inverse kinematics solution (6) and (7), with the EOM
(10) of the limbs. The advantage of this form is that it allows
for separate evaluation of the dynamics EOM of the limbs, of
their inverse kinematics solution, and of the inverse kinematics
JacobianJIK, respectively the forward kinematics JacobianJ−1

IK .
This holds true for their time derivatives, which allows for
an efficient evaluation of the higher-order inverse dynamics as
described in the next section. Note that all terms in (10), and
(14), depend on ϑ and its derivatives.

IV. FOURTH-ORDER FORWARD/INVERSE KINEMATICS

Time derivatives of the inverse dynamics solution (14) ne-
cessitate derivatives of the EOM (10) as well as of the inverse
kinematics solution (6) of the limbs. When solving the ordinary
inverse dynamics problem of serial robots, the EOM of the
form (10) are evaluated using a recursive O(nl) algorithm. Any
such inverse dynamics algorithm, which takes joint variables ϑ,
velocities ϑ̇, and accelerations ϑ̈ as inputs, consists of a forward
kinematics loop and an inverse dynamics loop. In the forward
kinematics run, the configurations, velocities, and accelerations
of all bodies are computed. Solving this collectively for all limbs
is called the forward kinematics of the mechanism. The task
space formulation (10) additionally involves solving the inverse
kinematics problem of the mechanism, i.e. computing ϑ, ϑ̇, ϑ̈
from given platform motion, which means solving the inverse
kinematics of all limbs. The second-order inverse dynamics
additionally involves computing the third- and fourth-order in-
verse and forward kinematics solution. To this end, a combined
fourth-order forward/inverse kinematics O(Nl) algorithm is in-
troduced. Computation of derivatives of the inverse kinematics
Jacobian in (14) is discussed in Section V-B.

A. Derivatives of the Inverse Kinematics Solution of Limbs

Taking derivatives of (5), and solving for the highest derivative
of ϑ(l), yields the ν-th time derivative of the inverse kinematics
solution (6) of limb l

dν

dtν
ϑ(l) = F(l)

dν−1

dtν−1
Vt − J−1

t(l)Pt(l)c
ν
(l) (15)

with cν(l) :=
ν−1∑
k=1

(
ν−1
k

) dk
dtk

Jp(l)
dν−k

dtν−k
ϑ(l). (16)

For derivatives up to order ν = 4, these are

c2(l) := J̇p(l)ϑ̇(l), c
3
(l) := J̈p(l)ϑ̇(l) + 2J̇p(l)ϑ̈(l) (17)

c4(l) :=
...
Jp(l)ϑ̇(l) + 2J̈p(l)ϑ̈(l) + 3J̇p(l)

...
ϑ(l). (18)

Computing inverse kinematics derivatives boils down to the
inversion of the task space Jacobian and computing derivatives
of the forward kinematics Jacobians of the limbs. They admit
the closed form expressions (23)–(25), see appendix.

B. Recursive forward/inverse Kinematics Algorithm

The second-order inverse dynamics involves solving the
4th-order inverse kinematics of the mechanism (computing

ϑ̇(l), . . . ,
¨̈
ϑ(l) from Vt, . . . ,

...
Vt) and the forward kinematics

of the mechanism (computing all body twists Vi(l), . . . ,
...
Vi(l)

from ϑ̇(l), . . . ,
¨̈
ϑ(l)). Both are computed together in a single run.

Recursive algorithms for computing the fourth-order forward
kinematics of serial chains were reported in [11], [12] using
classical vector formulations. In the following, the algorithm
introduced in [13] that uses the Lie group formulation from [27]
is complemented with the inverse kinematics. An introduction
to the Lie group formulation of serial chains in general can
be found in [16]. A brief summary of the notation is given in
the appendix. The homogenous transformation Ci(l) (not to be
confused with Ct in (12)) represents the absolute configuration
of body i of limb l relative to the inertial frame, Ci,i−1 is the
relative configuration of body i and i− 1, and Cp denotes the
absolute platform configuration relative to the inertial frame.

The algorithm consists of four subsequent loops. Input to
the first loop is the current PKM state (ϑ,Vt). Solving the
geometric inverse kinematics problem, computing ϑ from given
platform motion configuration Cp, is not the subject here, and ϑ
is assumed to be given. Denote with g the vector of gravitational
acceleration expressed in inertial frame, then the correspond-
ing acceleration screw of the ground is V̇0(l) = (0,g)T . The
algorithm is derived by splitting the forward kinematics run
presented in [13], necessary as the inverse kinematics must be
solved for each order first. Matrix AdCi,i−1

transforms a twist
from body i− 1 to body i, and adXY yields the Lie bracket of
X,Y ∈ R

6, also called ’spatial cross product’[18], [34]. Notice
that nL = NL.

1st-order Inverse and 0th-order Forward Kinematics
� Input: ϑ,Vt
� FOR l = 1, . . . , L DO (possible in parallel)

FOR i = 1, . . . , Nl (omitting subscript (l))
Ci = Ci−1Bi exp(Xiϑi)

compute Jp(l) with (22)
F(l) = J−1

t(l)Dt(l)

ϑ̇(l) = F(l)Vt (∗)

� Output: Jp(l),F(l), ϑ̇,Ci(l)

2nd-order Inverse and 1st-order Forward Kinematics
� Input: ϑ, ϑ̇, V̇t,Jp(l),F(l),Ci(l)
� FOR l = 1, . . . , L DO (possible in parallel)

FOR i = 1, . . . , Nl (omitting subscript (l))
Vi = AdCi,i−1

Vi−1 +Xiϑ̇i

compute J̇p(l),i with (23)
compute c2(l) with (17)

ϑ̈(l) = F(l)(V̇t − J−1
t(l)Pt(l)c

2
(l)) (∗)

� Output: ϑ̈,Vi

3rd-order Inverse and 2nd-order Forward Kinematics
� Input: ϑ, ϑ̇, ϑ̈, V̈t,Jp(l),F(l),Ci(l),Vi(l)
� FOR l = 1, . . . , L DO (possible in parallel)
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FOR i = 1, . . . , Nl (omitting subscript (l))
V̇i = AdCi,i−1

V̇i−1 − ϑ̇iadXi
Vi +Xiϑ̈i

compute J̈p(l),i with (24)
compute c3(l) with (17)
...
ϑ = F(l)(V̈t − J−1

t(l)Pt(l)c
3
(l)) (∗)

� Output:
...
ϑ, V̇i(l)

4th-order Inverse and 3rd-order Forward Kinematics
� Input: ϑ, ϑ̇, ϑ̈,

...
ϑ,

...
Vt,Jp(l),F(l),Ci(l),Vi(l), V̇i(l)

� FOR l = 1, . . . , L DO (possible in parallel)

FOR i = 1, . . . , Nl (omitting subscript (l))
V̈i = AdCi,i−1

V̈i−1 +Xi

...
ϑi

−adXi
(ϑ̈iVi + 2ϑ̇iV̇i)− ϑ̇2

iad
2
Xi

Vi

compute
...
Jp(l),i with (25)

compute c4(l) with (18)
¨̈
ϑ = F(l)(

...
Vt − J−1

t(l)Pt(l)c
4
(l)) (∗)

� Output: ¨̈ϑ, V̈i(l)

4th-order Forward Kinematics
� Input: ϑ, ϑ̇, ϑ̈,

...
ϑ,

¨̈
ϑi,Jp(l),F(l),Ci(l),Vi(l), V̇i(l), V̈i(l)

� FOR l = 1, . . . , L DO (possible in parallel)

FOR i = 1, . . . , Nl

...
Vi = AdCi,i−1

...
Vi−1 +Xi

¨̈
ϑi

− adXi
(
...
ϑiVi + 3ϑ̈iV̇i + 3ϑ̇iV̈i)

− 3ϑ̇iad
2
Xi

(ϑ̈iVi + ϑ̇iV̇i)− ϑ̇3
iad

3
Xi

Vi

� Output:
...
Vi(l)

C. Computational Complexity

In contrast to the forward kinematics of serial robots, prior
to the ν th-order forward kinematics, the νth-order inverse
kinematic problem is solved (for which the (ν-1)st time deriva-
tive of Jt(l) is computed) separately for each order. The ν

th-order kinematics run (D(ν)ϑ �→ D(ν−1)Vi(l)) for limb l has
complexity O(Nl). Each run involves an expression a = F(l)b

with F(l) := J−1
t(l)Dt(l), indicted with (*), solving the νth-order

inverse kinematics problem (D(ν−1)Vt �→ D(ν)ϑ(l)). Inversion
of the δp × δp task space Jacobians is avoided by solving
Jt(l)b = Dt(l)a for b. LU-decompositions of Jt(l) are com-
puted before the kinematics runs, and reused for solving the four
equations (*). The total number of operations is L( 23δ

3
p + 8δ2p).

The overall complexity of the kinematics run is O(L ·Nl),
except for solving (*).

V. SECOND-ORDER INVERSE DYNAMICS

A. Derivatives of the Inverse Dynamics Solution

The first and second time derivative of the inverse dynamics
solution (14) are readily found as (omitting EE loads)

u̇ = J−T
IK

(
L∑

l=1

(
FT

(l)
˙̄Q(l) + ḞT

(l)Q̄(l)

)
− J̇T

IKu

)
(19)

ü = J−T
IK

(
L∑

l=1

(
FT

(l)
¨̄Q(l) + 2ḞT

(l)
˙̄Q(l) + F̈T

(l)Q̄(l)

)

−J̈T
IKu− 2J̇T

IKu̇
)

(20)

with Ḟ(l) = −F(l)J̇t(l)F(l) and F̈(l) = 2Ḟ(l)J̇t(l)Ḟ(l) −
F(l)J̈t(l)F(l). Noting that Jt(l) := Pt(l)Jp(l), the latter are
available with derivatives of Jp(l) in (23)-(25) in appendix.

B. Derivatives of Manipulator Inverse Kinematics Jacobian

The manipulator inverse kinematics Jacobian JIK consists of
the δ rows of the inverse kinematics Jacobians of the l limbs. That
is, each row of F(l) that corresponds to an actuated joint delivers
one row ofJ−1

IK . If each limb comprises one actuator, thenL = δ,
and each F(l) contributes one row. Thus the derivatives of JIK
are already available with the derivatives of F(l) above.

C. Recursive 2nd-Order O(nl) Inverse Dynamics Algorithm

Evaluating (20) involves computing derivatives of Q̄(l), i.e.
of the second-oder inverse dynamics solution of a serial kine-
matic chain. The advantage of the proposed higher-order inverse
dynamics method for PKM is that this evaluation is separated
from the kinematics modeling. Thus any computation scheme or
software that delivers the inverse dynamics solution derivatives
can be used (which may have any level of modeling detail
including flexibilities etc). Various recursive algorithms have
been proposed to evaluate the second time derivatives of the
EOM (10) of the limbs, e.g. [11], [12] . Lie group formulations
were proposed in [13], [14], which are coordinate-invariant and
compact, and thus easy to implement. In the following, the
inverse dynamics run of the algorithm in [13] is adopted. The
forward kinematics run is accomplished by the algorithm in
Section IV. Denoting with Mi the 6× 6 mass matrix of body i
expressed in the (arbitrary) body-fixed frame, and the interbody
wrenches with W̄i (merely algorithmic variables), the inverse
dynamics run is:

Inverse Dynamics
� Input: Ci(l),Vi(l), V̇i(l), V̈i(l),

...
Vi(l)

� FOR l = 1, . . . , L DO (possible in parallel)

FOR i = Nl − 1, . . . , 1 (omitting subscript (l))

W̄i = AdT
Ci+1,i

W̄i+1 +MiV̇i − adT
Vi

MiVi

˙̄Wi = AdT
Ci+1,i

( ˙̄Wi+1 − ϑ̇i+1ad
T
Xi+1

W̄i+1)

+ MiV̈i − adT
Vi

MiV̇i − adT
V̇i

MiVi

¨̄Wi = AdT
Ci+1,i

(
¨̄Wi+1 − 2ϑ̇i+1ad

T
Xi+1

˙̄Wi+1

+(ϑ̇2
i+1ad

2 T
Xi+1

− ϑ̈i+1ad
T
Xi+1

)W̄i+1

)
+ Mi

...
Vi − adT

Vi
MiV̈i − adT

V̈i
MiVi

− 2adT
V̇i

MiV̇i

Q̄i = XT
i W̄i,

˙̄Qi = XT
i

˙̄Wi,
¨̄Qi = XT

i
¨̄Wi

� Output: Q̄(l),
˙̄Q(l),

¨̄Q(l)
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Fig. 3. Inverse kinematics solution and animation of Gough-Stewart module
of the Recupera-Reha exoskeleton.

D. Computational Aspects

The computational effort for evaluating the inverse dynamics
of limb l is of orderO(nl), withnL = NL. The inverse dynamics
run is thus of order O(L · nl). The special topology of PKM
with structurally identical limbs can be exploited for an efficient
modular modeling, where the kinematic and dynamic EOM of
a prototypical limb are reused for all limbs [23]. The recursive
algorithm, it can be implemented once for a prototypical limb,
and L instances are used during the computation. A simple
example is shown in [36].

VI. EXAMPLES AND SIMULATION RESULTS

Implementation results are presented when the proposed al-
gorithm is applied to a 6 DOF GSP and 2 DOF planar PKM.
The algorithm was implemented in MATLAB.

A. Gough-Stewart Platform

The proposed method is applied to compute the second-order
inverse dynamics of a 6UPS GSP, which is used within the
torso of the Recupera-Reha exoskeleton [37]. The topology
information, joint screw coordinate vectors Xi, the relative
reference configurations Bi of all links, and the inertia data
Mi w.r.t. to the body-fixed frames are extracted from the
URDF description of the PKM. A pure roll motion of the
platform parameterized as θ(t) = −A cos(ωt) +A+ θmin with
magnitude A = (θmin − θmax)/2 and frequency ω = 2π

T , where
θmin = −0.5 rad, and θmax = 0.5 rad are the minimum and
maximum of the roll angle θ, and T = 1 s is the cycle time. The
actuator trajectories ϑa(t) obtained via the inverse kinematics
and the visualization of mechanism motion are shown in Fig. 3(a)
and (b), respectively, and their 3rd and 4th time derivatives in
Fig. The actuator forces u(t) and their second time derivatives
ü(t) are shown in 4. Fig. 5, respectively. The solutions u(t)

and ϑa(t), ϑ̇a(t), ϑ̈a(t) of the inverse kinematics respectively
inverse dynamics are computed with the already existing and
validated model. The higher order inverse kinematics and inverse
dynamics results were verified by numerically differentiating
u(t) and ϑ̈(t) twice. The O(n)-solution and the numerical
derivatives agree up to machine precision. As an indication of the
computational performance, the total CPU time spent for 10000
evaluations of the MATLAB implementation of the second order
inverse dynamics was measured on a standard laptop computer
with Intel Core i7-4810MQ CPU at 2.8 GHz. Executing 10000
calls, the average CPU time per call was 0.75 ms, which is suffi-
cient for real-time control applications. An order of magnitude

Fig. 4. Higher-order inverse kinematics solution.

Fig. 5. Higher-order inverse dynamics results.

Fig. 6. Planar 2-DOF 3-RRR SEA-PKM. Physical prototype and schematic
drawing.

reduction is expected from an optimized C++ implementation.
It is to be noted that no parallelization opportunities were ex-
ploited. It will also be interesting to compare the performance
with dedicate MBS codes. When modeled as MBS in terms of
relative coordinates, this example has a spanning tree with 21
DOF subjected to 15 independent constraints.

B. 2-DOF Planar 3RRR PKM

The SEA driven 2-DOF planar PKM in Fig. 6 is considered to
demonstrate the flatness-based control. The position of the EE
in the plane of motion is the output of this PKM, described by
its (x, y) -coordinates relative to the shown inertial frame (IFR).
The PKM is controlled by three actuators, and would thus be
redundantly actuated if the actuators were kinematically affixed
to the arms. Instead, each arm is mounted on the output shaft
of a SEA. The elastic coupling of output shaft and motor-gear
unit is modeled by a torsion spring with stiffness constant ki as
indicated in Fig. 6. Geometric and inertia parameter are deduced
from the CAD model, and motor specifications. The desired
trajectory represents a pick and place task, where the EE alter-
nates between two operating points as shown in Fig. 6. The EE
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Fig. 7. Results of flatness-based control in task space. Tracking error ex, ey ,
and actuator torques u1, u2, u3.

trajectory follows a sin2 time profile of the jerk. A quantization
of the joint angle encoder of 1/2000 is assumed, and white noise
with amplitude of 3 · 10−4m is added to model sensor noise.
Fig. 7 shows the EE tracking error and the actuation torques
of the flatness-based controller. When exact measurement and
feedback is assumed, perfect tracking is achieved. Experimental
results are reported in [38].

VII. CONCLUSION AND OUTLOOK

A recursive algorithm for efficient computation of first and
second time derivatives of the inverse dynamics solution of
non-redundant PKM with simple limbs (each limb a serial
chain) is presented, which also solves the higher-order inverse
kinematics problem. The Lie group framework is employed to
this end as it offers compact coordinate invariant expressions.
The formulation separates the overall kinematics of the PKM
and the dynamics of the individual limbs. It is exploits inverse
dynamics formulations for serial robots and a dedicated PKM
modeling approach. This algorithm has O(L · nl) complexity,
except for the inversion of the forward kinematics Jacobian. The
geometric inverse kinematics was not addressed as this depends
on the particular PKM. A Newton-Raphson can always be used,
however [25], [31].

The proposed formulation is a solution to a key challenge
in trajectory tracking control of SEA-PKM. The modularity
of the approach allows for further efficiency improvements,
in particular as it immediately allows for parallelization. The
exact computational effort of the recursive inverse dynamics
algorithm will be investigated in future research. The complexity
will be compared when using the closed form expression for
the inverse dynamics of the limbs [19]. Future work includes
extension of the second-order inverse dynamics algorithms to
PKM with complex limbs (limbs with closed loops). Further
possible extension of this work includes dealing with series-
parallel hybrid robots, e.g. in humanoids with series elastic
actuators [39], [40]. In addition to the Matlab implementation,
a C++ implementation of the generic version of the algorithm is
planned in Hybrid Robot Dynamics (HyRoDyn) [41] software
framework.

APPENDIX

LIE-GROUP MODELING OF KINEMATICS

The kinematics is described using the Lie group formulation
introduced in [24], [27], which is a variant of that reported
in [16]. For notation and background of the Lie group mod-
eling, refer to [16], [26], [42]. Denote with Ci(l) ∈ SE(3) the
configuration (pose) of body i = 1, . . . , Nl of limb l relative to a
spatial inertial frame, which is represented as 4× 4 homogenous
transformation matrices. It is determined by the product of

exponentials (omitting limb index (l))

Ci (ϑ) = B1 exp(X1ϑ1) · . . . ·Bi exp(Xiϑi) (21)

with the screw coordinate vector Xi ∈ R
6 of joint i represented

in the reference frame at body i, and Bi ∈ SE(3) is the con-
figuration of body i relative to body i− 1 in the zero reference
ϑ(l) = 0. The platform is the terminal body of each limb l with
Nl bodies, and its configuration is Cp(l) ≡ CNl(l). The con-
figuration of body i relative to the platform is Cp,i := C−1

p Ci.
The instantaneous screw coordinate vector of joint i = 1, . . . , Nl

expressed in platform frame is Jp(l),i = AdCp,i
Xi. This is

the i-th column of the 6×Nl geometric forward kinematics
Jacobian of limb l in (3)

Jp(l) =
(
AdCp,1

X1 AdCp,2
X2 · · · XNl

)
. (22)

Therein, AdCi,j
is the 6× 6 matrix transforming twist/screw

coordinates when expressed in the frame on body j to those
when expressed in the frame on body i. It is also called ‘com-
posite body transformation operator’ [33] or ’twist propagation
matrix’ [22]. Denote with ad the 6× 6 ’spatial cross product’
matrix [33], [34] describing the Lie bracket.

Lemma 1: The time derivatives of the geometric Jacobian
admit the closed form expressions (omitting limb index (l))

J̇p,i = −adΔVp,i
Jp,i (23)

J̈p,i =
(
ad2

ΔVp,i
− adΔV̇p,i

)
Jp,i (24)

...
Jp,i =

(
−ad3

ΔVp,i
+ 2adΔV̇p,i

adΔVp,i

+adadΔVp,i
ΔV̇p,i

− adΔV̈p,i

)
Jp,i (25)

with the twist of body i relative to the platform, represented in
the platform frame, and its derivatives given as

ΔVp,i = Vp −AdCp,i
Vi (26)

ΔV̇p,i = V̇p −AdCp,i
V̇i + adΔVp,i

Vp (27)

ΔV̈p,i = V̈p −AdCp,i
V̈i

+ adΔV̇p,i
(Vp −ΔVp,i)− ad2

ΔVp,i
Vp. (28)

Proof: The relation ȦdCp,i
= −adΔVp,i

AdCp,i
[27] app-

lied to Jp(l),i = AdCp,i
Xi, with constant Xi, yields (23).

Repeated application yields (23) and (24). With (26) follows
ΔV̇p,i=V̇p − ȦdCp,i

Vi −AdCp,i
V̇i=V̇p−AdCp,i

V̇i −
adVp

(Vp −AdCp,i
Vi) and hence (27). The second

derivative ΔV̈p,i = V̈p −AdCp,i
V̈i − adΔVp,i

AdCp,i
V̇i +

adΔV̇p,i
Vp + adΔVp,i

V̇p, can be reformulated to (28). �

List of main Symbols
� ϑ ∈ R

N - joint coordinate vector of PKM mechanism.
� ϑa ∈ R

na - joint variable vector of SEA-actuated joints.
� qm ∈ R

na - vector of joint variables of SEA-drive units.
� u ∈ R

na - drive torques/forces at SEA-actuated joints.
� Q̄(l) ∈ R

nl - vector of generalized forces of limb l.
� JIK - na × δp inverse kinematics Jacobian PKM.
� F(l) - nl × δp inverse kinematics Jacobian of limb l.
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� Ci ∈ SE(3) - absolute configuration of body i, i.e. relative
to the inertial frame (IFR).

� Bi ∈ SE(3) - reference configuration of body i relative to
its predecessor.

� Xi ∈ R
6 - screw coordinate vector (ray coordinates) of

joint i represented in the reference frame on body i.
� Vi ∈ R

6 - twist coordinate vector (ray coordinates) of body
i represented in body-frame i.

� Vt ∈ R
δp - task space velocity vector expressed in plat-

form frame.
� Wi ∈ R

6 - wrench coordinate vector (axis coordinates)
represented in body-frame i.

� AdCi,j
- 6× 6 twist transformation matrix, body j to i.

� Mi - 6× 6 body-fixed mass matrix of body i.
na - # actuated joints, N - total # joint variables, Nl - # joint

variables of limb l when connected to platform, nl - # tree-joint
variables of limb l (when disconnected from platform). δp - DOF
of PKM platform. δ - DOF of mechanism.
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