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ST-DepthNet: A Spatio-Temporal Deep Network for
Depth Completion Using a Single Non-Repetitive

Circular Scanning Lidar
Örkény Zováthi , Balázs Pálffy , Zsolt Jankó , and Csaba Benedek

Abstract—In this letter, we propose a novel depth image com-
pletion technique based on sparse consecutive measurements of a
non-repetitive circular scanning (NRCS) Lidar, demonstrating the
capabilities of a new, compact, and accessible sensor technology
for dense range mapping of highly dynamic scenes. Our deep net-
work called ST-DepthNet is composed of a spatio-temporally (ST)
extended U-Net architecture, which accepts a very sparse range
data sequence as input and produces a dense depth image stream
of the same field-of-view ensuring a high level of spatial details
and accuracy. For evaluation, we have constructed a new urban
dataset, that – to our best knowledge as the first open Benchmark
in this field – comprises various simulated and real-world NRCS
Lidar data samples, allowing us to simultaneously train our model
on synthetic data with Ground Truth, and to validate the result via
real NRCS Lidar measurements. Using this new dataset, we have
shown the superiority of our method against a densified depth map
obtained from the raw sensor stream, and against two independent
state-of-the-art deep-learning based Lidar-only depth completion
methods.

Index Terms—Deep learning for visual perception, visual
learning, range sensing.

I. INTRODUCTION

ACCURATE and dense depth map prediction is an essen-
tial problem in 3D scene understanding. In applications

such as dynamic environment analysis, 3D mapping, and vir-
tual city generation, depth information is often obtained from
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commercially available Lidar (light detection and ranging) sen-
sors as they are able to map their environment in real-time
by emitting multiple laser beams and receiving their returns.
However, the data captured by Lidars is often very sparse, while
its characteristics may vary depending on the sensors’ scanning
technology. In this context, depth completion algorithms need
to estimate dense depth images from the Lidar-acquired sparse
range measurements.

For dynamic environment perception and recognition tasks
such as advanced scene analysis and understanding, repetitive,
typically rotating multi-beam (RMB) Lidar sensors (e.g., Ouster
OS1 or Velodyne Puck models) [1] are commonly utilized
devices. RMB Lidars can produce real-time point cloud streams
(300 k-2M points/s), however, their measurements have low
spatial density, and their field of view (FoV) coverage is constant
through the whole scanning process: Their vertical resolution
is fixed by the number of the laser beams (16-128), while their
horizontal resolution depends on the sensor’s rotation frequency
(5–20 Hz).

Alternatively to RMB Lidars, recent non-repetitive circular
scanning (NRCS) Lidar sensors are also capable of providing
measurements for real-time scene analysis in robotics and au-
tonomous driving, at a significantly lower cost compared to
the RMB technology [2], by using single- or multi-line lasers
combined with high-speed scanning on a circular path. Unlike
RMB Lidars, NRCS Lidars (e.g., the Livox AVIA sensor) are
able to densely map large areas from a given scanning position
due to their special scanning technology which follows non-
repetitive e.g., rosetta patterns (Fig. 1). The main challenge is
here to efficiently balance between the spatial and the temporal
resolution of the recorded range data using a suitable integration
window [3].

On one hand, as shown in Fig. 2(a), allowing larger integration
time (tΔ > 1 s), the laser beams cover a higher proportion
(around 90%) of the FoV yielding high spatial measurement
resolution. However, the potential ego-motion of the Lidar’s
platform (e.g., vehicle or robot) and the dynamic objects in the
surrounding area induce various artifacts, such as blurred shapes
of the observed vehicles, pedestrians or buildings, which phe-
nomena complicate dynamic event analysis. On the other hand,
if the measurements are collected within a narrow time window
(e.g., in 200 ms) they are spatially more precise, however, the
resulting point clouds are notably sparse (around 48k points, up
to 40% FoV coverage), which fact yields a significant loss of
details across the spatial dimension of the FoV (see Fig. 2(b)).
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Fig. 1. Non-repetitive sampling strategy of the Livox AVIA NRCS Lidar. The
circular scanning produces typical rosetta patterns which are varying across
different time frames.

In this letter, we aim to overcome the above-mentioned chal-
lenges caused by the spatio-temporal trade-off of the NRCS
Lidar based perception, and propose a novel deep learning based
approach for densifying sparse NRCS Lidar data while keeping
its spatial accuracy high. Our proposed spatio-temporal (ST)
deep network called ST-DepthNet (Fig. 3) operates in the range
domain and expects as input multiple sparse depth maps captured
by a NRCS Lidar consecutively in time, with using a narrow
(i.e., 200 ms) integration window for each frame. As output,
the network provides a dense, high-quality range image of the
same FoV, which does not reflect the sensor’s original scanning
artifacts (i.e., visible trails of the circular scanning pattern). The
architecture of ST-DepthNet was directly designed to exploit
both spatial and temporal patterns in the input NRCS data for
depth completion, by extending a U-Net-like architecture [4],
[5] with Conv2DLSTM [6] layers.

We define the main contributions of the paper as follows:
� We propose a novel deep learning based solution called ST-

DepthNet, which extends the classical U-Net architecture
with a spatio-temporal downscaling branch for utilizing
consecutive sparse measurements captured by NRCS Li-
dars. Our model produces spatially precise high-density
depth data using a spatial upscaling branch following ef-
fective temporal pooling steps.

� We provide a new synthetic urban dataset called Livox-
Carla, which contains simulated NRCS Lidar data with
corresponding dense depth Ground Truth (GT) informa-
tion. We demonstrate that with the LivoxCarla dataset, we
are able to simulate realistic urban NRCS Lidar measure-
ments, which can provide a basis for training and evaluation
of methods developed for processing real NRCS sensor
data.

� We provide a real-life dataset called LivoxBudapest, which
contains real NRCS Lidar measurement data collected in
Budapest, Hungary, both in downtown and speedway areas,
by a sensor mounted on a moving vehicle. Testing with
the real measurements allows us to clearly demonstrate the
usability of our method trained on synthetic data in real-life
urban scenarios.

� We qualitatively and quantitatively evaluate the proposed
algorithm, and experimentally demonstrate its advantages

Fig. 2. A dynamic scene captured by a NRCS Lidar with different tΔ integra-
tion windows. A large integration time (a) induce several blurring artifacts, while
a narrow integration window (b) yields the loss of details. Blurred pedestrians
are marked by red ellipses.

against two state-of-the-art methods. We also share the
datasets and the source code of the proposed method with
the community.

II. RELATED WORK

In this section, we present a state-of-the-art study of depth
completion techniques and challenges. In the past few years,
research on Lidar-based approaches emerged as a hot topic in
the literature, due to the availability of popular public datasets
like the KITTI Depth Completion Benchmark [7].

The majority of the recent methods focus on completing
depth maps obtained from RMB Lidars fused with optical
images as guidance to recover the pixels with missing depth
measurements [8], [9]. However, optical images may not provide
eligible information in cases of sudden illumination changes [9]
or in low-light environments [10]. In these cases, depth com-
pletion must be performed solely based on sparse Lidar range
measurement samples, which includes significantly harder chal-
lenges [11].

First, without relying on external sources (e.g., high-
resolution RGB images), edges and other finely textured struc-
tures on the generated depth images are often missing, blurred
or distorted [11], [12]. In [11], global and local depth variations
are separated based on the fact that in the wavelet representation
of the images, the fine structures mainly appear in the high-
frequency domain while the global regions are defined by the
low-frequency coefficients. In order to exploit this phenomenon,
they introduce a frequency-based recurrent depth coefficient
refinement scheme. The difficulty of data upsampling near the
edges also appears in [12], where feature extraction by an edge
convolution layer is used to strengthen the precision at fine 3D
structures. In our approach, we recover the fine structures by
adding an appropriate edge-loss term [13] to our loss func-
tion, instead of performing edge enhancement by a dedicated
sub-network.

Second, a limitation of many existing depth completion net-
works is that they generate new range values for all image
pixels, instead of filling only the missing information [14].
Therefore the Implicit Lidar Network [14] learns the weights
of an interpolation function for 3D point cloud completion,
thus the original measurements are not modified and only the
missing points are estimated. For similar reasons, our solution
connects the last sparse input image to the output by a direct



3272 IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 8, NO. 6, JUNE 2023

Fig. 3. The architecture of the proposed ST-DepthNet network.

skip connection to force our proposed model to complete the
original sparse, but precise range map instead of overwriting it
with completely new values.

The most closely related methods to our approach that focus
on Lidar-only depth completion are [15] which effectively com-
bines morphological operations and bilateral filtering, and [10]
that investigates different sampling strategies for training a
generative adversarial network. However, as our experiments
show in Section IV, both approaches are highly sensitive to
the measurement characteristics of the applied Lidar sensor and
fail to accurately compensate for the irregular, non-repetitive
sampling pattern of NRCS Lidars. As NRCS Lidars are relatively
new to the market, to the best of our knowledge, this letter is the
first to provide a dataset and method utilizing information for
depth completion propagated from their measurements.

III. THE PROPOSED METHOD

The goal of the proposed solution is to produce a high-quality,
dense and spatially precise point cloud stream from measure-
ments of a single NRCS Lidar sensor. Our approach consists
of two main steps: First, the consecutive measurements of the
NRCS Lidar are grouped to form discrete time frames, using a
narrow, 200 ms integration window (up to 40% FoV coverage
in each frame). Thereafter, within a frame the distances of
the measured 3D field points from the sensor are assigned to
corresponding pixels in a high-resolution range image. By each
actual time frame, the last five collected depth images (covering
together around 95% of the FoV) are fed to the ST-DepthNet
depth completion network, which composes a high-quality range
image as output, with almost 100% FoV coverage, also eliminat-
ing the motion blurring artifacts. The output high-quality range
image can be backprojected to the 3D space as well.

A. Range Image Generation

Range images are widely used, compact representations of
Lidar-based depth measurements [1], [3], [16], which enable

to adopt 2D convolution operations and effective image-based
neural network architectures [4], [6] during processing.

In our approach, the captured sparse point clouds (collected
within tΔ = 200 ms) are converted from the Cartesian (x, y, z)
to the spherical (distance, azimuth, elevation) polar coordinate
system. Then, a 2D pixel lattice is generated by quantizing
the horizontal (azimuth) and vertical (elevation) FoVs. In the
resulting range images, the horizontal and vertical pixel coor-
dinates represent the polar azimuth and elevation angles, while
the pixel’s depth value encodes the distance of the corresponding
point.

In our experiments, we exploit the parameters of the Livox
AVIA state-of-the-art NRCS Lidar sensor [3]. The sensor’s FoV
is mapped onto a 400× 400 pixel lattice, which resolution (5.6
px/◦) yields both high spatial accuracy and reasonable computa-
tional requirements. As experienced, the density of the recorded
valid range values is decreasing towards the peripheral regions
of the range image due to the nature of the circular scanning
technique: the scanning pattern crosses the optical center of the
sensor significantly more frequently, than the FoV’s perimeter,
making the central regions of the range images densely filled,
and leaving peripheral areas notably sparse (see Figs. 1 and 2).
As a result of using an integration time window of 200 ms for
collecting the consecutive time frames, around 60% of the range
image pixels receive undefined range values. Such a level of
sparseness of the range image makes it difficult to efficiently
visualize the data or to perform scene analysis, emerging the
need for the proposed depth estimation approach.

B. ST-DepthNet Architecture

Next, we use a range image sequence acquired by the NRCS
Lidar as input to the proposed ST-DepthNet deep network
(Fig. 3). As discussed earlier, sparse measurement frames col-
lected in 200 ms time windows cover only a low proportion of
the defined 400× 400 range image lattice. On the other hand,
using a 1 s time frame, the collected point set covers almost
fully the sensor’s FoV (Fig. 1), but it is affected by motion blur.
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Nevertheless, we can expect that the measurements from the last
1 s time interval always contain dense range information from the
scene. Thus to also prevent blurring, we take five consecutive,
“sparse” range images (each one recorded in 200 ms) as our
network’s input.

Since the main goal is to generate a high-quality output
image from the sparse range image inputs, we have adopted an
image-to-image U-Net [4] like architecture: More specifically,
we extended the downscaling part of a U-Net network enabling
to exploit temporal connections where the input is an image se-
quence, by utilizing Conv2DLSTM layers presented first in [6].
Let us introduce a regular Long-Short Term Memory (LSTM)
cell, which has a memory state Ct and a final state Ht. At each
timestep t, the memory is updated as a function of its current
input Xt, previous final state Ht−1 based on an input gate it,
while the propagation of its previous value Ct−1 depends on a
forget gate ft. The propagation of the memory state Ct to the
final stateHt depends on the output gate ot. In each dependency,
from state α to β, there is a weight term Wαβ and a bias term bα.
A Conv2DLSTM cell operates similarly to a regular LSTM cell,
with an extension that the input Xt, memory state Ct and final
state Ht with their respective gates (it, ft, ot) are 3D tensors –
with one temporal and two spatial dimensions – and both the
spatial and recurrent transformations are convolutional (marked
by ∗ in Equation system (1)) and not element-wise (marked by
◦), making it able to propagate spatio-temporal features:

Ct = ft ◦ Ct−1 + it ◦ tanh(Wxc ∗Xt +Whc ∗Ht−1 + bc)

it = σ(Wxi ∗Xt +Whi ∗Ht−1 +WciCt−1 + bi)

ft = σ(Wxf ∗Xt +Whf ∗Ht−1 +Wcf ◦ Ct−1 + bf

ot = σ(Wxo ∗Xt +Who ∗Ht−1 +Wco ◦ Ct + bo)

Ht = ot ◦ tanh(Ct) (1)

Hence, in our proposed approach, we keep a spatio-temporal
three-dimensional (two spatial and one temporal) downscaling
branch at the whole left side of the U-Net structure. On the
other hand, the upscaling branch of our proposed network is
purely two-dimensional, in order to accurately restore the single
output image of our interest. Skip connections at each level are
performed by recurrent pooling utilizing the last output of a
Conv2DLSTM layer which represents features of the last 200 ms
measurement.

Last but not least, we directly connect the last input image
to our output. With this modification, which is also supported
by our ablation experiments (see Section IV), we can exploit
that the last and most up-to-date input image contains spatially
precise points, and therefore, our network only has to learn the
missing regions of the range image [14].

C. Training Process

The proposed ST-DepthNet network is responsible for learn-
ing and predicting a high-density range image using a sparse
input range image sequence. To deal with the challenging arti-
facts presented in Section II, our loss function L is composed of
three main components.

First, we calculate the L1 Loss (LL1) as the mean absolute
error between the generated and the GT depth images to force
detailed, pixel-level accurate predictions. Second, we adopt the

Structure Similarity Index Measure (LSSIM) proposed by [17],
which quantifies the perceived difference in luminance, contrast
and structural information between the predicted and GT depth
images using a variety of known properties of the human visual
system. Third, we also utilize a smoothness or edge loss term
(LEDGE) specifically proposed for depth images by [13], which
induces sharp contours on the generated images, thus spatially
precise boundaries are enforced between objects in the 3D
space. Our final loss function can be expressed therefore as
follows:

L = α1LSSIM + α2LL1 + α3LEDGE. (2)

Following a parameter optimization step (see Section IV),
α1 = 0.7, α2 = 1.4 and α3 = 1.5 were used in the final model.
The loss function was minimized by the Adam optimizer. The
learning rate was set to 0.0002 and the decay rate of the first
moment to 0.5. We have trained our model on 10 epochs which
took around 27 hours on a NVIDIA GTX 1080 Ti graphical
processing unit (GPU).

D. Datasets

While the main goal of our work is to propose an algorithm
which can accurately deal with real NRCS Lidar measurement
sequences, it is challenging to provide dense, spatially precise
GT depth information for real data due to the independent move-
ments of dynamic objects of the scene including the ego robot
or vehicle (Fig. 2). Instead, we constructed a synthetic range
image dataset called LivoxCARLA from a realistic virtual world
using the CARLA simulator [14], [18], where the behaviour of
the Livox AVIA NRCS Lidar sensor (Fig. 1) was simulated.
The virtual world allows us to extract dense, spatially precise
depth information, used as GT for the Lidar’s sparse, rosetta
patterned samples. During data extraction, the synthetic NRCS
sensor was placed by default on the front-top of the capturing
vehicle and was pointing forwards. The vehicle was dynamically
moving during the whole data recording. To augment on the
extractable information (e.g., due to varying ground level), the
sensor’s position was randomly rotated along the up axis by
[−22.5◦, 22.5◦], and its height was randomly adjusted between
[1.5 m , 2.5 m].

Our LivoxCARLA dataset consists of 11726 randomly sam-
pled input-output range image pairs, from which 10000 were
used for training, 500 as validation and 1226 for testing. Each
pair consists of 400× 400 images: the input range images were
generated with NRCS-characteristics by a Livox AVIA sensor
model, in 200 ms integration windows (with ca. 40% FoV
coverage), while a high-resolution ground truth range image was
sampled by each fifth input frame.

Besides the LivoxCARLA dataset, we also collected real mea-
surement sequences from Budapest. In these experiments, we
used the Livox AVIA sensor mounted on the front-top of our
test vehicle on a driving path of total 5.5 kilometers in both
speedways and in the city center. Similarly to synthetic data
generation, the real test vehicle was continuously moving during
the measurements, while many different traffic participants were
captured. Although this real dataset, referred as LivoxBudapest,
does not include GT data, it enables us to validate the effective-
ness of the proposed algorithm in real environment, despite the
fact that the network is purely trained on synthetic data.
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IV. EXPERIMENTS

We have trained and quantitatively evaluated the proposed
method using the LivoxCarla dataset, exploiting its sparse
input–dense output range image pairs generated by a simulated
car-mounted NRCS Lidar sensor during virtual drives in dense
city environments with several dynamic traffic participants (hu-
mans, vehicles, bikes). Besides quantitative validation, we also
evaluated qualitatively the performance of the proposed method
on real data using the LivoxBudapest dataset. Both datasets are
introduced earlier in Section III-D.

A. Evaluation Metrics

During quantitative analysis, we performed evaluation in both
2D and 3D, analysing the generated range images, and the
backprojected 3D point clouds, respectively.

1) 2D Errors: For measuring the similarity between the gen-
erated range images to the GT, we adopted the following metrics
from the KITTI Depth Completion Benchmark [7]:
� RMSE: Root mean squared error [mm]

RMSE =

√√√√ 1

N

N∑
i=1

(IPi
− IGTi

)2 (3)

� MAE: Mean absolute error [mm]

MAE =

N∑
i=1

∣∣∣IPi
− IGTi

∣∣∣ (4)

� iRMSE: RMSE of the inverse depth [1/km]

iRMSE =

√√√√ 1

N

N∑
i=1

(
1

IPi

− 1

IGTi

)2

(5)

� iMAE: MAE of the inverse depth [1/km]

iMAE =

N∑
i=1

∣∣∣ 1

IPi

− 1

IGTi

∣∣∣ (6)

In the above (3)–(6), IPi
denotes the ith pixel of the image

generated by the actual method, while IGTi
is the ith pixel of

the corresponding GT image. N denotes the number of pixels,
in our case N = 400× 400.

2) 3D Errors: Besides range image based evaluation, we also
compared the generated point clouds to the reference model in
the 3D space. Let us denote the GT and a predicted point cloud
by PGT and PP, and the number of points in PGT and PP by
#PGT and #PP, respectively. We evaluate the quality of the
predicted point cloud with respect to the GT data using the sym-
metric Normalized Chamfer Distance (NCD) and Normalized
Median Distance (NMD) [1], while these evaluation measures
are also used to compare the performance of different baseline
algorithms in the 3D space:

SP1,P2
=

∑
p∈P1

min
q∈P2

||p− q||2 (7)

MP1,P2
= Med

p∈P1

min
q∈P2

√
||p− q||2 (8)

TABLE I
AN ABLATION STUDY OF THE PROPOSED ST-DEPTHNET ARCHITECTURE

TABLE II
DIFFERENT HYPERPARAMETER SETUPS FOR THE FINAL MODEL

QNCD(PP, PGT) =

√
1

2

(
SPP ,PGT

#PP
+

SPGT ,PP

#PGT

)
(9)

QNMD(PP, PGT) =
1

2
(MPP ,PGT

+MPGT ,PP
) (10)

B. Ablation Study and Hyperparameters

For optimizing the network structure, we investigated the
effect of how deeply we integrate temporal information in the
network architecture. In the first setup (No fusion), we trained
the network without utilizing temporal data and considering only
the measurements from the last 200 ms. In the second setup
(Early fusion), we fused the multitemporal information only in
the first Conv2DLSTM layer and the remaining layers remained
pure spatial convolutions. Finally, as proposed, we propagated
the temporal information through the whole feature downscaling
branch (Late fusion). Furthermore, in each setup, we examined
the effect of including/excluding U-Net-like skip connections in
the network (Inner levels) and to directly bind the last input and
the output depth image (Output). According to our comparative
results displayed in Table I, the proposed late fusion approach
produced the less RMSE and MAE rates, while allowing direct
skip connections between the latest sparse input frame and the
predicted output significantly improved on the results at each
temporal setup. Using these connections, the network learns to
complete the missing regions of the sensor’s sparse range map,
while keeping high fidelity to the accurate range measurements
from the last 200 ms time frame.

Next, we also performed hyperparameter optimization steps
in the final late fusion based model where we compared different
weight combinations of the L loss function’s subterms. The
most relevant configurations are summarized in Table II. First,
using a relatively higher weight for the LSSIM loss term results
in smoothed edges and blurred fine structures and therefore it
produces higher RMSE and MAE errors. On the other hand, if
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TABLE III
COMPARATIVE RESULTS BETWEEN 2D RANGE IMAGES

the weight of LSSIM is significantly smaller than the weight of
LL1, image regions with uniform depth remain noisy, resulting
again in higher RMSE and MAE rates. As a good balance, we
experienced that an optimal ratio between the weights of LSSIM

and LL1 is around 1:2. Second, based on experiments, the point
levelLL1 and edge basedLEDGE loss terms are in the best balance
with a weight ratio of around 1:1.

C. Reference Methods

We have compared the results of the proposed ST-DepthNet
model to related approaches published in the recent years. Note
that the majority of existing methods [7], [8], [9] relies on fused
Lidar based sparse depth maps and dense RGB images, therefore
we cannot directly compare the proposed method to them, as
we address Lidar-only scenarios [10]. As the first baseline for
comparison, we investigated how the sensor itself can produce
high density images, by allowing a large integration window
(tΔ = 1 s) to cover a high proportion (>95%) of the FoV. We
refer to this method from now on as Large integration. As the
second reference, we adopted an improved version of the method
presented in [15], called hereafter as IP-Basic++, by optimizing
its morphological operations to our irregular NRCS data and
extending it with bilateral blurring. We have chosen as the third
reference the approach of [10], called henceforward Sparse-to-
Dense, which is proposed directly for Lidar-only perception,
and we trained it on our LivoxCarla dataset, with the parameters
described in [10]. To adopt the latter method to our dataset, we
changed the size of the input layer from 480× 480 to our range
image lattice 400× 400.

D. Comparative Results

Next, we compare the ST-DepthNet to the above three refer-
ence methods on the LivoxCarla test set, in both 2D range image
based and 3D point cloud based representations.

The overall mean values of the calculated 2D error rates are
displayed in Table III. Regarding all numerical quality measures,
the performances of the Large integration and the Sparse-to-
Dense [10] approaches are quite similar, the IP-Basic++ [15]
works better in average, while the proposed ST-DepthNet sig-
nificantly outperforms all of them, reducing their RMSE errors
by more than 1 m.

First, we can observe that the main sources for large errors of
the Large integration method are the movement of the capturing
platform and the presence of dynamic objects of the scene.
Second, the IP-Basic++ [15] approach predicts missing depth
values more robustly on large, homogeneous surfaces, but fails
estimating the fine details. Third, the depth image estimation
by the Sparse-to-Dense [10] method keeps the trails of the
circular scanning pattern of the NRCS sensor still visible, while

Fig. 4. Fine structures (marked by green ellipses) recognized by the proposed
ST-DepthNet approach, but remained partly or fully unrecognized (merged to
wall or background) by the reference IP-Basic++ [15] and Sparse-to-Dense [10]
approaches with respect to the Ground Truth data.

TABLE IV
COMPARATIVE RESULTS IN THE 3D SPACE

scene objects and finely textured regions are often merged with
their background. Fig. 4 demonstrates these limitations of [10]
and [15] on a range image sample, where the proposed method
performs significantly better.

We conducted further analysis in the 3D domain, by compar-
ing the 3D Ground Truth scene models to point clouds back-
projected from the range images generated by the proposed and
reference methods. Errors obtained by calculating the symmetric
Normalized Chamfer and Median Distance metrics are displayed
in Table IV. As shown, the error of the proposed method is
the smallest, by a margin of around a half meter regarding
both metrics. Note that, while Large integration seems to work
better than Sparse-to-Dense in 3D, this observation is mainly the
consequence of the fact that object regions affected by motion
blur can still have points close to GT in the 3D space, and vice
versa.

E. Analysis on Real Measurements

Beyond a comprehensive numerical evaluation on our syn-
thetic LivoxCarla dataset, we also validated the proposed
method on real Lidar measurement sequences of the LivoxBu-
dapest set, supporting its future real-life application.

The LivoxBudapest test set contains three different scenarios:
two pathway recordings from the city center (a boulevard and a
narrow street), both around 1 km long, and a speedway section
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Fig. 5. Results on real measurements from the LivoxBudapest test set. (a) Sparse measurements, (b) visual reference image, (c)–(f) predicted depth maps by
different methods. Accurately predicted fine object structures by ST-DepthNet are highlighted with green ellipses.
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TABLE V
COMPARATIVE SURVEY RESULTS ON REAL MEASUREMENTS

near the city, recorded on a path of around 3.5 km. Fig. 5 displays
selected relevant sample frames from the three scenarios. We can
observe that similarly to the experiments with synthetic data, the
IP-Basic++ [15] approach robustly completes missing values in
case of larger surfaces (walls, ground areas and even vehicles),
but fails to accurately estimate fine structures. For example,
pedestrians in the first column of Fig. 5(d) are blurred into one
object, while traffic lights and signs are partly merged to the
background in the second and fourth columns of Fig. 5(d). The
Sparse-to-Dense method cannot eliminate the rosetta patterns
of the input Lidar measurements, which are typically visible
on ground and wall areas (e.g., second column in Fig. 5(e)).
The tendency of merging fine structures into larger surfaces
is also notable: In the first and third columns of Fig. 5(e),
vehicles and pedestrians are falsely merged to the wall behind
them. Such artefacts can mean critical problems for urban scene
understanding tasks, while as shown, they are handled better
by the proposed ST-DepthNet approach (see regions marked by
green). The Sparse-to-Dense method heavily blurs other fine
structures (columns, traffic signs and lights, etc.) as well, as
displayed in Fig. 5(e). Moreover, while objects close to the
sensor are usually well recognizable for the human eye, they are
often predicted at inaccurate distances with this method (e.g.,
cyclist in the second column of Fig. 5(e)). As for the Large
integration method, it performs significantly worse on real data
than on the simulated samples and its generated range images are
extremely noisy. The regions of moving street objects become
blurred even if the platform is static, while if the platform is
moving, all structures are barely recognizable.

Besides the above qualitative analysis, we conducted a survey
for visual verification of the generated depth image streams, by
asking 20 computer vision related experts to rate the quality
of the input and the output of each method in all three videos
with scores between 1 and 9, where 9 is the best possible
score. The results provided in Table V confirm that the test
subjects found the proposed method significantly better than
the reference techniques.

In summary, the proposed ST-DepthNet method can better
compensate for both the noisiness and the sampling pattern of
the sensor data, while the predicted distance values of dynamic
objects or background scene structures are more accurate than
in the depth maps of the reference approaches. Regarding the
computation time, for the prediction of a single depth frame, the
ST-DepthNet method needs 100 ms.

V. CONCLUSION

In this letter we proposed a novel depth completion method
called ST-DepthNet, which is capable of creating high-density

depth images from sparse consecutive depth maps acquired by
a NRCS Lidar. For training and quantitative evaluation, we
constructed a new synthetic Benchmark set called LivoxCarla,
and we shown that our approach outperforms two state-of-the-art
reference methods. The usability of the proposed method on
real NRCS measurement data has also been demonstrated using
our recorded LivoxBudapest real-life dataset. In the future, we
aim to use the proposed method in intelligent robot and vehicle
platforms, for improving the limited spatial resolution of NRCS
Lidars.
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