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Recognising Affordances in Predicted Futures to Plan

With Consideration of Non-Canonical
Affordance Effects

Solvi Arnold ¥, Mami Kuroishi **, Rin Karashima

Abstract—We propose a novel system for action sequence plan-
ning based on a combination of affordance recognition and a neural
forward model predicting the effects of affordance execution. By
performing affordance recognition on predicted futures, we avoid
reliance on explicit affordance effect definitions for multi-step plan-
ning. Because the system learns affordance effects from experience
data, the system can foresee not just the canonical effects of an
affordance, but also situation-specific side-effects. This allows the
system to avoid planning failures due to such non-canonical effects,
and makes it possible to exploit non-canonical effects for realising
a given goal. We evaluate the system in simulation, on a set of test
tasks that require consideration of canonical and non-canonical
affordance effects.

Index Terms—Affordances, cognitive control architectures, deep
learning methods, manipulation planning, predictive modelling.

1. INTRODUCTION

HE concept of affordances, first introduced by Gibson
[1] in the field of psychology, has found application in
various areas of robotics [2], [3], [4]. Numerous conceptual-
isations exist, but affordances can broadly be defined as the
action opportunities arising from the combination of an agent’s
action capabilities with the environment the agent is placed in.
Affordances appear to play a central role in structuring high-level
behaviour in humans and other animals. Key areas for this work
are affordance recognition and affordance-based planning.
Within the area of affordance recognition, the introduction of
neural networks (NNs) has produced substantial progress over
the past years. In [5] and [6], object recognition-style archi-
tectures are applied to the problem of detecting affordances in
images. In [7], NNs are used to extract object features that inform
object manipulation. CLIPort [8] finds affordances defined as
motion start and end points in various scenes on basis of natural
language instructions.
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Fig. 1. Snapshot of the simulated environment, showing the virtual UR3 robot
and task objects. Letters and arrow marker added.

Early approaches in planning descend from Situation Calculus
[9], and employ grammars to describe action effects and precon-
ditions [10]. The grammatical approach is effective if the task
environment can be fully formalised, but hard to adapt to task
domains with complex physical effects. This makes rule-based
approaches notoriously brittle. Consider the task of stacking
objects. We may specify the canonical effect of placing one
object on another as follows:

PLACE_ON (X,Y) — ON (Y, X) )

This rule may fail to hold for an instance as shown in Fig. 1.
Object X can be placed on Y at the arrow marker, but (depending
on the relative weights of X and Y) this may not result in X sitting
atop Y. We can precondition the rule on stability of the object
arrangement, but in practice this implies importing a substantial
amount of physics into the precondition check, which quickly
makes planning computationally infeasible.

The need to define complex physical preconditions on affor-
dance effects may be avoidable by learning to predict action
effects instead. In [11], [12], affordance effects in an object-
stacking scenario are learned in a rule-based format for symbolic
planning. However, effective use of fine quantitative state fea-
tures for affordance effect prediction requires that prediction is
learned at finer granularity than symbolic rules (learned or given)
can provide. In early work in this direction under the nomer
of internal rehearsal [13], action effects for a traversability
affordance are learned using a Gaussian Mixture Model in a
goal-specific manner.

Outside the context of affordances, physical prediction has
been explored extensively in recent years. In [14], NNs are
trained to predict stability (and block trajectories) for block
towers, and [15] predicts object motion from real-world images.
Models with action input are found in [16] (predictive models
for billiard) and [17] (3D rigid body motion). The prediction NN
in the present work fits in this line of inquiry.
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NN approaches for affordance-based action planning remain
scarce, but a notable example is found in Deep Affordance Fore-
sight (DAF), which proposes a neural latent dynamics model for
predicting future affordance availability [18]. However, future
states are only represented in latent form, necessitating task-
specific learning to associate states and goals. A second example
is found in [19], which combines symbolic goal and state de-
scriptors with learned transition models. However, visual input is
masked to isolate target objects, discarding environmental con-
text that may be relevant for predicting affordance effects. Task-
specific learning is used, but shown to be accelerated by goal-
agnostic pre-training. Learned skill effects are also found in [20],
which focuses on incremental expansion of the skill repertoire.
In contrast to the present work, states are represented in a man-
ually designed analytical format instead of as raw observations.
None of these works explore active use of non-canonical effects.

The purpose of this work is to combine the affordance con-
cept’s potential to structure complex action spaces with the
strength of neural prediction for modelling action effects. A key
aspect of the approach is that affordance recognition is applied
identically on current (actual) states and predicted (“imagined”)
future states. Hence, future affordances are grounded in the same
low-level, sub-symbolic, high-dimensional state representation
as current affordances. By carrying sub-symbolic state represen-
tations forward through the planning process, we avoid the need
for brittle symbolic effect specifications, and avoid planning
failures due to hard-to-specify effects and preconditions. Fur-
thermore, predicting future states in human-interpretable form
facilitates interpretability of a robot’s behaviour: a visualised
plan provides users an intuitive explanation of the robot’s action
choices and outcome expectations.

Through simulation experiments, we show that the system
produces suitable action sequences for goals provided at run-
time, effectively predicting and avoiding non-canonical action
effects that would cause failure of logically sensible action
choices. We also demonstrate exploitation of such effects to
reach otherwise inaccessible goal states.

A. Canonical and Non-Canonical Effects

Symbolic formalisation of affordance effects creates a dis-
tinction between canonical (formalised) and non-canonical
(non-formalised) effects. Since we do not formalise effects,
our approach makes no inherent distinction between the two.
However, the distinction remains conceptually useful. Below
we use the distinction informally as follows. Canonical effects
are those effects one expects on basis of an affordance’s label.
Non-canonical effects are any other effects that may accompany
execution of an affordance in particular circumstances.

Constraining a planner to formalised effects limits it to action
outcomes foreseen and deemed intentional by the rule-designer.
However, what may be an undesirable side-effect in one problem
setting may be a clever solution in another problem setting.
In systems where affordance effects are learned in the con-
text of a specific goal, the distinction between canonical and
non-canonical effects is less explicit, but learning of effects not
pertinent to the goal will be deemphasised. Hence, we pursue
fully goal-agnostic learning, and do not set goals until run-time.

B. Contributions

1) We propose a neural architecture that integrates affordance
recognition and affordance effect prediction, capable of
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Fig.2. Global system structure, rolled out for processing affordance sequences
of length two, with n, fF=3 and A = {Grasp, Place, Turn}. Processing for
subsequent affordances is identical to that for the second. Light blue: full-scale
state representations, dark blue: latent state representations, green: affordances,
black: NN modules (R: recognition net, E: encoder, P: prediction module, D:
decoder), yellow: goal image, purple arrows: affordance pixel data.

predicting future affordances through repeat application
of scene prediction and affordance recognition.

2) We propose a planning algorithm that uses the neural
architecture to plan action sequences that realise positive
and negative goal conditions set at run-time.

3) We demonstrate that the system can plan action se-
quences in consideration of non-canonical affordance ef-
fects, avoiding and exploiting such effects as necessary.

II. SYSTEM ARCHITECTURE

Fig. 2 shows the global structure of our setup. At the core
of the system are two neural network modules: an affordance
recognition module, and an affordance effect prediction module.
We denote states as s € 5, let sy be (the observation of) the
current state of the task environment, and use s;, ¢ > 1 to refer
to possible future states. A denotes the set of affordance types
in the robot’s repertoire and n,yy its size. In our experiments,
states are RGBD images, and A = {Grasp, Place, Turn}. Below
we explain our setup in detail, starting with our interpretation of
the affordance notion.

A. Affordance Concept

The affordance concept has been defined in numerous ways
[2]. Since we purposely exclude definitions of intended effects,
we arrive at the following minimalistic definition. In this work,
an affordance of type a € A exists at point p in the problem
space IFF the agent is capable of commencing an action of type
a at p. In our experiments, p is a 4D vector consisting of a point
in 3D space and a gripper angle, and an affordance of type a
exists at p IFF (1) an entity of the type affordances of type a act
on exists at the spatial location, and (2) the robot’s gripper can
reach this location in the orientation specified by the angle, i.e.,
the gripper can assume the starting pose for the affordance’s
execution. Given this definition, affordance presence can be
evaluated from observation of the current scene alone, without
consideration of physical effects beyond commencement. The
exclusion of effectiveness at producing a specific outcome from
the affordance conceptualisation echoes [18].

B. Affordance Recognition

Some existing affordance recognition methods perform
recognition at pixel-level granularity [5], alongside semantic
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object recognition. However, for integration in our planning ar-
chitecture, itis desirable to recognise affordances in a format that
can be interpreted as a physical action directly, without further
processing. This approach is consistent with the finding that
visual processing for object-directed action in humans occurs
separate from and independent of semantic recognition [21]. Our
recognition result format consists of the following values: (1)
the affordance type, (2) a target point in 3D space, (3) a gripper
angle. For the grasp and turn affordances in our experiments,
the target point indicates the centre of the object to be grasped
or turned, and for the place affordance, it indicates the point (on
some surface) that the currently held object is to be placed at.
Affordances may have additional parameters determining details
of their execution. In the current repertoire, the turn affordance
has a second angle parameter defining the turn amount and
direction. However, because we define presence of an affordance
in terms of possibility to commence, such parameters are not part
of the recognition format.

We additionally include a value indicating the affordance’s
symmetry w.r.t. the gripper angle. This value indicates whether
the affordance is qualitatively distinct from other valid affor-
dances that differ only by the gripper angle. Consider grasping
or placing a rotationally symmetrical object. The object will
allow multiple (potentially infinitely many) valid gripper an-
gles, but these angles produce qualitatively equivalent results.
Recognising such equivalence allows us to improve efficiency
of the planning process.

Our recognition format (a point in space plus some pa-
rameters) resembles that of the YOLO [22] family of object
recognition architectures (a point in space plus bounding box
dimensions). We adapt the ScaledYOLOv4 architecture [23] to
perform affordance recognition instead of object recognition. In
the interest of space, we limit our discussion of the architecture to
our main modifications. We change the input format from RGB
to RGBD. We drop the bounding box width and height outputs,
replacing them with the affordance angle. ScaledYOLOV4 orig-
inally uses bounding box anchors to allow for multiple different
detections at nearby locations. We adapt the anchor logic to
allow for multiple affordances with different angles at nearby
locations, setting anchors at 90° intervals. Additionally, we let
detections include a z-coordinate and a symmetry value. As
depth input is given as a depth map and z-coordinates are a
simple additional detection feature, the basic network structure
remains 2D. To adapt the net to our domain, bandwidth (channel
count) of hidden layers was reduced (our domain is visually
simple and the number of classes (affordances) is small), while
cell count of the output was increased to facilitate detection of
multiple affordances in close proximity. MSE losses are used
for angles, z-coordinates, and symmetry values. We repurpose
YOLO’s ‘objectness’ as detection confidence. Weight initiali-
sation follows the original ScaledYOLOv4 implementation. We
filter detections of the same affordance type by proximity in
state-angle space. When multiple detections are in overly close
proximity, we retain the detection with the highest confidence.

C. Affordance Effect Prediction

The prediction pathway is based on the EM*D architecture
[24], [25]. The present work extends this architecture with
differential prediction and affordance-specific sub-modules.
The motivation for introducing differential prediction is that
complex scenes may contain any number of elements that remain
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Fig. 3. P module architecture. Each block is a set of neurons. Numbers in
brackets indicate neuron counts. Green: input, blue: output, dark grey: hidden.
Action input is identical across layers. Blue lines indicate full connectivity
between sets. Purple lines indicate 1-to-1 copying of activation values.

unaffected by execution of a given affordance. Reconstructing
these elements in predicted states is unnecessary, increases the
difficulty of the prediction problem, and degrades prediction
quality. Instead, we let the system indicate where changes
occurred and fill in the changed parts of the state. This allows
for unchanged elements to be retained in their original fidelity.

The prediction pathway consists of Encoder (E), Decoder
(D), and n, sy prediction modules P*,a € A. E maps input
state sop (an RGBD image in our implementation) to its latent
representation co. P takes a (predicted or actual) latent repre-
sentation ¢; and a parametrisation a; of affordance a as input
and generates prediction A¢;_,; 41 of the difference Ac; ;41
between the latent representation c; of the state s, resulting
from performing a; in s; and the latent representation c¢; of
state s;. Latent prediction ¢; 1 is obtained from ¢; and Aé; ;11
through simple summing:

Cit1 = ¢ + ACisyit (2)

D maps latent difference representation Aé;_,;41 to full-scale
representation A§;_,; 1 of the state difference described therein.
The format of the full-scale difference representation is as
follows. For an n-channel (e.g. 4 for RGBD images) state
format, we use an (n+1)-channel difference descriptor, with
the additional channel encoding a mask determining where the
other channels overwrite the original state. Full-scale difference

representations are applied to state representations as follows:
Sit1 = sz?izl-ﬁ-l * S}fiﬂ + (1 - Sfig—&-l) * S5 (3)

Where c is the channel count of the state representation, and
superscripts indicate channel selection.

Architectures in the prediction pathway are as follows. E
consists of 2 convolutional layers with kernel size 3, stride 2,
and output channel count 8, followed by 3 dense layers of 8192,
4096, and 128 neurons. D consists of 3 dense layers followed by
2 up-convolutional layers, with channel and neuron counts mir-
roring E. Following [26], we use 2x nearest neighbour upscaling
to increase resolution between up-convolutional layers.

Each P module duplicates the architecture shown in Fig. 3.
The P module used to process a given action input is deter-
mined by the affordance type value in that input. Hence actions
are not simply passive input signals, but actively determine the
course of signal propagation through the prediction pathway.
The remaining values are input to the selected module. The 5th
action input value is only used for the furn affordance. The last
four inputs contain the RGBD values of a single pixel from the
image representing the state in which the affordance is to be
performed. For the initial state, this image is already part of the
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input. For subsequent states, we use the generated prediction,
so no additional external information is required to provide
the pixel input. We project the 3D position of the affordance
to pixel coordinates, and retrieve the RGBD values from the
corresponding pixel. This RGBD input provides some minimal
context about the world state at the affordance position.

As shown in Fig. 3, the P® module has I/O blocks for a
memory trace. The memory trace is passed between subsequent
P® modules in the pathway. When input is received from E,
memory trace input is a zero vector.

All networks in the prediction pathway use the hyperbolic
tangent activation function at all layers, except for the output
layer of D, which simply clamps output activation to the [0, 1]
range. The prediction pathway is implemented in JAX [27].

D. Planning & Execution Logic

Action sequences are planned as follows. We define the plan-
ning goal using an RGBD or RGB goal image depicting the
objective to be achieved. By using a goal image of size smaller
than the state image resolution, we can define objectives without
having to specify the full goal state. For example, we can specify
the goal of placing a cup on a block without specifying positions
for other objects in the scene.

We expand a search tree of possible futures from the current
state by repeated recognition and prediction. Each edge of the
search tree corresponds to a fully parametrised affordance, and
each node corresponds to a state. Given a state, recognition thus
provides the edges extending from that state. To predict child
state s for a given edge, we run prediction from the current state
(root node of the search tree), with the chain of affordances
leading up to s as action input.

Affordance parameters not affecting existence of the affor-
dance at a given location are filled in between recognition and
prediction. Our experiments feature one such parameter: the turn
angle of the rurn affordance. Such affordances are duplicated
with different parametrisations. For the turn affordance, we
parametrise the turn angle to £290°. The recognition process may
return multiple affordances that differ only in their gripper angle,
and are rotationally symmetrical (i.e., symmetry parameter value
> 0.5). For any set of such affordances, we process only the
affordance with the highest confidence, to avoid unnecessary
branching of the search tree.

Each predicted state is evaluated against the goal image
(matching in Fig. 2) with a simple sliding window method. For a
state image resolution of w® x h®, we define a goal image as an
image of resolution w9 x h9, w9 < w?®, h9 < h®. We can then
define the planning problem as follows.

plan = argminL (ga PT’ (307 aO:nfl)) , N < Nmax (4)
a0:n-1

L (g’ S) - 0<m<w37wrgl,1%<y<hsfhg MSE (97 53::x+11}9,y:y+h9)

(%)

Where Pr(sg,aop.,—1) applies the prediction pathway with
state sg and parametrised affordance sequence ag.,,—1, Mmax 1S
the maximum sequence length to consider, and w® x h* is the
state image resolution. So, the loss for a given plan (sequence
of parametrised affordances) is the smallest MSE loss between
the goal image and any patch of size w9 x hY in the prediction
generated by that plan. Typically, we return the plan with the low-
est residual loss. However, we can also define “negative” goals,
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i.e., objectives to avoid. By selecting the affordance sequence
producing the highest residual loss (i.e., replacing argmin with
argmax in (4)), we find plans for avoiding or eliminating the
situation expressed by the goal image.

Each process (recognition, prediction, evaluation) is paral-
lelised per depth level of the search tree by batching.

III. EXPERIMENTAL SETUP

A. Task Space

Fig. 1 shows a snapshot of our task scene. The scene is
implemented in Unity [28]. The agent controls a virtual UR3
(Universal Robots) robot placed on a table. Motion planning is
performed using Movelt via a ROS connection, as provided by
the Unity Robotics Hub [29]. The scene contains 0-3 cups, 0-3
balls, 0-2 grey “support” blocks, and one long coloured block,
arranged in a rectangular area in front of the robot.

We define the set of affordances A as {Grasp, Place, Turn}.
Grasp affordances exist at the centre point of each object, except
for the support blocks. Place affordances exist at the centre of
the top surface of each support block, and on 3 positions on
the top surface of the coloured block. A turn affordance exists
at the centre of the coloured block. The turn affordance turns
the block 90° clockwise or counter-clockwise in the XY plane.
After execution of an affordance, the robot returns to a default
pose with its gripper pointing upward. After execution of a grasp
affordance, the gripper holds the grasped object.

Following our possibility to commence affordance existence
criterion, the existence of the above affordances is conditioned
on (1) the current state of the gripper (grasp and furn affordances
only existif the gripper is empty, and place affordances only exist
when the gripper is holding something), and (2) the starting
pose being collision-free and within reach of the robot. No
consideration is given to whether execution would produce the
affordance’s canonical result.

Various interactions between objects occur in this setup. Turn-
ing the block can cause nearby cups to fall over, and nearby balls
to roll away. It will also cause any balls on top of the block to roll
away, but a cup on top of the block will stay put and turn along
with the block. Lifting the block when there is another object on
top of it will cause that object to fall off. Placing an object on
top of the coloured block when the coloured block is on top of
a support block may produce an unstable situation, causing the
block to tilt over and the object to fall off or roll away. Hence
while the scene is simple, it produces a variety of non-canonical
effects.

State images are captured from a top-down perspective to
minimise occlusion, and rescaled to 128 x 128 resolution. The
robot itself is visible in state images, and consequently states
encode any object the gripper is holding.

B. Data Generation

We generate data for training the recognition and prediction
networks as follows. We randomise the arrangement of objects
in the scene (position of each object, and number of instances
for each object except the coloured block). Block positions are
discretised to produce stable configurations, while randomisa-
tion of ball and cup positions is continuous. We then perform a
simple affordance detection routine. Each affordance location is
represented in the simulation environment as an invisible marker
attached to its host object. We check whether the marker is within
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reach of the robot, and if so, check whether the affordance’s
commencement pose is accessible by placing a gripper-shaped
object at the marker position and checking for collisions. If the
gripper pose is collision-free, we record the affordance. For
grasp and turn affordances on the block, the gripper angle is
aligned to the block’s orientation. For grasp affordances on
radially symmetrical objects, as well as all place affordances,
we perform the accessibility check at 90° intervals of the gripper
angles. For place affordances, we let the gripper-shaped object
hold a copy of the currently held object when checking for
collisions. We record all found affordances as the affordance
list for the state. We then randomly select and perform one
affordance from the list, obtaining a new state. We repeat this
process four times for each data sequence, or until no affordances
remain in the scene. Each (state, affordance list) pair provides
one example for the recognition network, while each sequence
of states and executed affordances provides an example for the
prediction network. We collected a dataset of 26563 sequences
containing 100558 affordance executions.

C. Training

The Recognition network was trained using the standard
ScaledYOLOvV4 training procedure for 100 epochs. For data
augmentation, we apply random small translations to states,
shifting affordance positions accordingly. Test and validation
sets consist of 500 sequences each.

The prediction pathway (E, P, D) was trained for 1M batches
of 32 sequences each, using the SignSGD update rule [30] with
automatic adjustment of the learning rate. Sequence length is
varied per training batch from 1 to 4 affordances, and start-
ing points within example sequences are selected randomly
(where possible). Note that the sequence of P modules varies
per example (being determined by the sequence of affordance
types in the example). Training with various P module order-
ings ensures that the learned latent representation format is
compatible between P modules. For data augmentation we use
translations, mirroring, noise on action input values, and 180
degree turns of the affordance angle in cases where the angle is
irrelevant.

1IV. EVALUATION

A. Evaluation — Recognition

We evaluate the recognition module in terms of recall and
spurious detections. Recall is satisfied for a given affordance if
a detection of the correct type is produced within 2.5cm from
the ground truth position, with an angle error of <5°. This
is sufficiently precise for affordances to be executable in the
simulation environment. For scale, the long side of each block
measures 28cm. The confidence threshold for detection is tuned
on the validation set. Detections above the confidence threshold
that fall outside the above ranges from a ground truth affordance
are considered spurious (false positives). We measure perfor-
mance on the test set and on 500 sequences from the training
set. Quantitative results are shown in Table I. The “spurious”
column reports the average number of spurious detections per
state. Example detections are shown in Fig. 4.

Note that the robot state is visible in the state image, and recog-
nition incorporates this information correctly. Detection errors
primarily stem from 1) misjudgement of object accessibility in
crowded arrangements, and 2) failure to mark grasp affordances
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TABLE I
AFFORDANCE RECOGNITION ACCURACY
Grasp Place Turn All Spurious
Test 0.979 0.999 0.995 0.99217 0.023
5763/5886 |9720/9732 | 1510/1518 | 16993/17136 | /state
Train 0.980 0.999 1.00 0.9929 0.0085
6048/6170 | 10372/10378 | 1568/1568 | 18006/18134 | /state
grasp
+ & v
M turn & grasp

NI

Fig. 4. Examples of affordance recognition. Lines extending from markers
indicate grasp angles, with the colour of the line indicating whether the grasp
angle affects the outcome (white) or not (black). Note that graspability and
available grasp angles are affected by surrounding objects. Grasp and turn
affordances are detected when the gripper is empty, whereas place affordances
are detected when the gripper holds an object.

s
v

Recognition (Ground truth
=

Ooi

TABLE I
PREDICTION ACCURACY
With affordance pixel Without affordance pixel
All-area Changed All-area Changed
Set | Step
accuracy area acc. accuracy area acc.

1 .0030 (.0017) |.042 (.020) .0031 (.0018) |.044 (.025)
|2 .0039 (.0029) |.043 (.023) .0038 (.0029) |.041 (.023)
é 3 .0050 (.0047) |.042 (.022) .0052 (.0048) |.044 (.027)

4 .0055 (.0034) |.044 (.024) .0054 (.0034) |.043 (.025)

All .0043 (.0035) |.043 (.022) .0043 (.0035) |.043 (.025)

1 .0029 (.0022) |.040 (.021) .0029 (.0022) |.040 (.019)
=2 .0039 (.0028) |.041 (.023) .0037 (.0028) |.040 (.022)
HE .0048 (.0036) |.043 (.031) .0048 (.0036) |.044 (.034)
=14 .0053 (.0038) |.044 (.024) .0052 (.0038) |.043 (.026)

All .0042 (.0033) |.042 (.025) .0041 (.0033) |.042 (.026)

on toppled cups as asymmetrical (most instances of graspable
cups in the dataset are in upright position).

B. Evaluation — Prediction

We evaluate the prediction pathway by performing prediction
for all test set sequences and 500 training sequences, and cal-
culating pixel value accuracy. Given our differential prediction
setup, substantial areas of the state image are copied from one
state to the next. To evaluate accuracy w.r.t. changed state areas
specifically, we include pixel value accuracy for areas that have
changed from the preceding state (in the ground truth sequence)
as a secondary evaluation metric (“‘changed area accuracy”).
Absolute mean RGBD pixel value error (range [0,1]) is given
in Table II. We observe that the mean error for changed areas is
<0.05 for all sequence lengths, with little overfitting.

The data includes inherently unpredictable outcomes. Uncon-
trolled kinetic effects (e.g. unstably placed objects falling over
or rolling away) are not exactly predictable. However, perfect
prediction is not necessary for effective planning. For example,
as long as the prediction for an unstable placement captures
that the placed object will not remain in the location where
it was placed, it will suffice to avoid planning that placement.
As seen in Fig. 5, predictable effects (a, c) are well predicted,
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Fig. 5. Example predictions (test set). In each example, left column shows
ground truth state sequence along with executed affordances, and right column
shows initial and predicted states. Red and green lines on markers correspond
to gripper fingers. For furn affordances, black quarter circles indicate the turn
direction. a. Moving the block around. Note that the ball and one cup are flung
away by the lifting the block. b. Balance effects. Placement of the blue cup
destabilises the block, causing the cup to fall off. The resulting pose and location
of the left cup is stochastic, but predicted approximately (blue blur). Tilting of
the block also causes the red ball to roll off the block and out of the scene, which
is predicted correctly. c. Turning a block with an object on it. The resulting
displacement of the cup is predicted adequately, and subsequent grasping at the
cup’s new position results in a prediction where the robot holds the cup again.
d. Example of object confusion between objects in near proximity by a network
trained without the affordance pixel input.

TABLE III
AFFORDANCE DISCOVERY

Grasp Place Turn All Spurious
Main 0.902 0.984 0.987 0.959 0.50/state
D-s-V 0.557 0.968 0.967 0.801 1.84/state
D-s-100 0.0752 0.150 0.144 0.119 4.63/state
D-5-1000 0.403 0.747 0.697 0.636 49.7/state
D-m-V 0.883 0.990 0.990 0.957 2.86/state
D-m-100 0.114 0.168 0.152 0.149 9.96/state
D-m-1000 0.608 0.768 0.769 0.719 99.9/state

whereas unpredictable effects (b) produce messier results, as
expected. Note that when objects are placed on a block in an
unstable manner (b), the block tilts and the objects fall off,
but subsequently the block usually tilts back into a horizontal
orientation. This behaviour is physically correct.

Affordance pixel input has no appreciable effect on the vi-
sual quality of predictions, but nets trained without this input
occasionally confuse grasped objects in scenes that are crowded
or contain objects in very close proximity, as seen in Fig. 5(d).
This can easily cause planning failures. So, while the quanti-
tative accuracy difference is small, we found nets trained with
affordance pixel input to be more suitable for planning.

C. Evaluation — Affordance Discovery

Next, we combine prediction and recognition to quantitatively
evaluate the system’s ability to discover future affordances. For
all sequences in the test set, we run prediction from the initial
state to predict all subsequent states, and perform recognition
on the predicted states. Matching criteria are as described in
Section IV-A. Table III reports accuracy for prediction of future
affordances per affordance, as well as the average number of
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spurious affordances predicted per state. We optimise the confi-
dence threshold for recognition using the validation set.

As baseline, we implement an approximation of the DAF
approach [18] (“DAF mode” for short) as follows. The encoder
is unchanged. The decoder is replaced by a binary classification
MLP that takes a latent state and parametrised affordance as
inputs, and classifies whether or not the affordance will be
available in the state (Affordance Model f4 in [18]). Hence
no image representations of future states are recovered; latent
states only encode affordance availability. DAF originally uses
one prediction model for all affordances, whereas our setup uses
a separate prediction module for each affordance. We train a
single-module version (D-s in Table III) to approximate the
original, and a multi-module version (D-m in Table III) for
fairer comparison. In the single-module version, affordance type
is given as additional input to the prediction module. DAF
mode is trained on the same dataset, with ground truths for the
classification model provided by the affordance list associated
with each state. Negative examples are sourced from random
states in the training set. Augmentation replicates that in the
main setup. In contrast to the main setup, DAF does not produce
affordance lists directly, but casts affordance discovery as a
classification problem, with the classification model classifying
whether a given parametrised affordances exists in a given state.
Consequently, the confidence threshold presents a trade-off
between recall and precision. To focus our evaluation on the
ability to predict how affordance execution changes affordance
availabilities over the course of a sequence, we optimise the
threshold so as to maximise classification accuracy over af-
fordances in the current state and the non-current affordances
from the same sequence, over all sequences in the validation
set. First, we measure classification accuracy on ground truth
examples (D-s/m-V in Table III). The “spurious” column for
this result indicates the mean number of non-current affordances
from the same sequence that are classified as positives. For
the single module setup, we observe that positive ground truth
examples of the place and turn affordances are verified with
accuracy close to the main setup, while accuracy for the more
volatile grasp affordance lags behind. Positive ground truth
verification accuracy of the multi-module setup matches the
detection accuracy of the main setup. The optimised threshold
came out lower here, and we do see a shift from precision towards
recall.

Ground truth verification does not equal affordance discovery.
DAF’s affordance model is a binary classifier, so sampling is
required to discover affordances. We evaluate discovery of future
affordances for sampling budgets of 100 and 1000 samples
per state (D-s/m-100 and D-s/m-1000 in Table III). Sample
affordances are drawn from the training data to ensure that
they fall within the task domain, with additional position aug-
mentation to ensure thorough coverage. We see that with a
sampling budget of 1000, a decent proportion of affordances
is discovered, but substantial numbers of false positives are
produced as well (“spurious” column). These results indicate
that DAF mode is effective for affordance verification, but
less effective for discovering a state’s set of affordances in
our particular task domain. Affordance characteristics play a
role here. Our system is adept at finding highly localised af-
fordances while more spatially extended affordances are hard
to represent, whereas DAF more naturally represents spatially
extended affordances, and appears less apt at finding highly
localised ones.



ARNOLD et al.: RECOGNISING AFFORDANCES IN PREDICTED FUTURES TO PLAN WITH CONSIDERATION

D. Evaluation — Planning

To evaluate the integrated system, we prepared a set of 9 task
types, each designed to require some modicum of insight in the
scene’s dynamics. For each task type, we generate 3 instances,
for a total of 27 tasks. Instances differ in object placements,
roles, and goal specifics, while leaving the basic challenge intact.
Example tasks and generated solutions are shown in Fig. 6.
Footage of the robot executing plans of each type can be found in
the accompanying video. Note that in each plan, states after the
first are predictions generated by the system. Below we briefly
describe the challenge posed by each task type.

1) Requires consideration of action order, because the red

ball occupies the goal position for the blue cup.

2) Access to the ball is initially obstructed by the block,
requiring that the block is moved out of the way first, and
restored to its original pose after moving the ball.

3) Placing the cup on the block directly would be unstable,
causing the block to tilt and the cup to fall off. Moving the
block allows stable placement of the cup.

4) Requires counterbalancing. In the left task instance, the
ball must be placed in its target location before the cup,
and vice versa in the right task instance. Note how the
position of the grey block affects the generated plan.

5) Turning the block first would knock over the cup. Solving
the task requires understanding that a cup placed on a block
turns along with that block.

6) The red ball should be moved out of the area directly
in front of the block, but the gripper cannot reach the
ball due to the placement of the cup. The system must
exploit the fact that a turning block pushes away balls in
its path, and pick the correct turn direction to achieve this
effect.

7) Negative goal: eliminate the ball. The affordance reper-
toire provides no straight-forward way of removing ob-
jects from the scene. Solved here by placing the ball on
the block and then turning the block, causing the ball to
roll away (see video for an alternative solution).

8) Negative goal: eliminate the cup from the scene. Solved
here by first placing the cup on the block, and then lifting
the block, causing the cup to be flung out of the scene.

9) Negative goal: eliminate the ball. The ball is inaccessi-
ble due to the cup placement. However, the robot can
hide it from its own view by placing the coloured block
over it.

Tasks of types 1 and 2 are solved using canonical affordance
effects plus consideration of how affordance execution changes
affordance availability in future states. Task types 3-9 involve
consideration of non-canonical affordance effects. Task types 7—
9 use negative goals. For these cases we use small goal patches,
and ignore the depth channel in the plan loss calculation. This
is to eliminate trivial solutions where the object is merely lifted
up (lifting an object up changes its visual size and depth values).
The system comes up with various ways of eliminating objects
from the scene, exploiting non-canonical affordance effects to
satisfy the goal condition.

Table IV shows quantitative results for each task type. “Can-
didates” refers to the mean number of plans considered during
search. We also report the mean total time cost incurred for the
recognition, prediction, and goal-matching processes in each
task type (measured on a single Nvidia A100 GPU). We see that
time cost remains manageable for all tasks.
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Fig. 6. Examples of generated plans and their execution results. See Sec-
tion IV-D for task concepts. Goals are presented in RGBD or RGB format.
To visualise the generated plan, we draw its affordance sequence on a state
sequence consisting of the initial state and network-generated predictions of the
subsequent states for the plan. States are in RGBD format, but the D channel is
omitted for space considerations.

TABLE IV
PLANNING PERFORMANCE

Task type 1 2 3 4 5 6 7 8 9
Success rate  (3/3  [3/3 |3/3 [3/3 |3/3 [3/3 [2/3 |2/3 |3/3
Candidates [513  [2254 2452 [2651 |652 (37 [272 |168 |22
Time |[Rec. [0.202]0.285[0.290 [0.296 [0.204 [0.097 [0.146 |0.144 |0.098
cost[s] [Pred. [0.575[1.988]2.222(2.302 |0.609 [0.097 [0.263 |0.235[0.097
Match [0.038 |0.108 [0.117 |0.121 [0.038 [0.011 |0.049 [0.045 [0.022




1462

V. DISCUSSION & FUTURE WORK

Our results demonstrate affordance-structured reasoning with
consideration of non-canonical effects. The system effectively
avoids non-canonical effects that would obstruct access to the
goal state, and allows non-canonical effects to be actively ex-
ploited to reach goals that are otherwise inaccessible.

The system still has significant limitations. We currently
operate on discrete affordances, but many real-world affordances
have continuous components. Place affordances would be better
represented as regions instead of points, and parameters such
as the turn angle should be generalised to continuous values.
Another issue is how to handle actions with stochastic effects.
We are exploring probabilistic prediction formats to enable
reasoning through stochastic effects.

A strength of the system is that it takes goals at run-time.
However, goals are currently provided as images, which is
impractical in practice. As predictions are in image format,
methods for quantifying image-text agreement (e.g. CLIP [31])
may be integrated to enable goal definition in natural language.

With regard to scalability, main hurdles are time cost and
domain complexity. In our experimental setup, the number of
affordances per state is limited, and we can feasibly expand
the search tree to reasonable depth through parallelisation of
computationally expensive processes, as seen in Table IV, but for
more affordance-rich environments or longer sequences, we will
need heuristics to constrain which branches are expanded. The
system could be combined with symbolic planning methods to
quickly solve straight-forward tasks, with sub-symbolic predic-
tion supporting robustness through plan verification and, when
necessary, exploration of less canonical search tree branches.
Recovering full state representations from latent states has noted
advantageous for goal definition and interpretability, but will
be challenging for more complex domains. However, NN-based
predictive modelling is a rapidly advancing field. Our results are
indicative of the future potential of such methods for affordance-
based planning.
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