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OPA-3D: Occlusion-Aware Pixel-Wise Aggregation
for Monocular 3D Object Detection

Yongzhi Su , Yan Di , Guangyao Zhai , Graduate Student Member, IEEE, Fabian Manhardt, Jason Rambach,
Benjamin Busam , Didier Stricker, and Federico Tombari

Abstract—Monocular 3D object detection has recently made a
significant leap forward thanks to the use of pre-trained depth es-
timators for pseudo-LiDAR recovery. Yet, such two-stage methods
typically suffer from overfitting and are incapable of explicitly
encapsulating the geometric relation between depth and object
bounding box. To overcome this limitation, we instead propose to
jointly estimate dense scene depth with depth-bounding box resid-
uals and object bounding boxes, allowing a two-stream detection
of 3D objects that harnesses both geometry and context informa-
tion. Thereby, the geometry stream combines visible depth and
depth-bounding box residuals to recover the object bounding box
via explicit occlusion-aware optimization. In addition, a bounding
box based geometry projection scheme is employed in an effort
to enhance distance perception. The second stream, named as the
Context Stream, directly regresses 3D object location and size. This
novel two-stream representation enables us to enforce cross-stream
consistency terms, which aligns the outputs of both streams, and
further improves the overall performance. Extensive experiments
on the public benchmark demonstrate that OPA-3D outperforms
state-of-the-art methods on the main Car category, whilst keeping
a real-time inference speed.

Index Terms—Computer vision for transportation, deep
learning for visual perception, object detection.

I. INTRODUCTION

MONOCULAR 3D object detection empowers a wide
spectrum of applications, e.g., autonomous driving [1],
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robotics manipulation [2], [3], [4], and scene understanding [5].
The bottleneck in this task is scale-ambiguous distance percep-
tion [6], [7], [8] induced by the perspective projection onto the
image plane. As consequence, a few pixels in image space can
make large differences in 3D, which in turn makes it very hard
to directly predict the pose of objects far away [8].

To overcome this limitation, pseudo-LiDAR detectors com-
monly employ pre-trained depth estimation networks to generate
intermediate point cloud representations of the scene, in an effort
to better leverage 3D scene priors. Subsequently, a 3D object
detector is utilized to jointly regress object location, size and
heading direction. The main advantage of pseudo-LiDAR meth-
ods resides in the fact that their performance on object detection
can be automatically improved when updating the depth gener-
ator. However, efficiency and generalization ability are strong
bottlenecks, restricting the performance of such methods [9]. To
address this issue and enhance distance perception at the same
time, single-stage monocular 3D object detectors [10], [11],
[12] design geometric depth priors, e.g., localization errors [8],
geometry projection [7], [10], or spatial relationship [13], for
the object center estimation. These single-stage 3D detectors
demonstrate promising results on public datasets, however, their
performance is still inferior to methods pre-trained with a depth
dataset, with 16.46% of Monocon [11] compared to 16.87% of
DD3D [6] on the main category in KITTI-3D [1].

Another challenge is (self-)occlusion. In a cluttered traffic
scene, objects are often occluded or truncated, which com-
plicates inference due to insufficient context cues. Thereby,
self-occlusion remains challenging since benchmarks, such as
KITTI-3D, only provide occlusion and truncation level and fail
to offer detailed ground truth such as object visibility masks.
Thus, the majority of methods [6], [7], [10] simply regress all
target information from the image regardless of handling the
occlusion. As exception, MonoRun [14] utilizes a latent vector
to encapsulate occlusion, truncation and shape cues of the object.
Moreover, [15] leverages view transformations to generate novel
observations of the scene, mitigating the occlusion caused by
perspective projection.

On the contrary, in this paper we propose an Occlusion-
Aware Pixel-Wise Aggregation network (OPA-3D) that takes
advantage of geometry and context cues to regress 3D object
bounding boxes in traffic scenes, combining the advantages of
both pseudo-LiDAR and single-stage detectors. OPA-3D com-
putes a shared feature embedding and subsequently stacks two
streams, i.e., Geometry Stream and Context Stream, on top of it.
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Fig. 1. Compared to conventional two-stage pseudo-Lidar methods that sim-
ply append the utilized object detector to a pre-trained depth estimator, OPA-3D
takes advantage of joint dense depth estimation (which can be pre-trained) and
direct object bounding box regression, enabling geometry-guided cross-task
consistency terms. Results on public datasets demonstrate that our new network
architecture outperforms all pseudo-Lidar detectors.

As for Context Stream, we adopt GUPNet [10] to directly regress
object bounding boxes from an RGB image. Geometry Stream
instead recovers the 3D information from geometrical cues. To
recover the 3D bounding box, Geometry Stream predicts 1) the
dense depth map, and 2) the residual vectors from each point
on the object surface to the corresponding bounding box faces,
along with 3) the uncertainty of each residual vector. We show
in Section III-C that the 3D bounding box can be estimated
via solving an occlusion-aware quadratic function. In addition,
we also introduce a novel Bird-Eye-View (BEV) bounding box
projection scheme which offers geometric constraints for the
bounding box center estimation. Since the actual 3D bounding
box can be derived from both streams, we are able to enforce
consistency terms to align the individual outputs, which in
turn enhances the overall performance. In Fig. 1, we compare
OPA-3D with conventional pseudo-LiDAR methods [16], [17].
In particular, OPA-3D is end-to-end trainable and also allows
for depth pre-training.

Our main contributions can be summarized as follows:
1) We propose OPA-3D, which leverages both geometry and

context information with two parallel branches. Our novel
uncertainty-based occlusion-aware bounding box recov-
ery from predicted dense depth map and depth-bounding
box residuals facilitates cross-branch consistencies.

2) To enhance the distance perception, we further propose
novel bounding box projection based 2D-3D geometric
consistencies in BEV.

3) OPA-3D performs effectively on real-world KITTI-3D
and nuScenes, whilst enabling real-time applications with
an inference speed of 25 Hz.

II. RELATED WORK

In this section we highlight the three main existing branches
of related work in monocular 3D object detection.

A. Monocular 3D Detection With Depth Prediction

Taking advantage of the development of deep learning meth-
ods, especially in monocular depth estimation, approaches such

as [16], [17] proposed to initially estimate the depth map from
a single RGB image and subsequently transfer it into a PL
(pseudo-LiDAR) point cloud. LiDAR-based object detectors can
be directly applied to estimate the 3D object bounding box from
the PL point cloud representation. Subsequent work attempted to
strengthen this pipeline by fully leveraging the information from
the RGB image [17], [18]. [19], [20] also showed improvement
by training the PL methods in an end-to-end manner. Although
the monocular depth estimation can be trained with rich raw
video or stereo data, the task itself is still ill-conditioned and
ambiguous, making it the main error source for the PL 3D
object detection [21]. To overcome the limitation of imprecise
distance perception, learning the depth map as an auxiliary task
has been considered a better choice [6] which can exploit the
additional large-scale training data while not restricting the 3D
object detection to the depth error. Our proposed approach also
benefits from the additional available data for depth training.

B. Monocular 3D Detection With Shape Priors

Following the work of Murthy et al. [22], a branch of ap-
proaches start with integrating shape prior in the 3D detection
pipeline. Early works simplified the shape as keypoints [23],
[24]. Combined with CAD models, the keypoints can be uti-
lized to determine object size or solve the object pose with
a PnP (Perspective-n-Point) solver. However, the labeling of
the keypoints is time-consuming and often inaccurate. To mit-
igate this, [12] automated the labeling process by proposing
a deformable model-fitting pipeline. Taken into account that
the understanding of object shape contributes to the object 3D
detection, [25], [26] proposed the dense object shape matching
from LiDAR point cloud or using a render-based loss. Unlike
explicitly applying the object shape, we encode the object shape
implicitly in the depth residual prediction. We define the 3D
bounding box as the optimal one given by the dense residual
depth prediction, which also minimizes the influence of the
inaccurate object shape annotation.

C. Monocular 3D Detection With Geometry Consistency

Deep3DBox [27] firstly defined the geometry consistency
to lift the 2D detection to 3D detection by assuming that the
3D bounding box should fit the 2D bounding box tightly. [28]
extended the prior work by formulating this geometry constraint
in both image view and BEV (Bird’s Eye View). However, this
formulation assumes that the 2D predictions are accurate. To
tackle this issue, [29], [30], [31] used 3D detection shifted
from 2D detection only as an initial prediction. [25], [29]
generated more 3D prediction proposals based on the initial
prediction, while [30], [31] refined the initial prediction along
with other geometrically constraints, such as object orientation.
Very recently, MonoPair [13] adopted the geometric relationship
between objects, enabling the optimization of 3D predictions
across all object instances in the image. We propose a similar
2D-3D bounding box geometry constraint in the BEV and reduce
the side effect from inaccurate 2D bounding box by adding a
bounding box confidence rate.
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Fig. 2. Schematic overview of our OPA-3D architecture. We first extract features from the given image, then the features are further processed in two streams.
The first two heads in the Geometry Stream are used for dense depth and depth-bounding box residuals (DBR) estimation. By pixel-wise aggregation of the two
predictions, we can recover the 3D bounding box parameters with an occlusion-aware optimization function. The last bounding box projection head is applied to
provide 2D-3D constraints to enhance distance perception. We follow GUP-Net [10] to design the 2D and 3D detection heads as the Context Stream.

III. METHODOLOGY

Given a single RGB image, our goal is to estimate the 3
Degrees-of-Freedom (DoF) object center together with the 3
DoF object size and the 1 DoF heading direction and an optional
detection confidence for each object of interest. Moreover, in
line with other works [10], [11], we require a lot of appropriate
training data for depth pre-training. Nevertheless, as the depth
prediction head of OPA-3D can be trained with LiDAR points
as well as depth maps, we can easily make use of many large-
scale depth datasets, e.g. KITTI-Depth [1]. Note that only RGB
images are required during inference.

Overview: In contrast to pseudo-Lidar methods that detect
3D objects in a two-stage fashion, our method OPA-3D, as
illustrated in Fig. 2, is a single-stage method which can be
trained fully end-to-end. Given a single RGB image as input,
we use a backbone to extract features, which are then fed into
the Geometry Stream and Context Stream to perform respective
prediction tasks.

Thereby, the first two heads in the Geometry Stream (GS)
are designed for dense depth and depth-bounding box residuals
(DBR) estimation. We show that the 3D bounding box parame-
ters can be occlusion-aware recovered in closed-form with the
pixel-wise aggregation of the output from the two heads. In the
last bounding box projection head, we additionally predict the
2D projections of the BEV bounding box corners to enforce
geometry-guided 2D-3D constraints for distance perception.
Our Context Stream (CS) is identical to GUP-Net [10], which
first predicts 2D bounding boxes and then uses ROI-Align [32] to
extract object-centered features for 3D bounding box prediction.
Compared to the CS, our GS gains more specific geometric
information such as object shape and location. We use the
consistency terms (LC−G and LBPC) to ensure the promotion
of both streams and that the feature encoder can learn rich
features from both streams. On the otherside, CS is faster and
more stable since all cues are leveraged and aggregated, while
GS only harnesses depth-related geometric information. Thus,
we only use CS during inference.

A. Context Stream

To localize the object in the image, we let our network predict
a coarse 2D object center Co in form of a heatmap, together
with a 2D offset δ2d = {δu2d, δv2d} and 2D size h,w, so to obtain
the final refined 2D bounding box using C2d = Co + δ2d. To
guide the model to extract object-centered features, the 2D
bounding box indicated region-of-interest (ROI) features are
cropped and resized with ROI-Align [32] and then concatenated
with normalized coordinate map [33] to form the input for the
3D detection head. Finally, the 3D object center CCS

3d , heading
θ and size HCS ,WCS , LCS are predicted from the ROI features
and employed to calculate the respective 3D bounding box.
Notice that in the following, we use the subscript ’CS’ to denote
predictions from the Context Stream. For supervision we follow
the loss terms from GUP-Net [10], denoted as LCS .

B. Geometry Stream

In the section, we introduce the three predition heads in the
Geometry Stream and their supervision.

Dense Depth Estimation: We follow Adabins [34] to adopt a
transformer-based network to divide the depth range into adap-
tive context-guided bins, which turns dense depth estimation into
a linear combination of Softmax scores. The estimated depth
map D is 1×H/4×W/4.

DBR: DBR was first introduced in GPV-Pose [2] for RGB-
D based category-level pose estimation. It describes the dis-
placement vectors from the observed object surface towards its
projections on all of the 6 bounding box faces, as shown in
Fig 3(a). We follow and develop DBR by leveraging a very small
convolutional branch for regression of DBR R together with
corresponding uncertainties UP , where R,UP ∈ R6×H

4 ×W
4 .

BEV Bounding Box Projection: The output of this head is de-
signed for enforcing several novel 2D-3D geometric constraints
for improved distance perception (details see Section III-D). As
shown in Fig. 3, for each BEV bounding box corner P i with
i ∈ {1, . . ., 4},ρi = {ρxi , ρyi }denotes the perspective projection
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Fig. 3. Illustration of DBR and Bounding Box Projection. (a) illustrates Depth-
Bounding Box Residuals (DBR) in two views. Given a visible point P on the
object surface, we calculate its displacement vectors R to each of the bounding
box faces along the direction of the corresponding plane normal (red arrow for
positive direction while orange for negative). In (b), we demonstrate DBR from
the view of the six bounding box faces. If P is invisible, we use dashed lines.
H,W,L refer to 3D object height, width and length. (c) shows the bounding box
projection from the bird’s-eye view. Since we assume the y axis points straight
downwards, from the bird-eye view the surrounding lines (yellow lines in (a))
of the object box project to 4 points P i, i = 1, . . ., 4. We project P i onto the
image and yield ρi, i = 1, . . ., 4, We utilize the bounding box projection head
to predict the 1D displacement vector dip from each pixel p to the projections
ρi along x-axis.

of P i onto the image plane given the known camera intrinsics.
Since the y axis is assumed to be vertical to the ground, we
estimate the displacement dip and uncertainty ui

p from a pixel p
to the location ρi merely along the x-axis. The final projected
locations of the corners along the x-axis can be recovered
as ρxi =

∑
p∈Ω(p

x + dip) ∗ exp(ui
p)/
∑

p∈Ω exp(ui
p), where Ω

includes all pixels in the 2D object bounding box and exp(∗) is
the exponential function that transforms uncertainty scores up

into weights.
GS Supervision: Assuming the prediction follows the Lapla-

cian distribution, one can formulate the supervision within an un-
certainty framework using the Laplacian Aleatoric Uncertainty
(LAU) loss [13], which is defined as,

LLAU (u, pr) =

√
2

u

∣∣pr − prgt
∣∣+ log(u), (1)

where pr is the prediction, prgt is the corresponded ground truth
and u refers to the estimated uncertainty for this prediction.

Since we need to predict DBR and BEV bounding box along
with their uncertainties, we supervise both prediction w.r.t the
LAU loss. We use a standard L1 loss to train our dense depth
prediction. The final loss for the geometry stream LGS can
be computed by adding up the individual contributions of the
presented three heads.

C. 3D Bounding Box From Geometry Stream

GPV-Pose [2] leverages DBR to directly establish geometry-
aware consistency with the predicted pose from RGB-D im-
ages. We extend this idea for RGB-only 3D object detection
by introducing two novel points, 1) explicitly recovering the
3D bounding box from RGB input and 2) uncertainty-based
occlusion handling strategy. 1) We explicitly recover the 3D
object bounding box in closed-form via differentiable post-
optimization, enabling direct supervision with the ground truth
3D object bounding box parameters for more effective feature
extraction. As shown in Fig. 3, for each visible pixel p, the

DBR head outputs the 1D displacement vector Rj that maps
the back-projected 3D point P to the corresponding projection
Bj

P on each bounding box face j with Bj
P = P + nT

j R
j and

j ∈ {front, back, left, right, top, bottom}.nj is the face nor-
mal. We additionally estimate an uncertainty U j

P for each point
P to measure the reliability of DBR. SinceBj

P is supposed to be
on the bounding box face, we define the uncertainty-weighted
plane fitting loss fs for all Bj

P as follows,

fs =
∑

j∈Bbs

∑
p∈Ω

(1− U j
P )

(
nT

j B
j
P − nT

j C
3d
GS +

Sj
GS

2

)2

+
∑

j∈Bbt

∑
p∈Ω

(1− U j
P )(B

j
P −C3d

GS +
Sj
GS

2
)2, (2)

Thereby, Bbs contains the {front, back, left, right} faces of
the 3D bounding box, andBbt contains the {top, bottom} faces.
HGS ,WGS , LGS ,C

3d
GS are the target bounding box height,

width, length and the 3D center needed to be recovered from
the GS. Sj

GS ∈ {−LGS ,−WGS , LGS ,WGS , HGS ,−HGS}
for corresponding j ∈ {Bbs ∪Bbt}, e.g. Sback

GS = −WGS

in case of j = back. Since the target parameters
HGS ,WGS , LGS ,C

3d
GS are decoupled in (2), we can

calculate the partial derivatives of fs w.r.t. these vari-
ables { ∂f

∂WGS
, ∂f
∂LGS

, ∂f
∂HGS

, ∂f
∂C3d

GS

} and directly recover

HGS ,WGS , LGS ,C
3d
GS by setting the partial derivatives to be

zero and solving the equations.
2) Trying to minimize (2) alone could lead U j

P converge to
1.0. However, as a confidence term, U j

P should have a geometric
meaning. Therefore, we introduce the regularization term,

ft = α
∑
p,j

(U j
P )(WGS −Wξ)

2 + β
∑
p,j

(U j
P )(LGS − Lξ)

2

+ γ
∑
p,j

(U j
P )(HGS −Hξ)

2, (3)

where {Wξ, Lξ, Hξ} are prior object width, length and height.
{α, β, γ} are small constant weights to balance each term.
Thereby, we leverage {U j

P , α, β, γ} to apply our occlusion
handling strategy. In general, if the observations are reliable to
recover the bounding box faces, we adopt the plane fitting loss in
(2) to calculate face normal and center. However, when the obser-
vations are limited due to (self-)occlusions, we instead use prior
knowledge to reconstruct the bounding box. Specifically, for the
occluded bounding box faces in j, the corresponding uncertainty
U j
P is large, signalizing that it is hard to predict their bounding

boxes directly. As shown in Fig. 3(b), when considering the front
view, the back side is completely self-occluded by the object.
Thus, without any prior knowledge, it is infeasible to infer the
object’s length from this view. It is worth noting that this also
applies to occlusion caused by other objects. Therefore, forcing
the network to estimate bounding boxes with these ill-posed
observations leads to unstable training and, hence, converges in
performance deterioration. We solve the optimization problem
objective to f = fs + ft to mitigate this problem. If U j

P for a
certain bounding box face j is very large (or in other words the
prediction from the image is not reliable), the corresponding
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term in fs will be small. In this case, the 3D bounding box will
be predicted close to the prior size {Wξ, Lξ, Hξ} to ensure the
minimum of ft.

To summarize, our optimization-based bounding box recov-
ery explicitly describes the pipeline from image to depth and
finally to the object bounding box. Since HGS , WGS , LGS ,
C3d

GS are solved in a differentiable manner, we can directly
supervise the Geometry Stream with ground truth bounding box
parameters besides the respective supervision on dense depth
and DBR, enforcing the network to learn more effective features
for 3D object detection.

D. Object Distance From BEV Bounding Box Projection

To enhance distance perception, geometric projection of ob-
ject height is widely harnessed in literature [8], [10]. In this
paper, we further extend this idea and propose object width and
length related geometric priors to establish several novel 2D-3D
constraints. As shown in Fig. 3, we have{

z1ρ
x
1 = KP 1 = K(C + W

2 n2 +
L
2n1),

z2ρ
x
2 = KP 2 = K(C + W

2 n2 − L
2n1),

(4)

where z1, z2 are the z coordinates of P1 and P2, K denotes the
camera intrinsic matrix and W,L,C are the target bounding box
parameters. When solving the above equation, we can obtain the
depth zC of the object center as follows

zC =
fxnx + cxnz

ρx1 − ρx2
L− nz(ρ

x
1 + ρx2)

2(ρx1 − ρx2)
L− nx

2
W, (5)

where fx, cx are camera focal length and its optical center along
the x axis. Further, n1 = [nx, 0, nz]

T is the normalized heading
direction of the object (c.f. blue arrow in Fig. 3(c)). Note that
we again only utilize the x coordinate of the BEV bounding
box projections. Since the y axis points straight downwards, the
projections of the surrounding lines (yellow lines in Fig. 3(a))
are parallel to the y axis on the image plane, thus regressing
their x coordinate via pixel-wise aggregation is more reliable
than exactly locating their 2D positions. We can build a 2D-3D
constraint based on each BEV bounding box edge, resulting in
up to 4 constraints.

E. Geometry Consistency Loss

In this section, we introduce how to build cross-stream consis-
tency losses between the predictions from the geometry stream
and the context stream.

Two-Stream Consistency: Notice that our proposed model is
able to predict the 3D object bounding box from both presented
streams. Whereas the geometry stream recovers the 3D bounding
box via optimization of (2) and (3), which is fully differen-
tiable, the context stream instead directly regresses all target
parameters {HCS ,WCS , LCS ,C

3d
CS} from the RGB image. As

consequence, we can naturally enforce consistency between
both streams according to

LC−G = ‖HGS −HCS‖+ ‖WGS −WCS‖+ ‖LGS − LCS‖
+
∥∥CGS

3d −CCS
3d

∥∥ . (6)

Bounding Box Projection Consistency: For each object we can
generate up to 4 hypotheses for depth zC following (5). Thus,
given the predicted 3D length and width from the Context
Stream, we define our consistency loss for object depth as

LBPC =
∑
j∈BL

ωj

∥∥zjc − Cz
CS

∥∥ , (7)

where Cz
CS is the z coordinate of C3d

CS , BL contains all four
corner pairs of BEV bounding box edges and ωj measures the
weight of each term. When consideringρ1 andρ2,ω12 is defined
as ω12 = v ∗ [1− exp(−k|ρx1 − ρx2 |)], where k is a constant de-
fined according to the heading direction, v = 1 if {P 1,P 2} are
visible and otherwise v = 0. This weight definition enforces that
a visible projection with larger observation angle is preferred.

F. Overall Loss Function

The overall loss function is a combination of all four previ-
ously introduced loss terms,

LOverall = LCS + LGS + LC−G + LBPC . (8)

Thereby, the loss terms will be automatically weighted from 0 to
1 with Hierarchical Task Learning (HTL) scheme as proposed
in GUP-Net [10], which allows defining preliminary tasks for a
specific loss. This specific loss will then start to be used when
its preliminary task has been properly trained. The ranking of
tasks in the Context Stream are identical to GUP-Net [10]. The
Geometry Stream starts with dense depth prediction and BEV
bounding box prediction, which in turn have no preliminary
tasks. In contrast, DBR prediction requires dense depth esti-
mation as preliminary task. The two consistency terms kick in
once the predictions become stable. In essence, both consistency
losses depend on the entire Context Stream. Moreover, the
LC−G also requires stable dense depth computation and DBR
prediction, while the LBPC relies on a steady BEV bounding
box prediction.

IV. EXPERIMENTS

A. Experimental Setup

Datasets: We provide detailed evaluation on the commonly-
used KITTI-3D [1] and nuScenes [43] benchmarks. For KITTI-
3D, we use the official KITTI-3D split of 7481 training and 7581
testing images. We further follow [6], [7], [10] and split the train-
ing data into a training and validation subset, each containing
around 3.7 k samples, for ablation purposes. For nuScenes, since
the dataset is quite large, we only use the images from front
camera (∼1/6 of all training data) for training, and evaluate on
the public validation split. On both datasets, we also leverage
the provided LiDAR points to supervise depth prediction. In
this paper, we mainly focus on three common categories, i.e.
car, pedestrian, cyclist. Following previous works [10], [11],
we conduct ablation studies mainly on the car category.

Implementation Details: The overall network is trained in an
end-to-end manner. For a fair comparison with the state-of-the-
art, we use DLA-34 [41] with a downsampling ratio of 4 as our
backbone network for feature extraction. We train the network
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TABLE I
COMPARISON WITH STATE-OF-THE-ART METHODS OF THE CAR CATEGORY ON KITTI-3D

TABLE II
COMPARISON WITH STATE-OF-THE-ART METHODS OF THE PEDESTRIAN AND

CYCLIST ON KITTI-3D TEST SPLIT. AP3D|R40|IOU≥0.7 IS REPORTED

with a batchsize of 8 using the AdamW [44] optimizer. The
learning rate increased from 1e− 5 to 1.25e− 3 in the first
5 epochs using a cosine warmup. We train our networks for
200 epochs and decay the learning rate by 0.1 after the 110-th
and 150-th epoch. We empirically set α, β, γ in Section III-C
to 1e− 3 for occlusion handling. We adopt the HTL training
scheme proposed in GUP-Net to balance each loss term, as
explained under (8). The input images have been resized to
1280× 380 on the KITTI-3D dataset, while 1600× 896 on
the Nuscenes dataset. We augment the input data by randomly
cropping and flipping of the input images, as well as random
brightness changes. The network has been pretrained with the
KITTI-Depth dataset [1] by enabling only the dense depth pre-
diction head for 25 epochs using the clean training split (removed
the overlapping of the test images in KITTI-3D) [6].

B. Comparison With State-of-The-Art

Results for Car on KITTI-3D: We first compare with other
state-of-the-art (SOTA) monocular 3D detectors on the KITTI-
3D test set for the car category in Table I. It can be seen that
OPA-3D exceeds all other SOTA methods and shows an obvious
improvement (2.03%) over the GUP-Net [10] baseline on the
moderate criteria. Similarly, we are also on par or better than

TABLE III
ABLATION STUDY OF THE CAR CATEGORY ON KITTI-3D VAL SPLIT

Monocon [11], which is similar to GUP-Net [10], yet leverages
several auxiliary tasks to improve 3D detection. In contrast to
the auxiliary tasks in Monocon [11], our proposed geometry
stream is able to utilize the depth information for training, thus
achieving larger performance improvements.

Note that DD3D [6] leverages an in-house dataset with 15 M
images for depth pre-training, together with a feature pyra-
mid network based on the much larger V2-99 backbone [40].
Nonetheless, despite the use of this large amount of training
data for depth, we can still slightly exceed DD3D on test and,
especially, on validation with an 3D IoU of 19.40% vs. 16.92%
with the same backbone.

Results for Pedestrian and Cyclist on KITTI-3D: Interestingly,
we notice larger improvements over Monocon [11] for the Pedes-
trian and the Cyclist categories, hinting that its auxiliary tasks
cannot be learned well with small objects. However, we also
observed that OPA-3D is less effective on the Cyclist category.
We attribute this drop in performance to the thin structure
of cyclists. As our model is trained with depth from LiDAR
point clouds, missing depth information for cyclists induces a
weakened perception of depth.

Results on nuScenes: In Table IV, we compare OPA-3D with
two baselines: CenterNet [45] and GUP-Net [10]. It can be
seen clearly that our method outperforms competitors under all
metrics. Note that we trained all approaches and used only partial
training images in this experiment.



SU et al.: OPA-3D: OCCLUSION-AWARE PIXEL-WISE AGGREGATION FOR MONOCULAR 3D OBJECT DETECTION 1333

TABLE IV
COMPARISON WITH BASELINES ON NUSCENES BENCHMARK

C. Ablation Study

In Table III we present several ablation studies on the KITTI-
3D validation split w.r.t. the Car category. Row ‘A1’ refers to the
results of the baseline model [10]. In row ‘A2,’ we research the
improvement introduced by learning dense depth prediction as
an auxiliary task. Although we observed a large improvement,
we show in the following that the learning tasks in our proposed
Geometry Stream contribute more.

Effect of Two-Stream Consistency Loss: In this experiment,
we disable the BEV bounding box head and LBPC . The GS re-
covers 3D bounding box from dense depth and DBR prediction,
and the LC−G ensures the consistency preditions from GS and
CS. When removing this branch, we notice a drop on Car under
moderate criteria (Table III B1 vs A0, also B1 vs A1), proving the
effectiveness of our proposed LC−G. Since the LC−G requires
dense depth map prediction, we are able to easily pre-train
the network on a depth dataset. After pre-training with the
KITTI-Depth dataset [1], the results further increased by 0.61%.
This improvement indicates that the training of LC−G benefits
from an additional depth dataset, which can be transformed from
Lidar raw data without annotation effort.

Effect of BEV bounding box projection: We also want to ablate
the usefulness of LBPC , by removing the dense depth predic-
tion, DBR prediction and LC−G. The model again outperforms
the baseline model clearly by 2.24% (Table III C vs A1), which
supports the effectiveness of LBPC . As no depth information is
used, the improvements by LBPC are overall slightly less high
than by LC−G.

Effect of combination of both consistency loss: Finally, by
integrating both consistency losses into the baseline model, we
can obtain the results for our proposed OPA-3D network. OPA-
3D exceeds the models having only one consistency term. In
summary, taking advantage of the additional depth training data
and our geometric consistencies, OPA-3D is capable of yielding
SOTA results.

D. Qualitative Results

We show some qualitative results in Fig. 4. OPA-3D pre-
dictions are visualized in green, while the prediction from the
baseline model [10] are shown in blue. We also render the
ground truth BEV bounding box in red. Further, in the first three
columns, the car’s front, back, or right side is self-occluded,
while in the last two column, the car is occluded by other objects.
As can be observed, OPA-3D is able to predict more accurate
bounding boxes under (self-)occlusion.

Fig. 4. We visualize example predictions on the KITTI-3D validation set.
Our OPA-3D predictions are visualized in green, while the prediction from the
baseline model [10] are shown in blue. We also render the ground truth BEV
bounding box in red. We notice that OPA-3D produces more accurate predictions
for the bounding box faces under self-occlusion as well as external occlusions.

V. CONCLUSION

In this paper we proposed a novel Occlusion-Aware Pixel-
Wise Aggregation network OPA-3D, which jointly predicts the
object bounding box from the geometry stream and the con-
text stream, allowing for cross-branch consistency. We further
propose to leverage the bounding box projection to establish
several 2D-3D constraints to promote distance prediction. Ex-
tensive experiments on public benchmarks demonstrate that
OPA-3D achieves state-of-the-art performance, whilst being
able to achieve real time performance.
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