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Abstract—With the construction of smart grid, lots of renew-
able energy resources such as wind and solar are deployed in
power system. It might make the power system load varied
complex than before which will bring difficulties in short-term
load forecasting area. To overcome this issue, this paper proposes
a new short-term load forecasting framework based on big data
technologies. First, a cluster analysis is performed to classify daily
load patterns for individual loads using smart meter data. Next,
an association analysis is used to determine critical influential
factors. This is followed by the application of a decision tree
to establish classification rules. Then, appropriate forecasting
models are chosen for different load patterns. Finally, the
forecasted total system load is obtained through an aggregation
of an individual load’s forecasting results. Case studies using
real load data show that the proposed new framework can
guarantee the accuracy of short-term load forecasting within
required limits.

Index Terms—Association analysis, big data, cluster analysis,
decision tree, short-term load forecasting.

I. INTRODUCTION

SHORT-TERM load forecasting, a key parameter that
helps electric utility operators make decisions such as

purchasing and selling electric power, load switching, and
maintenance planning, serves an important function in system
operations. Researchers have proposed different approaches to
short-term load forecasting, which can be generally classified
into two categories: time series analysis methods, includ-
ing ARIMA models [1]–[3], exponential smoothing [4], [5],
and machine learning approaches, such as neural networks
(NN) [6]–[8], support vector machine (SVM) [9]–[11], and
fuzzy system (FS) [12], [13]. To enhance forecasting accuracy
of these two categories of methods, researchers have used
multi-wavelet analysis [14], [15] and chaos theory [16], [17]
for improved outcomes.

In general, short-term forecasting methods perform direct
forecasting of the total system load using historical load
data and weather data as inputs. However, since the grid
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consists of thousands of individual users and many time-
varying characteristics, a single forecasting method, such as
those mentioned earlier, cannot adequately forecast individual
loads, as well as the accompanying factors that influence
the variations in these loads. Therefore, current approaches,
which treat all users as a single entity, sometimes may not be
able to meet accuracy requirements under all circumstances.
Another issue is that the load needs to be forecasted at the
substation or bus level for calculation of the power flow. Most
utilities do not process load forecasting at the substation or
bus level because of the complexities involved in capturing
the necessary information or because there is very little data
available.

The construction of the smart gird has led to wide de-
ployment of smart meters [18]. Smart meters provide an
opportunity to analyze the time-varying characteristics of
individual loads. In China, smart meters measure electricity
usage of industrial loads every 15 min. For commercial and
residential loads, smart meters measure electricity usage every
hour. The huge amount of data from millions of smart meters
has reached the tera byte (TB) or peta byte (PB) scale,
offering valuable information that can be used for short-term
load forecasting. To handle large quantities of data, however,
presents a challenge, and in recent years, a few industries [19]–
[22] have utilized big data tools, leading to significant results.
Yahoo’s R&D team, for example, uses the Hadoop platform
for sorting through 1 TB of data in only 62 seconds.

A new short-term load forecasting framework based on
big data technologies is proposed in this paper. In Section
II, the framework and relevant techniques of the short-term
load analysis and forecasting method are presented in detail.
Section III introduces a technical framework of the proposed
method using big data technologies. Section IV provides case
study results. Section V concludes this paper.

II. FORECASTING FRAMEWORK AND CORE TECHNIQUES

The proposed forecasting framework includes five steps, as
shown in Fig. 1. Steps 1 through 3 consist of machine learning
techniques that aim to discover typical load patterns of histor-
ical load data and then find their critical influential factors
to establish classification rules. Step 4 is a model training
process, where parameter combinations for corresponding load
patterns are chosen to build forecasting models. In Step 5,
individual load forecasting results are added to arrive at the
final system load.

2096-0042 c© 2015 CSEE
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Fig. 1. Framework of proposed approach.

A. Improved Hierarchical Clustering Technique

Since each individual load can consist of different types
of load curves due to factors such as weather, dates, etc., a
hierarchical clustering technique is used to classify historical
load curves into several patterns.

Using a hierarchical clustering algorithm represents a
bottom-up approach, as shown in Fig. 2. First, take each
sample as a separate class. Second, calculate the distance
between each sample. Third, merge classes that meet the
distance requirements.

Finally, repeat the above three steps until the number of
classes meet the requirements. Proximity matrix A stores the
distances between every two classes [23].

Selection of a proper distance algorithm is the key for the
clustering technique. In this paper, a new distance named
“Normalized Euclidean Distance” is proposed as follows:

d12 =

√√√√ n∑
k=1

(
x1k − x2k
xmax

)
2

(1)

where d12 represents Normalized Euclidean Distance between
Sample 1 and Sample 2, n means n dimensions. xmax means

the maximum load value of each dimension. Normalized
Euclidean Distance helps adopt a standard accuracy limit to
evaluate all the loads with different peak values.
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Fig. 2. Flow chart of hierarchical clustering algorithm.

B. Identification of Critical Influencing Factors

Many factors, including temperature, humidity, day type,
etc. have impact on loads. For different loads, critical in-
fluential factors are not the same. For example, temperature
could be a major influential factor for residential loads. But
temperature may have little impact on some temperature non-
sensitive industrial loads. Grey correlation analysis is applied
to determine the critical influential factors of each individual
load.

The degree of correlation is determined by analyzing the
correlation between the object series and the reference series
according to the principle of grey correlation theory [24], [25].
The reference series is shown as X0 = {x0(1), x0(2), . . . ,
x0(k), . . . , x0(n)}, and the object data series are Xi = {xi(1),
xi(2), . . . , xi(k), . . . , xi(n)}, where x0(k), xi(k) are the val-
ues of X0 and Xi in the k moment. After the non-dimensional
transformation, the correlation coefficient between two series
at k moment is shown as follows:

ξ0i(k) =
min
i

min
k
|x0(k)− xi(k)|+ρmax

i
max
k
|x0(k)− xi(k)|

|x0(k)− xi(k)|+ ρmax
i

max
k
|x0(k)− xi(k)|

(2)
where ξ0i(k) is the correlation coefficient between two series
at k moment; ρ is the distinguishing coefficient.

The correlation between two series is the average value of
all the coefficients, and is given as follows:

γ0i =
1

n

n∑
t=1

ξ0i(t). (3)

Object series are load series, and reference series are several
influential factors. The less the two series differ, the more cor-
relations they have. High grey association coefficient implies
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that the corresponding factor has strong correlation with the
load. These factors are critically influential. The results from
association analysis provide inputs for the next step, which is
the decision tree analysis.

C. Establishment of Classification Rules

Based on cluster analysis and association analysis results, a
decision tree, which is based on CART algorithm, is developed
to establish relationships between clustering results and critical
factors.

Proposed by Breiman in 1984, CART algorithm [26], makes
a decision in each node based on a split of a variable, and
then makes its way down until it reaches a leaf node. Another
feature of CART is the splitting of each node into 2 sub-nodes
by finding a best split variable according to the Gini index.

Gini(D) = 1−
m∑
i=1

pi
2 (4)

where D represents the original data set, pi is the sample
classification probability of each cluster Ci, and m means this
original data set D includes m categories.

The historical data set consists of load influential factors,
and the leaf node labels of CART are load patterns determined
by hierarchical clustering analysis. CART is then able to make
a decision in each node based on a split of an influential
factor until it reaches a leaf node, which is determined by
cluster analysis. Fig. 3 shows the process of using a decision
tree to establish the classification process. Given the critical
influential factors of the forecasting day, the cluster, which the
forecasting day belongs to, can be determined according to the
classification rules in the decision tree, as shown in Table IV
at the end of this paper.
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Fig. 3. The process of using a decision tree to establish classification rules.

D. Selection of Appropriate Forecasting Models

For different load patterns, different support vector machine
(SVM) models and parameters are developed to ensure the
forecasting accuracy within the required limits.

First proposed by Vapnik [27], SVM is an effective tech-
nique for classification and regression problems. SVMs are su-
pervised learning models with associated learning algorithms
that analyze data and recognize patterns used for classification
and regression analysis. SVM can efficiently perform a non-
linear classification using the kernel trick, implicitly mapping
the inputs into high-dimensional feature spaces.

The support vector regression problem is shown below:

min
ω,b,ξ,ξ∗

1

2
ωTω + C

n∑
i=1

(ξi + ξi
∗) (5)

subject to:

yi(ω
Tφ(xi) + b) ≤ ε+ ξi,

(ωTφ(xi) + b)yi ≤ ε+ ξi
∗,

ξi, ξi
∗ ≥ 0, i = 1, . . . , n

where (x1, y1), . . . , (xn, yn) are a pair of input and output
vectors, n is the number of samples, ω is weight factor, b is
the threshold value, and C is error cost.

Input samples are mapped to higher dimensional space by
using kernel function φ; ξi is the upper training error; and ξ∗i
is the lower training error subject to ε-insensitive tube |y −
(ωTφ(xi) + b)| ≤ ε. Kernel function is responsible for non-
linear mapping between input and feature space. There are
three typical kernel functions: gaussian (RBF), polynomial,
and linear.

For each type of load pattern, a corresponding data set is
chosen to train the SVM model in order to determine the
values of ε, C, and kernel parameter δ2. Therefore, a set of
SVM models is developed for each load. Once the load pattern
is determined according to the decision tree, the corresponding
SVM forecasting model, with appropriate parameters, is used
to ensure the forecasting accuracy.

E. Forecasting Total Load

The total system load is forecasted based on aggregation of
an individual load’s forecasting results, as shown in Fig. 4.
After the forecasting result of each user’s load is obtained, the
forecasted total load Ltotal can be calculated by adding all the
forecasted individual loads, together with line loss Lloss.

Ltotal = Lloss +

n∑
i=1

luser(i). (6)

 

Fig. 4. System topology.

III. TECHNICAL ARCHITECTURE BASED ON
BIG DATA TECHNOLOGIES

Traditional forecasting approaches forecast the total system
load directly. The proposed approach in this paper forecasts
each individual load. For example, a target system consists of
data from 1 million smart meters with critical weather data
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reaching approximately 15 TB per year. The Hadoop platform
is applied to handle the vast amounts of smart meter and
weather data. Fig. 5 illustrates the technical architecture using
big data technologies.
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Fig. 5. Big data processing platform.

The technical architecture in Fig. 5 contains four layers:
data storage, data management, computation, and application.

A. Data Storage Layer

The data storage layer applies two technologies: Hadoop
distributed file system (HDFS) and relationship database man-
agement system (RDBMS). HDFS is applied to store smart
meter data and weather data. RDBMS is used to store con-
sumer data and system topology.

B. Data Management Layer

The data management layer applies Sqoop technology to
convert data from weather, smart meter, and consumer usage
into a Hadoop database (HBase). In HBase, data from each
consumer’s load is stored in a single table. HBase applies a
key/value technique, as shown in Fig. 6 for quick and efficient
access to target data. The row key includes user ID and date.
The column key is time. The value consists of measured
electricity usage, temperature, humidity, wind velocity, and
day type.
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...
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V96
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Date
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Fig. 6. Key/value in HBase.

C. Computation Layer

MapReduce in Hadoop processes parallelizable problems
across huge datasets by using a large number of computers
(nodes). The process includes three steps: map, shuffle, and
reduce, as shown in Fig. 7.

For data importing processes, corresponding steps are
shown below:

1) Map: Historical data sets, including load data and
weather data are stored in HDFS in plain text style. Then,
a map function is carried out by each worker node (computer

server), which reads and analyzes the data and forms them
into a key/value.

2) Shuffle: Worker nodes (computer servers) redistribute
data based on the output keys (produced by the “map()”
function), such that all data belonging to one key is located on
the same worker node. In this process, load data of different
collection times with corresponding users will be stored in the
same group.

3) Reduce: Worker nodes (computers or servers) now pro-
cess each group of output data per key, and in parallel. This
step aims at merging similar load data and eliminating data
error.

For forecasting processes, only the Map step is applied.
The logical sequence of the forecasting task has already been
presented in Section II. For each user, these aforementioned
four steps of clustering, association analysis, decision tree,
and SVM forecasting are carried out in one map. Forecasting
results for each load is then added up in an extra map
threading.

Split 0
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Part 1

Split 3

Map()

Map()

Map()

Map()

Reduce()

Reduce()

Part 0

Split 2

Iput Map tasks Reduce tasks OutputShuffle

Fig. 7. MapReduce working framework.

D. Application Layer

The application layer includes all the technologies described
in Section II, i.e., cluster analysis, association analysis, deci-
sion tree, and forecasting methods.

IV. CASE STUDY

A. Description of Data Set

The proposed short-term load forecasting framework is ver-
ified using smart meter data collected from a real distribution
system consisting of 1.2 million consumers. The user types are
industrial, commercial, residential, and municipal, as shown in
Table I. The total amount of historical data is approximately
1.5 TB. The historical load data was captured at every hour
from Jan. 1, 2012 to Dec. 31, 2012, and is used as training
data. The load data and corresponding weather data from
25/4/2013 to 1/5/2013 are used for testing data.

B. Identification of Load Patterns Using Hierarchical Cluster-
ing Algorithm

Fig. 8 shows the daily load curves of customer 981, an
industrial client from 1/1/2012 to 31/12/2012. The improved
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hierarchical clustering algorithm with normalized Euclidean
distance is applied. Six clusters are identified, as shown in
Fig. 9(a)–(g).
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Fig. 8. Daily load curve of customer 981 from 1/1/2012 to 31/12/2012.

TABLE I
TYPES OF CUSTOMERS IN TARGET DISTRIBUTION SYSTEM

Types Amount of
Smart Meters Types Amount of

Smart Meters
Industrial 231,810 Residential 538,458
Commercial 330,271 Municipal 117,613

Table II summarizes the number of days within each cluster.
Cluster 2 (C2) contains most weekends. C3 and C4 contain
most weekdays. Cluster 5 (C5) is mainly composed of the
first day after weekends.

A further analysis indicates that the sixth cluster (C6) in-
cludes all holidays: New Year (30/12/2012, 1/1/2012), Spring
Festival (21/1/2012–28/1/2012), Qingming Festival (3/4/2012–
4/4/2012), Labor Day (1/5/2012, 2/5/2012), and Chinese Na-
tional Holiday (30/9/2012–7/10/2012). The first cluster con-
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Fig. 9. Cluster results of customer 981 from 1/1/2012 to 31/12/2012. (a) Cluster 1. (b) Cluster 2. (c) Cluster 3. (d) Cluster 4. (e) Cluster 5. (f) Cluster 6. (g)
Cluster 7.



64 CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. 1, NO. 3, SEPTEMBER 2015

TABLE II
NUMBER OF DAYS ASSOCIATED WITH SIX CLUSTERS

Day Type C1 C2 C3 C4 C5 C6 C7

Monday 4 0 11 27 8 3 0
Tuesday 0 0 22 26 1 2 1
Wednesday 2 1 27 18 2 1 1
Thursday 2 1 26 19 2 2 0
Friday 0 1 32 18 0 1 0
Saturday 2 24 6 8 9 1 2
Sunday 2 22 12 9 0 6 2

tains most of first days following a holiday.

C. Association Analysis to Identify Influential Factors
The grey association analysis method described in Section

II is applied to determine influential factors. Table III shows
association coefficients corresponding to each factor. The max-
imum temperature, average humidity, average temperature, and
day type are more relevant than wind velocity and average
precipitation. These factors are used as inputs for decision
tree analysis in Section IV D and the SVM forecasting model
in Section IV E.

D. Establishment of Decision Tree
Once the forecasting temperature, the forecasting humidity

and the day type are known, the cluster of the forecasted load
can be determined using the decision tree. Fig. 10 shows the
decision tree built using CART algorithm, which is a sketch
map (the entire CART diagram can be seen at the end of
paper).

For example, on April 26, 2013, which was Saturday, the
average temperature was 12.75◦C, the maximum temperature
was 21◦C, and the average humidity was 54.3%. According
to the decision tree, which is attached at the end of this paper,
it belongs to Cluster 4. Table IV shows the corresponding
cluster for each day to be forecasted based on the decision tree
analysis. Once the cluster of the forecasting day is determined,
a proper forecasting model can then be applied.

TABLE III
GREY CORRELATION COEFFICIENT OF CUSTOMER 981

MT AT AH DT WV AP
0.7512 0.53459 0.6588 0.4472 0.2214 0.2137
MT = maximum temperature, AT = average temperature, AH
= average humidity, DT = day type, WV = wind velocity,
AP = average precipitation.

TABLE IV
CLASSIFICATION RESULTS FROM 25/4/2013 TO 1/5/2013

Day Number Results Day Number Results
25/4/2013 Cluster 3 29/4/2013 Cluster 5
26/4/2013 Cluster 4 30/4/2013 Cluster 1
27/4/2013 Cluster 2 1/5/2013 Cluster 7
28/4/2013 Cluster 1

E. Application of Appropriate Forecasting Model

Using the training data, SVM parameters including kernel
parameter δ2, error cost c and insensitive value ε are deter-
mined for the six types of clusters, as shown in Table V. The
traditional parameter combination is shown in Table VI.

TABLE V
SVM PARAMETER COMBINATION OF EACH CLUSTER

Cluster Label ε δ2 c
Cluster 1 0.0010 20 110
Cluster 2 0.0015 37 601
Cluster 3 0.0071 87 115
Cluster 4 0.0032 20 341
Cluster 5 0.0016 28 200
Cluster 6 0.0092 32 123
Cluster 7 0.0024 25 111

TABLE VI
SVM PARAMETER COMBINATION OF TRADITIONAL APPROACH

Parameter ε δ2 c
Value 0.002 20 100

Historical load 
data set

Maximum 
temperature<7.95

Maximum 
temperature>=7.95

Day type<6.5 Day type>=6.5
Average 

humidity<61.58
Average 

humidity>=61.58

Wind 
velocity<2.1

Wind 
velocity>=2.1Precipitation <3 Precipitation >=3

6 retsulC5 retsulC3 retsulC2 retsulC

Cluster 4

Average 
temperature<11

Average
temperature>=11

Cluster 1 Cluster 7

Fig. 10. Establishment of decision tree using CART algorithm (sketch map).
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The forecasting results of customer 981 on 29/4/2013 are
shown in Fig. 11. The proposed approach totally meets 3%
accuracy requirements set by the utility company. The new
approach reflects better performance than traditional SVM and
ANN approaches.
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Fig. 11. Forecasting results of customer 981, 29/4/2013.

F. Forecasting the Total Load

The short-term forecasting framework in this paper was
implemented on Hadoop platform using 5 PC servers. Each
server has two E5-2403 CPUs and 8 GB memory.

Table VII shows the computation time, which meets online
forecasting requirements. The computation time can be re-
duced as the number of servers increases. Table VIII shows the
computation time of traditional ANN and SVM approaches.
Owing to these two methods of forecasting system load
directly, they are implemented on a single PC server with
two E5-2403 CPUs and 8 GB memory. Fig. 12 shows the
forecasting results of the total system load.

The forecasting error using a traditional approach, which
forecasts the total system load directly without analyzing
each consumer’s electricity usage pattern, may exceed 3%
sometimes. The forecasting error using the proposed fore-
casting framework here is within 1% of real system load.
This clearly indicates that the proposed approach produces
improved accuracy than the traditional approach.

TABLE VII
TASKS AND COMPUTATION TIME OF PROPOSED APPROACH

Tasks Size Computation Time

Cluster (offline) 1.2 million consumers
(3 years) 24 min

Forecasting (online) 1.2 million consumers
(daily) 110 s

Table IX shows relative error of consumer 981, and the total
system load. It also shows relative error of the traditional SVM

method (SVM in Fig. 11, Fig. 12, and Table IX), the proposed
method (new approach) and artificial neural network method
(ANN). This clearly shows that regardless of consumer or
system levels, our forecasting framework produces improved
accuracy over traditional methods.
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Fig. 12. Forecasting results of system load, 29/4/2013.

TABLE VIII
COMPUTATION TIME OF SVM AND ANN

Approaches Computation Time
SVM 8.03 s
ANN 10.12 s

TABLE IX
RELATIVE ERROR OF CONSUMER 981 AND SYSTEM LOAD ON 29/4/2013

Time (h) Relative Error of
Customer 981 (%)

Relative Error of
System Load (%)

New SVM ANN New SVM ANN
0 0.39 0.92 2.35 0.74 1.95 3.01
1 1.11 8.86 5.58 0.07 1.66 2.21
2 1.05 4.16 7.29 0.64 3.36 1.09
3 0.29 5.79 0.14 0.58 1.50 1.73
4 5.20 8.92 6.93 0.23 3.19 2.16
5 0.82 3.65 2.13 0.16 3.35 2.68
6 0.33 3.20 4.96 1.35 2.30 1.73
7 2.91 0.12 0.48 1.16 2.14 1.41
8 2.45 10.94 5.56 0.31 1.37 1.54
9 0.72 1.67 0.20 0.06 1.77 0.83
10 1.64 0.07 0.78 0.68 1.05 1.94
11 2.28 0.76 1.53 0.74 0.41 1.34
12 2.95 0.53 6.37 0.09 1.37 0.43
13 0.51 0.85 2.39 0.11 1.80 1.35
14 0.85 1.73 10.44 0.67 1.19 0.26
15 2.58 0.74 1.56 0.75 1.37 1.82
16 2.11 2.23 1.56 0.72 0.56 1.33
17 1.29 2.82 3.50 1.13 2.07 1.12
18 2.07 0.30 0.66 0.71 2.07 1.54
19 1.73 7.71 9.71 0.59 1.92 1.41
20 0.48 1.79 1.36 0.75 1.64 2.10
21 2.12 1.41 1.89 0.63 0.60 3.73
22 1.11 1.63 2.91 0.12 1.27 1.72
23 1.52 3.41 1.34 0.59 0.34 0.08
Average 1.61 3.09 3.40 0.57 1.68 1.61
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V. CONCLUSION

This paper proposes a new framework for performing short-
term load forecasting using smart meter data based on big data
technologies. Our proposed solution includes five steps:

1) Load identification of load patterns using clustering
techniques,

2) determination of critical influencing factors using asso-
ciation analysis,

3) establishment of classification criteria using decision
tree,

4) choosing appropriate load forecasting model for each
load pattern and associated critical factors,

5) forecasting each individual load and calculating the

forecasted system load by adding individual load’s fore-
casting results and line losses.

These forecasting processes are implemented on our pro-
posed processing architecture based on big data technology.
In distribution EMS real-time application, once the date and
forecasting weather data are available, the decision tree can
identify which cluster the individual load belongs to. Then the
appropriate forecasting model is selected to forecast individual
load. Finally, the system load is forecasted. Case studies
using a practical distribution system smart meter data indicate
that the proposed forecasting method not only guarantees
prediction accuracy within the predefined range, but also
processes the large quantity of data within real-time operation
requirements.

APPENDIX

COMPLETE CART DECISION TREE OF FIG. 10
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