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Impact of Grid Connection of Large-Scale Wind
Farms on Power System Small-Signal
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Abstract—The grid connection of a large-scale wind farm
could change the load flow/configuration of a power system and
introduce dynamic interactions with the synchronous generators
(SGs), thus affecting system small-signal angular stability. This
paper proposes an approach for the separate examination of
the impact of those affecting factors, i.e., the change of load
flow/configuration and dynamic interactions brought about by
the grid connection of the wind farm, on power system small-
signal angular stability. Both cases of grid connection of the
wind farm, either displacing synchronous generators or being
directly added into the power system, are considered. By using
the proposed approach, how much the effect of the change
of load flow/configuration brought about by the wind farm
can be examined, while the degree of impact of the dynamic
interaction of the wind farm with the SGs can be investigated
separately. Thus, a clearer picture and better understanding of
the power system small-signal angular stability as affected by
grid connection of the large-scale wind farm can be achieved.
An example of the power system with grid connection of a wind
farm is presented to demonstrate the proposed approach.

Index Terms—Double fed induction generator (DFIG), elec-
tromechanical oscillation modes, power system low-frequency
oscillations, power system small-signal angular stability, wind
farms.

I. INTRODUCTION

LOW frequency power oscillations, which can occur as the
result of inter-connection of local power networks and the

installation of fast-acting automatic voltage regulators (AVRs),
threaten the safe operation of power systems. It is generally
understood that the occurrence of the oscillations is normally
due to the lack of damping of power system electromechanical
oscillation modes. Low-frequency power oscillations are the
main concern of power system small-signal angular stability.

Connecting a large-scale wind farm with a great number
of variable speed wind generators (VSWGs) into a power
system can affect the systems small-signal angular stability.
To examine the damping of power system low-frequency

Manuscript received February 27, 2015; revised April 20, 2015; accepted
May 8, 2015. Date of publication June 30, 2015; date of current version May
24, 2015. This work was supported by the National Basic Research Program of
China (973 Program) (2012CB215204), the key project of the SKLAEPS and
the international collaborative project jointly funded by the NSFC (51311122),
China, and the EPSRC, UK.

W. Du, J. Bi, T. Wang, and H. F. Wang are with the State Key Laboratory of
Alternate Electric Power Systems (SKLAEPS) with New Energy Resources,
North China Electric Power University, Changping District, Beijing, 102206,
China.

Digital Object Identifier 10.17775/CSEEJPES.2015.00023

oscillations as affected by the large-scale grid-connected wind
farm, a first step may be the investigation in the change of
the damping of power system electromechanical oscillation
modes brought about by the grid connection of the wind farm.
The change can be computed by comparing the damping of
the modes before and after the wind farm is connected to
the power system, as illustrated by an example of the power
system shown in Fig. 1 and Fig. 2.

Infinite bus
SG1

Fig. 1. A single-machine infinite-bus power system.

Fig. 1 is a single-machine infinite-bus power system. With
a wind farm connected, the system is transformed as illus-
trated in Fig. 2. Note that ∆λ changes the electromechanical
oscillation mode of the power system after the wind farm is
connected. ∆λ can be easily obtained by modal computation
of the system in Fig. 1 and Fig. 2 to arrive at ∆λ = λ− λw,
where λ is the oscillation mode of the system of Fig. 1 and
λw is that of the system in Fig. 2.

Infinite bus
SG1

Wind farm

w wΔ jΔP Q+

Fig. 2. Addition of a wind farm into the system of Fig. 1.

However, ∆λ is caused by two changes by adding wind.
The first change is the load flow and system configuration
introduced by the wind farm, which is obviously different
between the system in Fig. 1 and Fig. 2. The second is the
addition of the dynamic interaction between the wind farm an-

2096-0042 c© 2015 CSEE



84 CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. 1, NO. 2, JUNE 2015

d the synchronous generator. A simple comparison between
the oscillation mode of the systems in Fig. 1 and Fig. 2 does
not allow for a distinction of these two factors, namely, that
the wind farm affects the system small-signal angular stability.
Thus, exactly how and why the addition of the wind farm
into the power system in Fig. 1 causes the change of system
oscillation modes remains ambiguous by the comparison.

Fig. 2 and Fig. 3 show the difference that occurs in the
power system when the affecting factors of the load flow and
system configuration brought by the wind farm are excluded.
When the synchronous generator SG2 in the system is dis-
placed by the wind farm (Fig. 3), the system then becomes
Fig. 2. This comparison keeps the load flow and system
configurations unchanged. Thus ∆λ = λg − λw, where λg
is the oscillation mode of the system of Fig. 3 and λw is that
of the system in Fig. 2.

Infinite bus
SG1

SG2

g gΔ jΔP Q+

Fig. 3. Power system with SG2 to be displaced by a wind farm.

However, the change of electromechanical oscillation mode
∆λ in this case is still caused by two affecting factors:
1) withdrawal of the dynamic interaction between SG1 and
SG2 from the system; 2) addition of the dynamic interaction
between the wind farm and SG2 into the system. A simple
comparison between the oscillation mode of the system in
Fig. 2 and 3 does not indicate exactly how much in ∆λ is
caused by withdrawing SG2 and how much by adding the
wind farm. Thus how the wind farm affects the system small-
signal angular stability still needs further clarification.

For over a decade, the impact of the grid connection of
large-scale wind farms on power system small-signal angular
stability has been a topic of investigation with many pub-
lished papers. Methods used thus far have been to examine
the change of electromechanical oscillation modes by either
adding a wind farm into a power system or with the wind
displacing synchronous generators in the power system. For
example, the addition of wind farms into a power system to
meet the load requirement without displacing any synchronous
generators has been investigated in [1]–[3]. Investigation by
modal computation in [1]–[3] compares the results with and
without wind farms connected to the power system. The case
of wind displacing synchronous generators is examined in [4]–
[8].

Despite significant research devoted to this important topic,
how the power system small-signal angular stability is affected
by the grid connection of large-scale wind farms has remained
unclear. Perhaps the main reason is that the case of both the
“addition” and the “displacement” outlined above contains two

factors by which the wind farm affects the electromechanical
oscillation modes of the power system. Separation of the
affecting factors may be the key to or at least the first step
towards an unambiguous examination of power system small-
signal angular stability as affected by the grid connection of
the large-scale wind farm.

The physical reasons for the existence of the dynamic
interaction between a wind farm or a displaced synchronous
generator with the rest of the power system is in fact the
dynamic variation of power exchange ∆Pw + j∆Qw (Fig. 2)
or ∆Pg + j∆Qg (Fig. 3). If ∆Pw + j∆Qw = 0 (Fig. 2) or
∆Pg + j∆Qg = 0 (Fig. 3), the dynamic interaction does not
exist. In this assumed case, the wind farm or the displaced syn-
chronous generator becomes a constant power source. Hence
when the wind farm or the displaced synchronous generator
is modelled as the constant power source, the affecting factor
of the dynamic interaction between the wind farm, or the
displaced synchronous generator in which the rest of the power
system is excluded. In this way, affecting factors of adding the
wind farm or displacing the synchronous generator by the wind
farm may be examined separately.

Based on the idea outlined above, this paper proposes an
approach to examine the impact of large-scale wind farms on
power system small-signal angular stability. In establishing the
linearized model of a power system connected to a large-
scale wind farm, the dynamic power exchange of the wind
farm, ∆Pw + j∆Qw (Fig. 2), or the displaced synchronous
generator, ∆Pg + j∆Qg (Fig. 3), with the rest of the power
is modelled as the input to the system. Thus the established
model clearly indicates that the effect of the load flow and
system configuration introduced by the wind farm and the
displaced synchronous generator on the system small-signal
angular stability can be examined by modelling the wind farm
and the displaced synchronous generator as the constant power
source.

The proposed approach enables the separation of three
factors by which the wind farm affects the electromechanical
oscillation modes. Using this approach, a clearer picture and
deeper insight can be arrived at to understand how and why the
wind farm can impact the power system small-signal angular
stability.

This paper is organized as follows. In Section II, the
proposed approach to examine the power system small-signal
angular stability as affected by the grid connection of large-
scale wind farms is introduced. Section III presents an example
of a multi-machine power system with a large-scale wind farm.
Results of modal computation demonstrate and validate the
application of the proposed approach are also discussed in
this section. Section IV provides a conclusion that summarizes
contributions of this paper.

II. PROPOSED APPROACH TO EXAMINE THE EFFECT OF
WIND FARMS ON POWER SYSTEM SMALL-SIGNAL

ANGULAR STABILITY

A. Addition of A Wind Farm

Fig. 4 shows a power system where a wind farm is con-
nected at the PCC (point of common connection). The power
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injection from the wind farm to the power system is denoted
by Pw + jQw, and the magnitude and phase of the voltage at
the PCC by Uw and ϕw respectively. The following linearized
state-space model of the power system is established:

s∆XG = AG∆XG + bG1∆Pw + bG2∆Qw[
∆Uw

∆ϕw

]
= CG∆XG + dG1∆Pw + dG2∆Qw,

(1)

s∆XW = AW∆XW + bW1∆Uw + bW2∆ϕw[
∆Pw

∆Qw

]
= CW∆XW + dW1∆Uw + dW2∆ϕw.

(2)

Wind farm

A power

system

w wjP Q+

w wU jÐ

Fig. 4. Addition of a wind farm into a system.

Equation (1) is the linearized model of the power system
where ∆XG is the state variable vector of the synchronous
generators (SGs). Equation (2) is the linearized model of the
wind farm where ∆XW is the state variable vector of the
wind farm. Seeing the SGs as the open-loop plant and the
wind farm as the feedback controller, the power system with
the wind farm connected forms a closed-loop system, as shown
in Fig. 5.
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Fig. 5. Linearized model of the power system with the wind farm.

Fig. 5 describes the two-way dynamic interactions between
the SGs and the wind farm. One way is the response of
the wind farm to ∆Uw∠∆ϕw to inject a variable power
∆Pw + j∆Qw into the power system. The other way is the
response of the power system to ∆Pw + j∆Qw to generate
a variation of the voltage at the PCC of the wind farm
∆Uw∠∆ϕw during the electromechanical transient of the
power system. If ∆Pw + j∆Qw = 0, the wind farm is
decoupled dynamically with the power system and there is
no dynamic interaction between the wind farm and the power
system. This is the case where the effect of the dynamic

interaction of the wind farm with the power system on system
small-signal angular stability is zero. In this assumed case,
the influence of the wind farm on the system small-signal
angular stability only exists in the way of the load flow and
system configuration change it introduces. This influence is
represented in the state matrix of the open-loop plant AG and
can be determined by the modal computation of AG. Since
∆Pw + j∆Qw = 0 means that the wind farm is degraded into
a constant power source, electromechanical oscillation modes
computed from AG must have included the effect of the load
flow and change of system configuration brought about by the
wind farm on the small-signal angular stability.

From (1) and (2), the state-space model of the closed-loop
system in Fig. 5 can be obtained to be[

s∆XG

s∆XW

]
=

[
A11 A12

A21 A22

][
∆XG

∆XW

]
= AG+W

[
∆XG

∆XW

]
,

(3)
where

A11 =AG + [bG1 bG2] (I − [dW1 dW2][dG1 dG2])
−1

[dW1 dW2]CG

A12 = [bG1 bG2] (I − [dW1 dW2][dG1 dG2])
−1

CW

A21 =[bW1 bW2]CG + [bW1 bW2][dG1 dG2]

(I − [dW1 dW2][dG1 dG2])
−1

[dW1 dW2]CG

A22 =AW + [bW1 bW2][dG1 dG2]

(I − [dW1 dW2][dG1 dG2])
−1

CW.

The electromechanical oscillation modes computed from
AG+W includes the effect of the load flow and change of
system configuration introduced by the wind farm and the
dynamic interaction between the wind farm and the power
system.

Therefore, modal analysis to examine the effect of adding
the wind farm into the power system on the system small-
signal angular stability can be carried out in two steps as
follows.

Step 1: Model the wind farm as a constant power and
establish the linearized model of the power system
of Fig. 4 in the form of (1) and (2) and compute the
electromechanical oscillation modes of the power
system from the open-loop state matrix AG as
λ0i, i = 1, 2, · · · .

Step 2: Derive the closed-loop state-space model of the
power system of (3) and compute the electrome-
chanical oscillation modes of the power sys-
tem from the closed-loop state matrix AG+W as
λi, i = 1, 2, · · · .

Thus λ0i, i = 1, 2, · · · indicates the effect of the load
flow and system configuration change introduced by the wind
farm on the system small-signal angular stability. ∆λi =
λi − λ0i, i = 1, 2, · · · is the effect of the dynamic interaction
between the wind farm and the power system on the system
small-signal angular stability. Two affecting factors of adding
the wind farm into the power system on the system small-
signal angular stability are successfully separated.
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B. Wind Displacing Synchronous Generators

Fig. 6 shows a power system where a synchronous generator
(SG) is displaced by a wind farm represented by a VSWG. The
power injection from the SG to the power system is denoted by
Pg + jQg, the magnitude and phase of the terminal voltage by
Ug and ϕg respectively. The following linearized state-space
model of the power system can be established:

s∆XG−1 = AG−1∆XG−1 + b(G−1)1∆Pg + b(G−1)2∆Qg[
∆Ug

∆ϕg

]
= CG−1∆XG−1 + d(G−1)1∆Pg + d(G−1)2∆Qg,

(4)

s∆Xg = Ag∆Xg + bg1∆Ug + bg2∆ϕg[
∆Pg

∆Qg

]
= Cg∆Xg + dg1∆Ug + dg2∆ϕg.

(5)

Displaced SG

A power

system

g gjP Q+

g gU jÐ

Fig. 6. A VSWG displacing a synchronous generator in a power system.

Eq. (4) is the linearized model of the power system without
the displaced SG, and ∆XG−1 is the state variable vector
of the SGs remaining in the system. Eq. (5) is the linearized
model, and ∆Xg is the state variable vector of the displaced
SG.

As stated above regarding the case of adding a wind farm
into a power system, the electromechanical oscillation modes
computed from the state matrix AG−1 should include the
effect of the load flow and system configuration change intro-
duced by the displaced SG on the system small-signal angular
stability. Similar to the derivation of Eq. (3), the closed-loop
state-space model of the power system with the displaced SG
remaining in the system can be established and the closed-loop
state matrix A(G−1)+g can be obtained. The electromechanical
oscillation modes computed from A(G−1)+g should include
the influence of the displaced SG on the system small-
signal angular stability from both the load flow and system
configuration change introduced by the displaced SG and the
dynamic interaction between the displaced SG and the rest of
the SGs in the power system.

With the displaced SG being displaced by a wind farm, the
linearized model of the power system becomes the combina-
tion of Eq. (2) and (4), that is

s∆XG−1 = AG−1∆XG−1 + b(G−1)1∆Pg + b(G−1)2∆Qg[
∆Ug

∆ϕg

]
= CG−1∆XG−1 + d(G−1)1∆Pg + d(G−1)2∆Qg,

(6)

s∆XW = Ag∆XW + bW1∆Uw + bW2∆ϕw[
∆Pw

∆Qw

]
= CW∆XW + dW1∆Uw + dW2∆ϕw,

(7)

where [
∆Pw

∆Qw

]
=

[
∆Pg

∆Qg

]
,

[
∆Uw

∆ϕw

]
=

[
∆Ug

∆ϕg

]
. (8)

Similar to the derivation of (3), the closed-loop system
state-space model of the power system with the SG being
displaced by the wind farm can be established. The closed-
loop state matrix can be obtained to be A(G−1)+W from (6)–
(8). Modal analysis to check the power system small-signal
angular stability as affected by the wind generator displacing
the SG can be conducted in three steps as follows.

Step 1: Model the displaced SG as a constant power and
establish the linearized model of the power system
with the displaced SG in the form of (4) and
(5) and compute the electromechanical oscillation
modes of the power system from the open-loop
state matrix AG−1 as λ0i, i = 1, 2, · · · .

Step 2: Derive the closed-loop state-space model of the
power system with the displaced SG remaining in
the system from (4) and (5) and compute the elec-
tromechanical oscillation modes of the power sys-
tem from the closed-loop state matrix A(G−1)+g

as λgi, i = 1, 2, · · · . Then ∆λgi = λgi − λ0i, i =
1, 2, · · · gives the quantity of the effect of dynamic
interaction between the displaced SG and the rest
of the SGs on the system small-signal angular
stability. The effect of withdrawing the dynamic
interaction from the power system obviously is
−∆λgi = −λgi + λ0i, i = 1, 2, · · · .

Step 3: Derive the closed-loop state-space model of the
power system with the displaced SG being dis-
placed by the wind farm from (6), (7), and (8) and
compute the electromechanical oscillation modes
of the power system from the closed-loop state
matrix A(G−1)+W as λwi, i = 1, 2, · · · . Then
∆λwi = λwi−λ0i, i = 1, 2, · · · indicates the range
of the effect of dynamic interaction between the
wind farm and the rest of the SGs on the system
small-signal angular stability.

Displacing the SG by the wind farm does not change the
load flow and system configuration. The effect of displacement
on system small-signal angular stability includes two aspects:
1) withdrawing the dynamic interaction between the displaced
SG and the rest of the SGs in the power system; 2) adding
the dynamic interaction between the wind farm and the rest
of the SGs. Thus the total effect of the displacement is

∆λi = −∆λgi + ∆λwi = −λgi + λ0i + λwi − λ0i

= λwi − λgi, i = 1, 2, · · · .
(9)

The conventional way of examining the effect of the VSWG
displacing the SG is to compute the difference between
the electromechanical oscillation modes before and after the
displacement, that is, to obtain ∆λi = λwi−λgi, i = 1, 2, · · · .
The proposed approach above in three steps can successfully
separate two factors that the system small-signal angular
stability is affected by the displacement: 1) withdrawing the
displaced SG, that is −∆λgi = −λgi + λ0i, i = 1, 2, · · · ; 2)
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adding the displacing wind farm, that is ∆λwi = λwi−λ0i, i =
1, 2, · · · .

III. EXAMPLE

Fig. 7 shows the configuration of a New England 10-
machine 39-bus example power system, which has been used
for studying power system low-frequency oscillations on many
occasions. Parameters of the system and generators provided
in [9] are used.

A. Addition of a Wind Farm

A wind farm is represented by a DFIG wind generator.
Its model is given in [10] and [11] and parameters are
presented in the Appendix. When the wind farm is connected
at node 16 without displacing any synchronous generators, the
computational results of electromechanical oscillation modes
of the power system are presented in Table I. The 1st to the
8th oscillation modes are local electromechanical oscillation
modes and the 9th is the inter-area mode of G10 to G1 −G9.
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Fig. 7. Configuration of New England power system.

1) By comparing results in column B (without the wind
farm added) and D (with the wind farm added) in Table
I, it can be seen that the maximum impact of adding the
wind farm is on the inter-area oscillation mode. The impact
is detrimental to the system small-signal angular stability
as the inter-area mode becomes less damped due to the
addition of the wind farm with total change of the real
part of the mode to be 0.0494.

2) From column E in Table I it can be seen that the
impact of dynamic interaction between the wind farm and
the system is also biggest on the inter-area oscillation
mode. This impact benefits the system small-signal angular
stability as the impact moves the inter-area mode further
left by -0.0045 on the complex plane.

3) Hence the impact of load flow and system configura-
tion change introduced by adding the wind farm moves

TABLE I
COMPUTATIONAL RESULTS OF ELECTROMECHANICAL OSCILLATION

MODES WHEN WIND FARM IS ADDED ON NODE 16 IN THE NEW
ENGLAND POWER SYSTEM

A B C(λ0i) D(λi) E(∆λi) F

1 -0.4254 +
7.7704j

-0.4397 +
7.8457j

-0.4396 +
7.8457j

0.0001 +
0.0000j

-0.0143 +
0.0753j

2 -0.3796 +
7.7454j

-0.3889 +
7.7762j

-0.3891 +
7.7762j

-0.0002 +
0.0000j

-0.0093 +
0.0308j

3 -0.4034 +
7.6132j

-0.4024 +
7.6670j

-0.4020 +
7.6670j

0.0004 +
0.0000j

0.0010 +
0.0538j

4 -0.1546 +
6.4331j

-0.1589 +
6.4350j

-0.1588 +
6.4351j

0.0001 +
0.0001j

-0.0043 +
0.0019j

5 -0.2784 +
6.5730j

-0.2841 +
6.2278j

-0.2846 +
6.2286j

-0.0005 +
0.0008j

-0.0057 -
0.3452j

6 -0.2858 +
6.1251j

-0.2513 +
5.8822j

-0.2495 +
5.8811j

0.0018 -
0.0011j

0.0345 -
0.2429j

7 -0.2375 +
5.3408j

-0.2273 +
5.3448j

-0.2278 +
5.3450j

-0.0005 +
0.0002j

0.0102 +
0.0040j

8 -0.2184 +
5.6232j

-0.2155 +
4.4747j

-0.2154 +
4.4761j

0.0001 +
0.0014j

0.0029 -
1.1485j

9 -0.0592 +
3.2629j

-0.0098 +
3.1483j

-0.0143 +
3.1567j

-0.0045 +
0.0084j

0.0494 -
0.1146j

A: number of electromechanical oscillation modes;
B: oscillation modes without the wind farm added;
C: (λ0i): oscillation modes with the wind farm modelled as a constant
power;
D: (λi): oscillation modes with the full dynamics of the wind farm
included;
E: (∆λi = λi − λ0i): effect of dynamic interaction between the wind
farm and the SGs on the oscillation modes;
F(C-B): effect of system load flow and configuration change on the
oscillation modes.

the inter-area oscillation mode on the complex plane by
0.0494−0.0045=0.0449. It is detrimental to the system
small-signal angular stability and much greater than that
brought about by the dynamic interaction between the
wind farm and the system.

B. Wind Displacing a Synchronous Generator

The wind displacing a synchronous generator is examined
by assuming that a wind farm is connected at node 35 to
replace the synchronous generator G6. The displacement does
not change the original power flow and system configuration.
Computational results of the electromechanical oscillation
modes of the power system are presented in Table II. The 8st

oscillation mode is the inter-area electromechanical oscillation
mode and the others are local ones.

1) Comparing column C with D it can be seen that the
DFIG displacing G6 introduces a mixture of beneficial
and detrimental effect on the electromechanical oscillation
modes as the real part of some modes becomes more neg-
ative and some more positive. The biggest impact is on the
3rd local mode, which indicates a beneficial impact on the
system small-signal angular stability. Further examination
of the 3rd mode is that the impact is mainly brought about
by the withdrawal of the dynamic interaction between G6

and other SGs in the system, and with the movement of
the mode on the complex plane by -0.0996. Though the
dynamic interaction between the DFIG and the rest of
the SGs (without G6) affects the mode positively with a
movement by -0.0013, its effect is obviously much less
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TABLE II
COMPUTATIONAL RESULTS OF ELECTROMECHANICAL OSCILLATION

MODES WHEN WIND FARM IS ADDED ON NODE 16 IN THE NEW
ENGLAND POWER SYSTEM

A B(λ0i) C(λgi) D(λwi) E(−∆λgi) F(∆λwi)

1 -0.3828 +
7.7404j

-0.3796 +
7.7454j

-0.3827 +
7.7405j

-0.0032 -
0.0050j

0.0001 +
0.0001j

2 -0.4336 +
7.7145j

-0.4034 +
7.6132j

-0.4345 +
7.7152j

-0.0302 +
0.1013j

-0.0009 +
0.0007j

3 -0.3750 +
6.8919j

-0.2784 +
6.5730j

-0.3763 +
6.8992j

-0.0966 +
0.3189j

-0.0013 +
0.0073j

4 -0.1614 +
6.3938j

-0.1546 +
6.4331j

-0.1606 +
6.3923j

-0.0068 -
0.0393j

0.0008 -
0.0015j

5 -0.2791 +
6.5721j

-0.2858 +
6.1251j

-0.2791 +
6.5722j

0.0067 +
0.4470j

0.0000 -
0.0001j

6 -0.2135 +
5.6320j

-0.2184 +
5.6232j

-0.2129 +
5.6315j

0.0049 +
0.0088j

0.0006 -
0.0005j

7 -0.2494 +
5.3431j

-0.2375 +
5.3408j

-0.2502 +
5.3436j

-0.0119 +
0.0023j

-0.0008 +
0.0005j

8 -0.0511 +
3.3394j

-0.0592 +
3.2629j

-0.0589 +
3.3477j

0.0081 +
0.0765j

-0.0078 +
0.0083j

9 -0.4254 +
7.7704j

A: number of electromechanical oscillation modes;
B (λ0i): oscillation modes with G6 modelled as a constant power;
C: (λ0i): oscillation modes with dynamic model of G6 included;
D: (λi): oscillation modes with G6 displaced by the wind farm and
dynamic model of wind farm being included;
E: (−∆λgi = λ0i − λgi): effect of withdrawing the dynamic interaction
between G6 and rest of the SGs on the oscillation modes;
F: (∆λwi = λwi − λ0i): effect of withdrawing the dynamic interaction
between G6 and rest of the SGs on the oscillation modes.

than that of the dynamic interaction between G6 and the
rest of the SGs.

2) It is very interesting to see from the 8th row of Table
II that the impact of withdrawing G6 from the system
is detrimental as far as the inter-area oscillation mode is
concerned. While adding the wind farm is beneficial, scale
of the impact from both aspects is almost equal and hence
the total result is that the DFIG displacing G6 is of small
impact on the inter-area oscillation mode.

IV. CONCLUSION

The major contribution of this paper is the proposal of
an approach for the separate examination of factors that grid
connection of a large-scale wind farm affects the power system
small-signal angular stability. When the wind farm is added to
a power system, the total effect of the addition includes that
from the change of load condition/system configuration and
the dynamic interactions between the added wind farm and
the synchronous generators in the power system. By using
the proposed approach, those two aspects of effect can be
examined separately. When the wind farm is connected to the
power system by displacing a synchronous generator, the total
effect of displacement is also in two aspects: 1) withdrawing
the dynamic interactions between the displaced synchronous
generator and the rest of the remaining synchronous generators
in the power system; 2) adding the dynamic interactions
between the wind farm and the rest of remaining synchronous
generators in the power system. By using the proposed ap-
proach, those two aspects can be computed separately. Thus
a clearer picture and better understanding is provided by

using the proposed approach on the power system small-signal
angular stability as affected by the grid connection of the wind
farm. Application of the proposed approach is demonstrated
by an example power system in the paper.

Modal analysis and computation has been used in examining
the effect of grid connection of the large-scale wind farm on
power system small-signal angular stability. However, all the
methods proposed and results obtained so far can only provide
the assessment of the total effect of the grid-connected wind
farm. The main contribution of this paper is the proposed
method based on a modal analysis that can separately examine
individual effects brought about by the grid-connected wind
farm for gaining deeper insight into the issue. The proposed
method can be applied to the study case when multiple
wind farms are considered. This is because the method is
based on the linearized model of power systems and thus
the principle of superimposition is applicable. It is expected
that by applying the proposed method in practical power
systems, useful conclusions can be obtained as the method
can provide more detailed examination. For the same reason,
the proposed method would also be helpful in the selection
of grid connection locations of wind farms, an area of future
work.

The effect of the grid connection of wind farms is an
important research area. There are many significant issues
that need to be addressed and investigated including 1) the
possibility that the converter-controlled wind farms may in-
troduce new oscillation modes, and studying their interaction
with conventional electromechanical oscillation modes, along
with the elimination of detrimental interactions; 2) removal of
the harmful effect of grid-connected wind farms by applying
power system damping control. These are also future topics
of research planned by the authors.

Power system small-signal angular stability is a long-
standing, challenging, and complex problem. Many aspects
of the problem have not been completely understood and
solved, such as the numerical difficulty when the scale of
a power system is extremely large. This is also an obstacle
when the proposed method is applied, and again represents a
future area of research.

APPENDIX

A. Parameters of the Wind Farm Used in the Example Power
System

Dynamic model of a DFIG can be written as [10], [11]:

pE′wd = ω0

(
− Rr

Xrr
E′wd + sE′wq +

RrX
2
m

X2
rr

Isq −
Xm

Xrr
Urq

)
pE′wq = ω0

(
− Rr

Xrr
E′wq − sE′wd − RrX

2
m

X2
rr

Isd +
Xm

Xrr
Urd

)
ps =

1

J
(Te − Twm).

Configuration of rotor-side converter control system [10],
[11] is shown by Fig. A1.
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Fig. AI. Configuration of rotor-side converter control system.

Parameters of the DFIG used in the example in p.u. are as
follows:

TJ = 8s,Rs = 0, Rr = 0.0145, Xm = 2.4012, Xs = 0.1784,

Xr = 0.1225

KPs(p) = 0.2 +
12.56

p
,KQs(p) = 0.2 +

12.56

p

KIrd(p) = 1 +
62.5

p
,KIrq(p) = 1 +

62.5

p
.
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