Performance Evaluation of a
Satellite Communication-Based

MEC Architecture for loT
Applications

MICHELE LUGLIO
University of Rome “Tor Vergata,”, Rome, Italy

MARIO MARCHESE | Senior Member, IEEE

FABIO PATRONE ~ , Member, IEEE
University of Genoa, Genoa, Italy

CESARE ROSETI
FRANCESCO ZAMPOGNARO
University of Rome “Tor Vergata,”, Rome, Italy

New scenarios and use cases are raising following the birth of the
fifth generation of mobile communications. The Internet of Things
(IoT) is one of the main use cases which are growing, leading to a
massive amount of data that need to be exchanged throughout the
Internet. Satellite communication networks are essential in remote and
isolated environments and can support fully connected environments
by offloading the terrestrial infrastructure concerning delay-tolerant
traffic flows. However, satellite network resources are limited and
expensive, so they need to be carefully used in order to avoid waste
and satisfy the required user performance. The multi-access edge
computing (MEC) concept can be exploited in this context to allow
data preprocessing at the edge, i.e., close to the users, so reducing
the amount of data that has to traverse the backhaul satellite link
and, in some cases, reducing data delivery times. This article analyses
the performance of a satellite architecture in the IoT framework
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highlighting the advantages brought by MEC, also including data
aggregation and compression techniques.

[. INTRODUCTION

When looking at the use of the Internet, the landscape
of applications and communication protocols has changed
substantially in the last years. Nonreal-time information
exchange represented most of the Internet traffic in the past,
with predominance in the use of web technology and file
transfers (e.g., HTTP, e-mail, FTP, and peer-to-peer solu-
tions). Nowadays, real-time interactions are fundamental
for a whole new set of applications, from web gaming to
VoIP and chat services, from conferencing platforms to
cloud and Internet of Things (IoT) services. In particular,
massive 10T applications show a relevant growth and are
already representing a significant portion of Internet traf-
fic, as discussed for instance in the latest Cisco Annual
Internet Report [1]. Many kinds of sensor-based services
fall in this category and are applied in a set of scenarios,
such as home automation, smart cities, support to logistics,
wearable health devices, industrial automation, environ-
mental sensing, and critical infrastructures monitoring and
protection. In all these environments, it is often important
to consider large coverage and high mobility requirements.
An example may be a sensor network which spans across
many administrative domains and covers remote areas.

A massive growth and spread of devices, such as sensors
and actuators, has been envisioned for 2021 and beyond,
with a consequent big mass of data that need to be collected,
processed, and, in some cases, displayed to users remotely
connected to the Internet.

Satellite-based approaches, such as the space—air—
ground integrated networks [2], are considered as viable
solutions thanks to their ubiquitous coverage and broad-
cast/multicast capabilities. Considering the IoT context and
the associated connectivity requirements, satellite access
can play a significant role in enabling IoT services [3].
Satellite communications (SatCom) networks are partic-
ularly suitable to offer connectivity to a high number of
devices located in wide areas, complementing terrestrial
infrastructure thanks to the large coverage. They can support
cross-the-borders IoT scenarios properly managing their
available network resources to guarantee the required qual-
ity of service (QoS) [4]

In particular, Cioni et al. [3] emphasize the role of satel-
lites in the foreseen spread of IoT devices and applications
in the future 5G ecosystem focusing on the challenges re-
lated to the massive machine-type communication (mMTC)
service provision, air interface, and network aspects related
to the system design. Energy efficiency is another important
aspect to take into account. A network coding (NC)-based
approach has been proposed in [5] to properly manage the
available network resources and offer reliable IoT multicast
services in a 5G/satellite network. Key network challenges
for satellite exploitation in future 5G and IoT satellite-based
sensor networks are also presented in [6].
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Assuming a massive amount of data generated by
an IoT sensor network composed of thousands of IoT
devices, the overall volume of raw data can lead to the
rise of several issues. An example is the security and data
privacy issue, which involves both legal [7] and technical
matters [8] related to different aspects, such as how the
network is managed and how data are stored and processed.
Another example is related to how the network resources
are efficiently exploited to offer the required service and
avoid unpleasant situations, such as the saturation of the
satellite link bandwidth.

The presence of multiaccess edge computing (MEC)
functionalities close to the sensor network allows saving
SatCom resources and offering enhanced performance to
the users thanks to smart management of large set of data
by enabling local processing and in-network functions (i.e.,
microservices) tailored on the specific use case.

The MEC concept, formerly mobile edge computing,
has been introduced with the main aim to move the intelli-
gence, or at least part of it, from the network core (central-
ized datacenters and cloud platforms) to the network edge
(distributed microdatacenters and edge platforms). MEC
contributes shaping the next generation network architec-
ture and infrastructure [9], [10], thanks to its applicability in
different scenarios and use cases, including IoT [11], [12].

Concerning MEC application in satellite networks, dif-
ferent possible network architecture configurations, chal-
lenges, and open issues have been discussed [13]. Possible
solutions have been implemented and tested focusing on
the integration within the 5G environment [14], based on
different kinds of satellites (including nanosatellites [15]),
and aimed at improving the user perceived QoS [16], [17].

IoT applications implementing satellite edge computing
solutions are the object of [18], [19], [20], also considering
the severe resource limitations that affect IoT devices.
Latency and energy consumption reductions are the
main aims of the studies [21], [22], [23], which also adopt
machine learning techniques to make resource management
more effective.

This article addresses the integration of satellite and
terrestrial networks to interface IoT sensors and efficiently
enable IoT services through the Internet. The considered
solution includes a satellite backhaul link based on a geosta-
tionary earth orbit (GEO) satellite, to offload the terrestrial
network of delay-tolerant data, and the employment of the
MEC paradigm, to achieve and optimize a fully integrated
and global IoT service, i.e., to offer an architectural and op-
erational solution able to guarantee the typical performance
requirements of IoT applications worldwide, overcoming
limitations of different kinds, such as geographical and data
management on vast scale. This solution is assessed in order
to quantify and highlight the performance improvement
obtained implementing the MEC concept to enhance the
satellite transmission, by both performing data compression
to save satellite bandwidth, as well as distributing and
aggregating data in an efficient way in relation of the domain
where it is useful (i.e., local or remote).
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The rest of this article is organized as follows.
Section II highlights the roles that SatCom networks can
have in the IoT applications. Section III presents the
used MEC-enabled satellite architecture and the considered
network configurations. The obtained results are reported in
Section IV. Finally, Section V concludes this article.

[I. ROLE OF SATELLITES IN [OT APPLICATIONS

Satellites can have two main alternative roles in a typical
satellite/terrestrial integrated network for IoT applications:
direct-access (fronthaul) or backhaul.

In the first case, sensors are directly linked to the satel-
lites, which are the first hop of the communication path
between IoT devices and users. Third Generation Partner-
ship Project defined six different reference scenarios [24]
changing the altitude of the considered satellites (GEO and
non-GEO), the complexity of the carried satellite payload
(transparent or regenerative), and the flexibility of the gen-
erated beams (steerable or moving beams) for direct-to-
satellite access (fronthaul). The most promising approaches
are mainly considering low earth orbit (LEO) and very low
earth orbit satellites, even if intrinsic challenges have still to
be overcome, such as the heterogeneity of the IoT solutions
and the high energy consumption of IoT devices. Some
ongoing activities are investigating these issues to assess the
feasibility of direct-to-satellite access, such as [25] and [26].

In the second case, satellites can be adopted as backhaul
to the Internet or to a dedicated service center. Sensors’
data are collected within an edge cloud in the terrestrial
access network and then made available through a satellite
data network backhaul by using IP-based protocols. High
throughput satellites and very high throughput satellites
GEO platforms operating at Ka or higher frequency bands
are the main options. They can considerably reduce the com-
munication costs providing large amounts of bandwidths,
making satellites a viable solution to enhance the overall
network capability.

The employment of communication satellites for IoT
can be beneficial for multiple applications. Several solu-
tions have been developed considering the possible different
roles of satellites and tested in different application sce-
narios [27]. Satellites operating as backhaul support have
been considered for the smart city [28] and the road safety
and autonomous ship scenarios [29]. Smart agriculture [30],
smart grid [31], and maritime IoT [32] are three other typical
use cases where the use of satellites has been considered for
IoT applications and has been proven to be effective, not
only for the lack of communication infrastructures based
on different technologies.

From the application viewpoint, data generated by de-
vices need to be transferred to receivers by using a suit-
able protocol. Two main communication models can be
employed: “publish/subscribe” or “client/server,” depend-
ing on the use case. Although in principle, it is possible
to exchange such data in non-IP/proprietary formats and
associated proprietary transport and application protocols,
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itis worthwhile to consider the IP-based approach. IP allows
enabling interoperability and reusability, leveraging well
established and freely available IP-based applications and
protocols. The two main IP-based solutions are Message
Queuing Telemetry Transport (MQTT) and Constrained
Application Protocol (CoAP).

MQTT [33] was originally an IBM proprietary protocol
now managed as a standard by the International Organiza-
tion for Standardization. MQTT uses a publish/subscribe
model and requires an MQTT broker to manage and route
messages among MQTT nodes through point-to-point TCP
permanent connections. MQTT has not been designed for
“constrained” devices, so power saving optimization and
tradeoffs among complexity/efficiency and bandwidth us-
age are usually not considered.

CoAP [34] is a lightweight IP-based protocol for sensor
data communication. It is part of the Constrained RESTful
Environments (CoRE) IETF working group and it aims to
realize a REpresentational State Transfer (REST) archi-
tecture in a suitable form for the most constrained nodes.
CoRE is a very efficient RESTful protocol based on the
classic client/server model. Even if DLTS, SMS, and TCP
bindings are defined as transport for CoAP, UDP-based
implementations are the most commonly used.

Studies have been carried out to evaluate the employ-
ment of MQTT and CoAP in the satellite backhaul case [35].
Efficient configurations for both MQTT and CoAP have
been highlighted and some modifications have been pro-
posed. For example, MQTT and CoAP employment to
support sensor data exchange on a satellite random access
channel based on the DVB-RCS2 standard has been inves-
tigated in [36].

[ll. MEC-ENABLED IOT ARCHITECTURE
A. Reference Architecture Description

The locations where MEC functionalities can be typ-
ically implemented in satellite networks are three: on the
ground close to the users, on-board satellites, and on the
ground close to the satellite ground stations. Implement-
ing MEC on-board satellites require regenerative payload
satellites with largely available computation and storage
resources and an internal structure designed to make their
allocation flexible and scalable. Companies are planning to
launch this kind of satellites, which will be available in the
near future. However, a first step to deploy and test satellite
MEC networks could be to exploit the already deployed
transparent payload satellites. It is important to quantify the
achievable performance improvement in different possible
IoT use cases with different and variable network and
traffic flow features, such as number and density of IoT
devices, distribution of generated data flows, and minimum
performance requirements.

We consider exploiting the MEC concept and a satellite
link to enable IoT scenarios in remote areas. In particular,
we focus on GEO-based communication systems, such as
Inmarsat, configured as backhaul. Unmanned aerial vehi-
cles (UAVSs) could also be considered and included in the
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reference scenario to help collect data from the sensors.
However, we decided to not include them since our main
focus is on the backhaul link which, especially for rural and
remote areas, can be more realistically assumed as a satellite
link, while UAVs can be more useful for the access link. Be-
sides, the presence of UAVs would not affect the application
of our proposed MEC functionalities and the effect on the
shown performance would be negligible, because the main
improvement comes from a local management of data.

Fig. 1 shows the considered reference network archi-
tecture, which was validated within the European Space
Agency (ESA) funded project M2MSat.! A large and
widespread set of IoT devices, called sensor equipment
(SE), are the data sources of this sensor network scenario.
They are linked to a base station located in the remote area
through wired or wireless links. The base station aims to
collect the data generated by the SEs in order to send them
to the Internet through the satellite backhaul link. An IoT
cloud service, located on the Internet, collects and stores all
SE data and offers data access to authorized users, called
user equipment (UE). UEs can be located on the Internet (on
the right-hand side of the satellite link, called core side) or
connected directly from within the service provider network
(on the left-hand side of the satellite link, called edge side).
In this way, the satellite offers a backhaul solution that can
completely replace the terrestrial connectivity to the cloud
services.

It is assumed, as well for the reference service, that not
all sensor data have the same scope and priority. In fact,
it is possible to consider several use cases in which some
remote data collected into a remote area can just be used for
local data processing, whereas only alarms or downsampled
values are delivered toward a central node. Improve satellite
resource management and computation offloading is the
main aim of most studies on this topic, such as [37] and [38].

In this context, MEC can foster satellite bandwidth
reduction through the implementation of dedicated func-
tionalities, such as data aggregation and local processing at
the edge, with a consequent lower cost due to the reduced
amount of data that need to traverse the satellite link. The
proposed reference architecture may in fact include storage,
computation resources, and data local breakout functional-
ities, which are part of the network operator infrastructure,
but not necessarily present at the edge of the network and
not enabled for MEC. For instance, thanks to the presence
of network functions and components for the termination
of the IoT protocol stack within the network operator’s core
network, a possible edge computing infrastructure and the
associated components can be conceived and enabled in
a straightforward way. These dedicated components can be
optimized for IoT and deployed dynamically, e.g., as virtual
network functions, allowing to manage and terminate the
local data-application protocols before the transmissions
over satellite, as discussed in the next section.

![Online]. Available: https:/artes.esa.int/projects/m2msat
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Fig. 2.
B. Possible Network Configurations and MEC
Operations

In relation to current standardization activities and on
the basis of the state of the art and research projects [25],
[39], [40], having Fig. 1 as a reference, we introduce three
possible configurations, leveraging data local breakout. The
local breakout means that the operator network is supporting
the split of data sessions for the sensor data, delivering such
data in different configurations according to the enabled
MEC options (if any). The goal is to present a progressive
performance improvement first due to the enabling of MEC,
and then the enabling of satellite-oriented ad hoc optimiza-
tions, which are tailored on the data type and meaning. In
particular data compression, aggregation, suppression, and
differential distribution will be introduced as edge opera-
tions in the last configuration.

1) Case I (see Fig. 2): SEs are [oT MQTT sensors. Due
to the large number of involved sensors and users, we
consider the use of MQTT because it scales better
with a large population of nodes, thanks to a broker
node which manages the data exchange between data
sources and users. Edge computing is not included in
this case. IoT MQTT sensors generate data destined
to the centralized MQTT broker (core MQTT broker)
located on the core side and hosted by cloud services.
MQTT clients, which are located both on the edge
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2)

and core sides (edge and core MQTT clients, respec-
tively), request data to the MQTT broker. Besides,
no additional functionalities dedicated to satellite
bandwidth optimization and data preprocessing are
included.

Case 2 (see Fig. 3): SEs are [oT non-MQTT sensors.
They get access to the network through different
interfaces (e.g., LoORaWAN) equipped with their own
application layer protocols. MEC is partially added:
an edge MQTT broker is introduced at the edge side
with a twofold aim. On the one hand, to “convert”
the generated data in the MQTT format in order
to let them be stored in MQTT brokers and, con-
sequently, allow MQTT clients to access them. On
the other hand, to provide local data storage at the
edge side. To guarantee the compatibility with the
core MQTT broker, the edge MQTT broker has to
be configured to act as a transparent proxy to the
target core MQTT broker, i.e., redirecting the traffic
to it after locally storing a copy of each content.
Edge MQTT clients can directly ask the edge MQTT
broker to provide the interested contents so reducing
the amount of data that need to traverse the backhaul
satellite link in both directions: MQTT requests from
edge MQTT clients to the core MQTT broker and
MQTT answers from the core to the edge side. Also
in this case, no additional functionalities aimed at
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edge MQTT broker as in Case 2 + additional edge functionalities to improve satellite bandwidth utilization.

satellite bandwidth utilization improvement and data
preprocessing are included. MEC functionalities are
limited to the presence of the edge MQTT broker.
Case 3 (see Fig. 4): SEs are IoT not-MQTT Sensors,
and the network architecture includes both the core
and edge MQTT brokers as in Case 2. The edge com-
puting component also enables a data compression
and data aggregation functionality. In detail, MEC
functionalities include also: 1) local processing, such
as downsampling and duplicated values suppression,
to perform data compression; 2) data aggregation,
such as aggregating different values by collecting
a given amount of messages over time in a single
MQTT message to reduce the protocol header over-
head. This type of MEC functionalities are already
proposed in [41]. As a step ahead with respect to this
work, we perform an accurate performance evalua-
tion by using real MQTT software implementation
on a Linux-based testbed.

3)

[V. PERFORMANCE EVALUATION
A. Testbed Setup

The testbed used to perform the validation over the
proposed scenarios is composed of a set of Linux Virtual

LUGLIO ET AL.: PERFORMANCE EVALUATION OF A SATELLITE COMMUNICATION-BASED MEC ARCHITECTURE
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Edge MQTT Clients :
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Fig. 5. Testbed configuration by using Linux-based VMs.

Machines (VMs), as shown in Fig. 5. VM3 acts as a router
to emulate a GEO very small aperture terminal SatCom
connection. The considered MEC functionalities are imple-
mented as a set of Docker-based applications in VM2. The
Docker image deployed to enable the edge MQTT broker is
based on the Mosquitto image.> Additional configurations
are added to the network in VM2 to ensure that MQTT

2[Online]. Available: https://hub.docker.com/_/eclipse-mosquitto
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TABLE 1

no MEC

Configuration Variables and Reference Values Used in the Tests 60
. Reference
Parameter Variable Value 50
Satellite uplink (Edge to Core) datarate BWuyp 128 Kbit/s E
Satellite downlink (Core to Edge) datarate BW own 128 Kbit/s = 40
Satellite two-ways average delay RTT 580 ms =
Number of IoT or MQTT Sensors - SE Ng 5000 ‘g’_ 30 b
Number of real-time sensors r 2000 < -
Real-time “local-only” sensors T 640 g i
Real-time “global” sensors rg 1360 = 20 /«J,’
Number of non-real-time sensors n 3000 = ’,"
Non-real-time “local-only” sensors ny 960 10 ¢
Non-real-time “global” sensors nr 2040 Uplink ——
Mean message size s1 150 Bytes 0 Downlink —-———-
Mean sensor inter-generation message time t 240 s 0 100 200 300 400 500 600
Number of Edge MQTT Clients - UE Time [s]
(each interested in 10% of all sensor data) Ncg 10
Number of Core MQTT Clients - UE Fig. 6. Satellite link bandwidth utilization for Case 1: MEC is not
(each interested in 10% of all sensor data .
except for “local-only” type) Ncco 40 applied.

traffic can be transparently intercepted and locally pro-
cessed by the edge MQTT broker without requiring sensor
reconfigurations.

Atthe core side, the MQTT broker is configured in VM4
and acts as the reference backhand on the cloud to collect
and dispatch sensor data to the clients, which can be located
both at the edge side (VM) and at the core side (VMS5).

Clients are coded in C by using open-source Mosquitto
libraries. Sensors are modeled with scripts that generate data
messages with uniform distribution and settable mean value
for data size and intergeneration interval. Data messages
from sensors then can be either directly included within
MQTT messages by the SEs (Case 1) or encapsulated in
MQTT messages by the edge MQTT broker before trans-
mitting them to the Cloud (Cases 2 and 3).

In our tests, we define four different sensor categories:
real-time, nonreal-time, local-only, and global sensors.
Real-time sensors generate time critical data (e.g., alarms)
that should be delivered as fast as possible without addi-
tional processing. On the contrary, nonreal-time sensors
provide data whose validity is acceptable also in the case of
deferred or partial delivery (e.g., a noncritical temperature
value). Both real-time and nonreal-time sensor data can be
of local-only type, i.e., they will be required only by edge
MQTT clients, or global type, i.e., they will be required by
both edge and core MQTT clients.

Table I reports the reference values of the configuration
variables. Such values are chosen to get realistic configura-
tions. The basic reference is the IoT scenario reported in the
Ericsson mobility report [42] with additional assumptions
to implement the satellite scenario.

B. Assessing the Proposed Optimizations

The obvious expectation is that enabling the edge
MQTT broker as an edge function will reduce the amount
of traffic forwarded through the satellite link. Enabling the
additional MEC functionalities should reduce even more
the impact of sensor traffic on the satellite link, due to: 1)
the reduction of the amount of data that have to reach the
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core MQTT broker and then go back to the edge MQTT
clients owing to the edge MQTT brokering functions; 2)
data compression and aggregation functions. Compression
is very important for all real-time and very-low latency ser-
vices where sensor data must be quickly available avoiding
unnecessary data forwarding through the high-latency satel-
lite link; aggregation is significant for delay-tolerant data.
The interesting aspect is to quantify these improvements in
a realistic environment.

We have performed real-time tests whose duration is
10 min for each of the three cases defined in Section III and
configured as detailed in Table I. The two considered output
performance are given as follows.

1) Message delivery time: The time elapsed between the
data message generation by the SE and its reception
by the interested MQTT client.

2) Satellite link bandwidth utilization, also called
throughput: The amount of data that traverse the
satellite uplink (from edge side to core side) and
downlink (from core side to edge side).

In each test, the MQTT clients gradually join the net-
work, which leads to about 200 s of transient time before
reaching the regime values of the satellite link bandwidth
utilization. For each of the three cases, we show the overall
satellite link bandwidth utilization and the distribution of the
message delivery separate for edge and core MQTT clients.

The first test, referred to Case 1, allows introducing
a benchmark reference for the proposed application. The
satellite link bandwidth utilization is reported in Fig. 6.

We can see an almost symmetric use of the channel since
all sensor data must reach the only MQTT broker available
in the network (the core MQTT broker at the core side)
and go back to the edge clients. The values for the average
throughput after the initial ramp time are 47.9 kb/s for the
uplink and 48.6 kb/s for the downlink. The throughput over
time provides further insights on the traffic pattern: after
the gradual entry of the sensors, we can see wide variations
that must be taken into account to design and dimension
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introducing an edge MQTT broker to handle local data.

real systems. Even if the sensors transmit at random times,
a nonflat channel utilization is obtained.

Fig. 7(a) and (b) shows the delivery time distribution of
data requested by the core MQTT clients and by the edge
MQTT clients, respectively.

Looking at these figures, it is possible to appreciate
the impact of the satellite link on the time required to get
data from the MQTT broker without the help of any MEC
functionality at the edge. The mean value of the delivery
time is 325 ms from Fig. 7(a) and 868 ms from Fig. 7(b),
where a satellite double hop is always required to get data.

When the local processing of MQTT messages is en-
abled at the edge side through dedicated MEC functionali-
ties (Case 2), the first aspect worth noting is the significant
reduction of the satellite link utilization reported in Fig. 8.

The downlink is now almost unused since local sensor
data are handled by the edge MQTT broker without the
need to access the core MQTT broker. The overall value
of about 1 kb/s is related to the flow of ACK packets
destined to the sensors. However, concerning the uplink, the
reduction is not proportional to the reduction of the amount
of transmitted sensor data. The uplink bandwidth is reduced
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Fig. 9. Delivery time distribution of data destined to the edge and core
MQTT clients for Case 2.

to about 50% (from 47.9 to 24.6 kb/s), while the number of
sensors is reduced to 32% (from 5000 to 3400, which are
both real-time and nonreal-time “global” sensors, since the
data generated by the “local-only” sensors do not need to
traverse the satellite link but are received and stored only by
the edge MQTT broker). This additional reduction is due
to the implementation of the MQTT bridge by Mosquitto,
and in particular, due to the edge MQTT broker that groups
more data messages in bulk before sending them to the core
MQTT broker through the MQTT bridge. The confirmation
of this behavior is given by the data delivery time distribu-
tion shown in Fig. 9.

In particular, for the core MQTT clients [see Fig. 9(a)],
the distribution is much shifted toward higher values (with
an average of 587 ms). This happened because sensor mes-
sages are queued and aggregated with other messages at
the socket/TCP level. On the other hand, data destined to
edge MQTT clients [see Fig. 9(b)] are now available locally,
significantly reducing the data delivery time to a few ms and
providing the main desired benefit of MEC at the edge.

This second case shows how bandwidth reduction can
be achieved by adding an MQTT MEC function without
specific optimizations, at the cost of slightly increasing the
core side data delivery time.

Since some sort of socket-level aggregation was already
performed in Case 2, enabling also specific data aggregation
and compression mechanisms at the edge side (Case 3) leads
to marginal advantages, lower than what initially expected.
The obtained results are shown in Figs. 10 and 11.

In this third case, the edge MQTT broker is aware of the
real-time or nonreal-time nature of the global sensor data, as
well as of the global or local-only scope of the messages. In
this way, it is able to perform selective additional process-
ing. In detail, the data aggregation functionality involves
the aggregation of all nonreal-time data messages to be sent
through the MQTT bridge, received within a time window
of fixed duration (1 s in our tests), in one single message,
reducing the overall protocol header overhead. The data
compression functionality includes: 1) discharge of dupli-
cate values—if a sensor generates the same data multiple
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Fig. 11. Delivery time distribution of data destined to the edge and core

MQTT clients for Case 3.

times, such as the same temperature value, the data are
just sent once, i.e., only the data variations are sent instead
of always sending each data; 2) data reformatting—data
message format is changed from text to binary in order to
add some lossless compression. These functions, colocated
with the edge MQTT broker, are so able to reduce redundant
information and aggregate sensor data in a much more
compact form by using larger TCP packets. These additional
actions lead to a further satellite uplink utilization reduction
of 12%, with an average value of 21.1 kb/s. At the same time,
core side data delivery time is not so much affected, with
an average value increased to 647 ms.

C. Further Testing Configurations

We performed additional tests to determine the effec-
tiveness of the MEC architecture considering alternative
configurations. These configurations have been designed
with the aim of presenting some limit/stress cases, in which
we want to show the scalability of the service, and the valid-
ity of the approach when the number of local-only sensors
or clients is reduced. Furthermore, even when local data are
managed at the edge and distributed only locally, processing
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delays and enqueuing times for the MEC processing and
MQTT are still present, and are interesting for a large-scale
deployment of the proposed system in real networks.

The following parameters have been changed, keeping
all the other parameters set as reported in Table I:

1) Ncce = 100 (higher number of core MQTT clients);

2) Ncg =0 (no edge MQTT clients);

3) Ny = 50 000 (10x sensors, keeping the same per-
centage of real-time and nonreal-time, global and
local-only sensors defined in Table I);

4) r; = n; = 0 (no local-only sensors).

Table II includes the obtained mean results of the ad-
ditional tests for each of the proposed MEC configura-
tions. The mean results of the tests, already described in
Section IV-B, labelled as default, have been included too
for comparison.

Concerning the increase of N¢c¢, there is no significant
change in the results compared to the default configura-
tion due to the publisher—subscriber nature of the MQTT
protocol. The amount of sensor data collected at the core
MQTT broker through the satellite link does not depend on
the number of core MQTT clients. Therefore, the results of
this configuration are not included in Table II.

Without edge MQTT clients interested in sensor data
(Ncg = 0 and, consequently, no edge side data delivery
time results), there is a significant reduction of the satellite
downlink bandwidth utilization for Case 1. Since there is
no MEC processing, the absence of edge MQTT clients
reduces the amount of traffic in the core to edge direction
since there is no more requests. For Cases 2 and 3, there
is no significant difference in the satellite link bandwidth
utilization since all traffic at the edge is handled locally,
regardless of the number of interested edge MQTT clients.
Besides, in Cases 2 add 3, the amount of traffic delivered
through the MQTT bridge from the edge to the core side is
the same. For this reason, also core side data delivery time
is not affected.

In the second additional test, we introduce a high degree
of congestion by increasing the number of sensors by ten
times (Ng = 50 000). The uplink becomes quickly congested
in all cases, but the introduction of MEC provides a substan-
tial difference. Without MEC, also the satellite downlink
is highly occupied, with consequent very high mean data
delivery time values both at core and edge sides. Several
sensors suffered also disconnections due to the excessive
packet loss and TCP retransmissions due to retransmission
timeout expiration. As soon as MEC is enabled, the core
side performance is guaranteed, obtaining an edge side
data delivery time mean value comparable with the default
configuration. Case 3 shows a further better performance of
the core side data delivery time. This specific configuration
allows assessing the reaction of the system in case of con-
gestion: the increase of sensors from 5000 to 50 000 does
not lead to a proportional increase of the data delivery time,
which instead increases of about 100 times. This conclusion
is not applicable, as already discussed, for the edge side data
delivery time with MEC enabled, which is not affected.
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TABLE II
Mean Results From the Additional Performed Tests

Variable Scenario Uplink bandwidth | Downlink bandwidth | Core side Edge side
configuration utilization [Kbit/s|] | utilization [Kbit/s] data delivery time [ms] | data delivery time [ms]
Case 1 479 48.6 325 868
Default Case 2 24.6 0.6 587 4.9
Case 3 21.1 0.7 647 4.9
Case 1 46.6 12.6 296 n.a.
Ncg =0 Case 2 24.6 0.5 588 n.a.
Case 3 21.4 0.6 648 n.a.
Case 1 128 93.1 56779 53661
Ng = 50000 Case 2 128 32 71916 4.8
Case 3 128 2.9 40547 4.8
Case 1 33.1 33.6 314 904
rp=mn; =0 Case 2 24.6 0.5 584 4.8
Case 3 21.4 0.6 638 4.7

Finally, without local-only real-time and nonreal-time
sensors (r; = n; = 0), we can observe a proportional re-
duction of the satellite link bandwidth utilization in Case 1.
Concerning Cases 2 and 3, there are no significant changes
since the local-only traffic flows do not traverse the satellite
link. This test allows in particular to confirm the effective-
ness of data local management.

The execution of additional runs showed the main ben-
efit of the MEC-based approach in several configurations.
According to the specific applications and associated re-
quirements in terms of satellite link utilization and latency,
a service operator can decide which is the best architectural
configuration depending on the numerical results shown in
this article.

V. CONCLUSION

The huge amount of raw 10T data could stress the limited
and expensive SatCom resources, which have to be carefully
managed. Equipping the edge of the network with local pro-
cessing MEC functionalities, such as data compression and
aggregation, allow improving end-to-end performance and
QoS in communications when satellite links are exploited.

This article has analyzed a SatCom-based MEC network
architecture where a GEO satellite acts as a backhaul node
between an IoT sensor network and the Internet. A dis-
tributed MQTT framework is defined where local instances
of MQTT brokers and data aggregation and compression
techniques are deployed as Virtual Functions at the edge of
the network. Performance evaluation is carried out through
an ad hoc designed testbed comparing the obtained perfor-
mance with three different network configurations in terms
of the amount of data that need to traverse the satellite
link and data delivery time. The employment of MEC
functionalities allows obtaining a significant reduction of
the satellite link bandwidth utilization and of the achievable
data delivery time in most of the considered cases. The use
of data aggregation techniques leads to a higher delivery
time in some cases, which can affect delay-tolerant data, so
implying a careful design.

Considering the rapid growth of LEO SatCom systems,
a second performance evaluation will be performed
considering an additional reference scenario based on a
LEO satellite constellation. This further analysis aims to
show the impact of aspects, such as satellite handover and
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possible link disruptions between the IoT base station and
satellites on the shown performance in all the considered
cases, so to highlight the improvement achievable with
the proposed MEC functionalities also in the case of LEO
satellite backhaul links.
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