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We derive a detector function for quantum two-mode squeezing
(QTMS) radar and noise radar that is based on the use of a generalized
likelihood ratio (GLR) test for distinguishing between the presence and
absence of a target. In addition to an explicit expression for the GLR
detector, we derive a detector function which approximates the GLR
detector in the limit where the target is small, far away, or otherwise
difficult to detect. When the number of integrated samples is large, we
derive a theoretical expression for the receiver operating characteristic
(ROC) curve of the radar when the GLR detector is used. When
the number of samples is small, we use simulations to understand
the ROC curve behavior of the detector. One interesting finding is
that there exists a parameter regime in which a previously-studied
detector outperforms the GLR detector, contrary to the intuition
that LR-based tests are optimal or nearly so. This is because neither
the Neyman–Pearson lemma, nor the Karlin–Rubin theorem which
generalizes the lemma to composite hypotheses, hold in this particular
problem. However, the GLR detector remains a good choice for target
detection in certain regimes.
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I. INTRODUCTION

From an abstract mathematical perspective, radars are
machines for hypothesis testing: they decide whether a
target is present or absent [1]. The physical operation of the
radar dictates the exact nature of the test: what distributions
the radar detection data are drawn from, which statistics
are being used, and—most importantly—how powerful the
test is. In fact, the gold standard for analyzing the detec-
tion performance of any radar is the receiver operating
characteristic (ROC) curve, which gives the probability of
detection as a function of the probability of false alarm.
That is to say, the ROC curve is the power of the hypothesis
test performed by the radar as a function of the significance
level. Therefore, when trying to understand how well a given
radar works, a careful analysis of the hypothesis testing
performed by the radar is fundamental.

In this article, we are concerned with a class of radars
known as noise radars [2]–[12]. This type of radar generates
a pair of correlated electromagnetic noise signals, of which
one is sent at a target and the other is retained as a reference
signal within the radar. There is a very important subclass
of radars which comes under the umbrella of noise radar,
namely quantum two-mode squeezing (QTMS) radar. As
the name implies, QTMS radar is a type of quantum radar,
a variant of quantum illumination [13]–[16]. QTMS radar
was the first type of microwave quantum radar for which a
laboratory prototype has been built and the results published
in scientific publications [17]–[20]. From the point of view
of target detection, it has been shown that noise radars and
QTMS radars effectively lie on a continuum characterized
by the correlation coefficient between the signal received by
a radar and the reference signal stored within that radar [21],
[22]. Therefore, the results in this article will apply to both
QTMS radars and noise radars.

Apart from the fact that noise radars form a bridge
between conventional radars and quantum radars, noise
radars are attractive because they are inherently low-
probability-of-intercept (LPI) radars [5]. Because they
transmit only noise, they are unlikely to interfere with
other devices because most devices are designed to cope
with noise. This makes them suitable for settings, such
as hospitals and airports, where interference must be
avoided whenever possible. Moreover, QTMS radars in
particular operate at very low signal powers, further en-
hancing its LPI properties. This also suits QTMS radars
to biomedical sensing and imaging, where sensor pow-
ers are greatly limited for safety reasons [23], [24]. We
wish to emphasize, however, that we do not advocate for
the wholesale replacement of conventional radars. Noise
radars and QTMS radars are merely additional tools in the
toolbox.

In the case of noise radars and QTMS radars, it is
typically assumed that the radar detection data are drawn
from a multivariate normal distribution with zero mean [21],
[25]. The question then becomes: what test statistic—or
detector function—should the radar use when conducting
the hypothesis test? Various detector functions have been
proposed and analyzed in the past [22], [25], [26], but it
appears that one particularly natural test statistic has hitherto
escaped notice: the likelihood ratio (LR).
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We now present an analysis of the detection perfor-
mance of QTMS radars and noise radars when the LR is used
for the derivation of detector functions. We explicitly derive
an expression for a generalized likelihood ratio (GLR)
detector function under certain simplifying assumptions.
Although these assumptions mean that our analysis is not
fully general, there nevertheless exist situations (especially
in the biomedical realm) where such simplified assumptions
are reasonable. We then derive an approximate GLR detec-
tor function which is appropriate when the radar attempts
to detect a target that is small or far away. Theoretical
expressions for the ROC curve are presented for the case of
long radar integration times (large number of samples N),
and simulation results are shown for short integration times
(small number of samples). One major result of our work
is that, because the Karlin–Rubin theorem [27] (a general-
ization of the Neyman–Pearson lemma) does not hold, the
GLR detector is not necessarily optimal and there exists a
parameter regime in which it is known to be outperformed
by a detector function previously studied in [26]. Hence,
the search for detector functions for QTMS radar and noise
radar remains an open problem, although the GLR detector
is a strong competitor.

This article builds on and greatly extends previous re-
sults which were submitted to two conferences [28], [29].
We have extended the work in [28] to include explicit ex-
pressions for the GLR detector and its ROC curve, compared
the results to the approximations in [29], and included a
small-N analysis which was missing from [29].

The rest of this article is organized as follows. Section II
lays out the QTMS/noise radar detection problem in mathe-
matical terms. We then derive an explicit expression for the
GLR detector in Section III, together with an approximation
thereto. We derive ROC curve expressions for the GLR
detector in Section IV and confirm them with simulations.
In Section V, we show that the GLR detector is not optimal
under certain conditions, so it is not possible to make
absolute statements about optimality. Section VI presents
simulations of the behavior of the GLR detector when the
number of samples integrated is small. Finally, Section VII
concludes this article.

II. BACKGROUND

Noise radars and QTMS radars work by transmitting
an electromagnetic noise signal toward a target, receiving
the echo, and comparing the received signal with a refer-
ence signal stored within the radar. This is illustrated in
Fig. 1. Every electromagnetic signal can be mathematically
described by two real-valued time series, one representing
the in-phase voltages of the signal and the other representing
its quadrature voltages. In a noise radar, the two voltage
time series of the transmitted signal are typically taken to
be Gaussian white noise processes with zero mean, and all
other noise sources inside and outside the radar are modeled
as additive white Gaussian noise (AWGN). It follows that
the voltage time series of the received signal are also Gaus-
sian white noise. To our knowledge, all previous work on
the theory of noise radar has made use of these assumptions.
They are reasonable assumptions in practice, since it is not
unreasonable to assume that the properties of the signal

Fig. 1. Block diagram illustrating the basic idea of noise radar. This
figure first appeared in [19].

generated by the radar are known, nor is it unreasonable to
assume that external noise sources are AWGN unless this
is specifically known to be false.

Let us denote the in-phase and quadrature voltages of
the received signal by I1[n] and Q1[n], respectively, where
n is the discrete time index. Similarly, let us denote the
in-phase and quadrature voltages of the reference signal
by I2[n] and Q2[n], respectively. As a consequence of the
discussion above, each of these variables is a Gaussian white
noise process with zero mean. They are “jointly white” in the
sense that I1[n0] and I2[n1] are independent unless n0 = n1,
and likewise for all other pairs of the four signals. Because
this is so, we are only interested in the case where the time
difference is zero, and we will suppress the variable n when
no confusion arises.

It is evident that the four voltage signals are fully char-
acterized by the 4 × 4 covariance matrix E[�x�xT ], where
�x = [I1, Q1, I2, Q2]T . In [21], we showed that for a noise
radar, E[�x�xT ] can be written in block matrix form as

� =
[

σ 2
1 12 ρσ1σ2R(φ)

ρσ1σ2R(φ)T σ 2
2 12

]
(1)

where σ 2
1 and σ 2

2 are the received and reference signal
powers, respectively, while φ is the phase shift between
the signals, 12 is the 2 × 2 identity matrix, and R(φ) is the
rotation matrix

R(φ) =
[

cos φ sin φ

− sin φ cos φ

]
. (2)

QTMS radars are characterized by a similar matrix, but
with a reflection matrix instead of a rotation matrix

R′(φ) =
[

cos φ sin φ

sin φ − cos φ

]
. (3)

For the purposes of this article, it is unimportant whether
R(φ) or R′(φ) is used. The results will be the same in any
case.

A. Target Detection Using the Correlation Coefficient

Out of the four parameters appearing in the covariance
matrix (1), it is the correlation coefficient ρ, which is of
greatest importance in the problem of target detection.
When the target is absent, ρ = 0 because the received signal
is purely background noise, which is completely indepen-
dent of the radar’s internal reference signal. Conversely,
when the target is present, ρ > 0 because some component
of the received signal will have originated from the radar
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and that component will be correlated with the reference
signal. The detection problem for noise radar can, therefore,
be formulated as the problem of distinguishing between the
following hypotheses:

H0 : ρ = 0 Target absent

H1 : ρ > 0 Target present. (4)

At this point, we note that the “quantum advantage”
of QTMS radars over standard noise radars lies in the fact
that QTMS radars can achieve higher values of ρ [22]. This
means that the two hypotheses are easier to distinguish,
giving rise to an enhancement in detection performance.

In order to perform this hypothesis test, we must decide
on a detector function (test statistic), which allows us to
distinguish between the two cases. If we were working
with only two time series, a natural choice would be to
perform matched filtering. However, we are working with
four time series, so we must find a detector that suitably
generalizes the matched filter. Previous work has focused on
a generalization of matched filtering to complex signals [25]
or on estimating ρ directly [22]. In this article, we use
a statistic based on the LR in order to derive a detector
function.

There are, unfortunately, three other parameters to be
accounted for: σ1, σ2, and φ. None of these play a direct
role in distinguishing whether or not there is a target, and
are hence “nuisance parameters.” The usual methods for
dealing with nuisance parameters (e.g., integrating them
out) appear to yield complicated and intractable expres-
sions. Therefore, in the derivation of the GLR detector, we
make the simplifying assumptions σ1 = σ2 = 1 and φ = 0.
This amounts to a normalization and standardization of the
radar’s detection data. The time series are normalized to
have variance 1, while the reference signal in the radar is
“rotated” so that there is no phase shift between it and the
received signal.

These assumptions are admittedly rather restrictive.
However, we will show in Section IV-A that our results
hold even when σ1 = σ2 = 1 is violated, so this assumption
really only serves to simplify the derivations and does
not substantively affect our results. This leaves the φ = 0
assumption. Unlike the σ1 = σ2 = 1 assumption, violation
of the φ = 0 assumption does in fact lead to a decrease in
detection performance. The tradeoff is that, phase-sensitive
detectors tend to outperform phase-insensitive detectors.
Thus, our work gives us some idea of the best performance
that can be obtained from a noise radar or QTMS radar.
Moreover, in the case of a stationary target, an artificial
phase shift can be injected into the reference signal to
maximize the detection performance: all that is needed is to
apply an appropriate rotation matrix to I2 and Q2. This is a
1-D maximization over a very limited search space, which is
easy to perform. One application where stationarity can be
justified is biomedical sensing, one of the most promising
applications for QTMS radar [24]. Typically, the distance
from a sensor to a patient is fixed, so the phase is not
expected to change significantly. For the more general case
of slowly-varying φ, the artificial phase shift could even
be adjusted using adaptive signal-processing techniques.
We point out, too, that the φ = 0 assumption was made in

previous theoretical and experimental work [19], [26], [30],
so the results given can be directly compared with previous
research.

B. QTMS/Noise Radar Detection Problem

With the above discussion in mind, we may formulate
the QTMS/noise radar detection problem as follows: let N
independent samples be drawn from a multivariate normal
distribution with zero mean and covariance matrix

�(ρ ) =

⎡
⎢⎣

1 0 ρ 0
0 1 0 ±ρ

ρ 0 1 0
0 ±ρ 0 1

⎤
⎥⎦ (5)

where the positive sign should be used for noise radars and
the negative sign for QTMS radars. (Note that N is related to
the integration time T and the sampling frequency fs of the
radar by T = N/ fs.) Given these samples, we must decide
whether ρ = 0 or ρ > 0. Our approach will be to use the
LR to distinguish between these two hypotheses.

In the calculations that follow, we will assume the use
of a QTMS radar and use the negative sign in (5). To apply
our results to standard noise radars, only one sign change is
necessary, as we will indicate below.

C. Simulation Procedure

In this article, we will have recourse to computer simu-
lations to supplement our theoretical calculations. Naively,
we would simply generate N random vectors every time
we wish to simulate a single value of the detector function.
However, we will see that the LR depends on the data only
through the sample covariance matrix

S̄ = 1

N

N∑
n=1

�xn�x
T
n (6)

where �xn is the nth sample vector. It is unnecessary, there-
fore, to generate N random vectors. We need only draw a sin-
gle random matrix from the Wishart distribution W4(�, N ),
then normalize the result by N . This was the procedure used
in [22]; it leads to significantly shorter computation times.

In all cases where we obtain ROC curves by simulation,
we generate 107 random matrices with ρ = 0 and another
107 with a given value of ρ > 0. These correspond to the
cases where the radar target is absent or present, respec-
tively. From these matrices, we calculate 107 simulated
detector function outputs for each case. The ROC curves are,
then, obtained by using the histograms of detector function
outputs as empirical probability density functions.

III. GLR DETECTOR

As mentioned previously, one way to test between the
hypotheses in (4) is to perform an LR test. We now derive
an explicit expression for the GLR detector function.

The probability density function for a k-dimensional
multivariate normal distribution with mean vector �μ and
covariance matrix � is

f (x) = exp
[− 1

2 (�x − �μ)T �−1(�x − �μ)
]

√
(2π )k|�|

(7)
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where |�| is the determinant of �. It follows immediately
that, for N independently drawn samples �x1, . . . ,�xN , the
log-likelihood is

�(�μ, �) = −N

2
[ln |�|

+ k ln(2π )] − 1

2

N∑
i=1

(�xi − �μ)T �−1(�xi − �μ). (8)

Substituting (5) along with k = 4 and �μ = [0, 0, 0, 0]T , we
find that the log-likelihood function for QTMS radar is

�(ρ ) = −N

2

[
P̄tot − 2D̄1ρ

1 − ρ2
+ 2 ln(1 − ρ2) + 4 ln(2π )

]
(9)

where, for brevity, we define

Ptot ≡ I2
1 + Q2

1 + I2
2 + Q2

2 (10)

D1 ≡ I1I2 − Q1Q2. (11)

In (9) and elsewhere in this article, a line over an
expression indicates the sample mean. For example

I1I2 = 1

N

N∑
n=1

i(n)
1 i(n)

2 (12)

where i(n)
1 and i(n)

2 denote the nth samples of I1 and I2,
respectively.

As mentioned previously, we have taken the negative
sign in (5). The only change needed when the positive sign
is used is to set D1 ≡ I1I2 + Q1Q2.

We can interpret Ptot as the total power at the radar
receiver; it is the sum of the powers of the in-phase and
quadrature components of both the received signal and the
reference signal. The quantity D1 appeared in [19] under
the name “Detector 1” and was studied in further depth in
a previous publication [26].

Having written down the log-likelihood, we can now
define the GLR detector.

DEFINITION The GLR detector is defined as

DGLR = −2[�(0) − �(ρ̂ )]

= N

[
2D̄1ρ̂ − P̄totρ̂

2

1 − ρ̂2
− 2 ln(1 − ρ̂2)

]
(13)

where ρ̂ is the maximum likelihood estimate of ρ.

REMARK The factor of −2 ensures compatibility with
Wilks’ theorem, which we will invoke in the following
section.

PROPOSITION 1 The maximum likelihood estimate of ρ is

ρ̂ = 1

6

(
w − A1

w
+ D̄1

)
(14)

where

A1 = 6(P̄tot − 2) − D̄2
1 (15a)

A2 = (72 − 9P̄tot + D̄2
1)D̄1 (15b)

w = 3

√
A2 +

√
A3

1 + A2
2. (15c)

In (15c), we must choose the appropriate cube and
square roots to ensure that 0 < ρ̂ < 1.

PROOF In order to obtain the maximum likelihood estimate
ρ̂, we must maximize the log-likelihood (9). To this end,
we calculate the derivative of �(ρ ) as follows:

d�(ρ )

dρ
= N

D̄1 − (P̄tot − 2)ρ + D̄1ρ
2 − 2ρ3

(1 − ρ2)2
. (16)

Assuming that 0 < ρ̂ < 1, the maximum likelihood esti-
mate will occur when d�(ρ )/dρ = 0. This is equivalent to
solving the cubic equation

D̄1 − (P̄tot − 2)ρ + D̄1ρ
2 − 2ρ3 = 0. (17)

The general form for the solution of a cubic equation is
known, so the proposition immediately follows. �

A. Approximate GLR Detector

Because the GLR detector is unwieldy, we shall derive
an approximate form of the detector function. In order to
do so, we will assume that ρ � 1. This regime is of great
importance for radar detection because it corresponds to
targets that are difficult to detect. For example, they may
be far away from the radar, or they could have very small
radar cross sections, or the signal-to-noise ratio may be un-
favorable. All these cases would lead to a small correlation
coefficient [31]. Therefore, the assumption ρ � 1 is not
merely a mathematical convenience; this assumption has
practical significance.

The following proposition gives a second-order approx-
imation of the GLR detector. This approximation is much
easier to calculate than the exact GLR detector and is
more numerically stable, an important consideration when
processing power is limited.

PROPOSITION 2 The GLR detector may be approximated by
the following formula, which is correct up to second order
in ρ:

DGLR ≈ ND̄2
1

P̄tot − 2
. (18)

PROOF Under the small-ρ assumption, we may expand (13)
around ρ̂ = 0 in powers of ρ̂, keeping terms up to second
order. The result is

DGLR ≈ N ρ̂[2D̄1 − (P̄tot − 2)ρ̂]. (19)

Since ρ is small, we may obtain an approximation of ρ̂

by keeping terms up to first order in (17) (which is equivalent
to keeping terms up to second order in the log-likelihood
itself). The resulting equation is linear, and its solution is

ρ̂ ≈ D̄1

P̄tot − 2
. (20)

By substituting this into (19), we obtain (18).

REMARK It is of interest to note that the approximate GLR
detector function (18) can be obtained directly from the
exact expressions (13) and (14) by expanding in powers
of D̄1 and retaining the lowest order term. (This can be
verified using a computer algebra system, such as Mathe-
matica.) The two approaches are roughly equivalent because
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E[D1] = 2ρ, so when ρ is small, D̄1 may be expected to be
small as well.

IV. ROC CURVE FOR THE GLR DETECTOR

It follows from Wilks’ theorem that, under H0 (target
absent), the distribution of the detector in the limit N → ∞
is DGLR ∼ χ2

1 , a chi-square distribution with one degree of
freedom [32]. The fact that there is one degree of freedom
follows from the fact that ρ is a 1-D quantity and that the
parameter space under H0 is zero-dimensional, being the
single point ρ = 0.

An approximation to the distribution of DGLR under
H1 (target present) can be obtained by appealing to [33,
Th. 1]. That theorem is extremely general and we are
only interested in the specific case where the likelihood
function contains only one parameter to test and no nuisance
parameters. In the following lemma, we restate the theorem
for the specific case we are interested in.

LEMMA 1 Let N samples be drawn from a family of prob-
ability distributions parameterized by θ , let δ be a constant,
and let λN be the LR for testing the following hypotheses:

H0 : θ = θ0

H1 : θ = θ0 + δ√
N

. (21)

Finally, let I (θ ) be the Fisher information for the family
of distributions from which the samples were drawn. Then,
under the alternative hypothesis H1, it is true that

−2 ln λN
d→ χ2

1 [δ2I (θ0)]. (22)

In other words, as N → ∞, the statistic −2 ln λN converges
in distribution to the noncentral chi-square distribution with
one degree of freedom and noncentrality parameter δ2I (θ0).

PROOF This is a special case of [33, Th. 1]. �
Note that by taking δ = 0, we immediately recover

Wilks’ theorem as a special case.
We now use this lemma to determine the distribution of

the GLR detector.

PROPOSITION 3 In the limit N → ∞,

DGLR ∼ χ2
1 (2Nρ2). (23)

PROOF In Lemma 1, substitute θ = ρ, θ0 = 0, and δ =
ρ
√

N . (Technically, this is not fully legitimate because
δ should not depend on N . However, we will show via
simulations that for small ρ, we still obtain a satisfactory
result.) We also need the Fisher information

I (ρ ) = − E

[
∂2

∂ρ2
�(ρ )

]

= E

[−2 + Ptot (1 + 3ρ2) − 2D1ρ(3 + ρ2) + 2ρ4

(1 − ρ2)3

]

= 1

(1 − ρ )2
+ 1

(1 + ρ )2
. (24)

The final line was obtained by using the linearity of the
expectation value operator, inspecting the definitions of Ptot

and D1 in (10) and (11), respectively, then reading off the

appropriate entries of (1). Note that in calculating the Fisher
information, we must take N = 1 in �(ρ ).

Once we make the appropriate substitutions in (22), the
proposition follows immediately. �

When ρ is small and the second-order approximation
(18) applies, we can give an alternate plausibility argument
for Proposition 3. This argument requires only elementary
statistics and is perhaps more insightful than the abovemen-
tioned proof.

First, note that under the central limit theorem D̄1 is nor-
mally distributed with mean 2ρ and variance 2(1 + ρ2)/N
when N is large [26]. Since (18) holds when ρ � 1, we
may simplify this and state that D̄1 ∼ N (2ρ, 2/N ). Let us
introduce the transformed random variable

X ≡
√

N

2
D̄1. (25)

It follows from the properties of the normal distribution that
X ∼ N (ρ

√
2N, 1).

We now argue that P̄tot ∼ N (4, 8/N ). It is easy to see
that E[Ptot] = 4; this follows directly from (5) and (10). The
calculation of var[Ptot] is more difficult because it involves
terms of the form cov[I2

1 , I2
2 ]. Luckily, a result in [34] allows

us to calculate such expressions. A special case of this result
is quoted in the following lemma.

LEMMA 2 Let x, y, u, and v be jointly normal random
variables, each with zero mean. Then

cov[xy, uv] = cov[x, u] cov[y, v] + cov[x, v] cov[y, u].
(26)

PROOF This is a special case of [34, eq. (13)].

By applying this lemma repeatedly, we find that
var[Ptot] = 8(1 + ρ2), which can be simplified to var[Ptot] =
8 because ρ is assumed to be small. Since N is large,
we again invoke the central limit theorem to state that
P̄tot ∼ N (4, 8/N ).

Let us define

Y ≡ P̄tot

2
− 1. (27)

From the properties of the normal distribution, Y ∼
N (1, 2/N ). Moreover

DGLR ≈ ND̄2
1

P̄tot − 2
= X 2

Y
. (28)

As N → ∞, the variance of Y approaches zero and Y con-
verges in probability to 1. Therefore, DGLR ≈ X 2. But X 2 is
the square of a normally distributed random variable with
variance 1, so it is a noncentral chi-square random variable
with one degree of freedom and noncentrality parameter
(ρ

√
2N )2. Once again, Proposition 3 follows.

Now that we know the distribution of DGLR conditioned
on whether the target is present or absent, we can easily
derive an expression for the ROC curve of the GLR detector.

PROPOSITION 4 In the limit N → ∞, the ROC curve for the
GLR detector is

pD(pFA) = Q 1
2

[
ρ
√

2N,
√

S−1(pFA)
]

(29)
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where Q1/2 denotes the Marcum Q-function of order 1/2,
S−1 is the inverse of the function defined as

S(T ) ≡ 1 − P

(
1

2
,

T

2

)
(30)

and P is the regularized gamma function.

PROOF If the target is absent, DGLR ∼ χ2
1 in the limit N →

∞ by Wilks’ theorem. The cumulative density function
for the χ2

1 distribution is known to be P(1/2, x/2), whose
survival function is S(T ). Therefore, the probability of false
alarm for a given threshold T is p fa = S(T ).

If the target is present, we know from Proposition 3
that DGLR ∼ χ2

1 (2Nρ2) as N → ∞. The survival function
for the χ2

1 (2Nρ2) distribution is Q1/2(ρ
√

2N,
√

T ). The
proposition follows upon substituting T = S−1(p fa). �
REMARK As noted in Section II-A, we assumed that the
phase φ between the received and reference signals in
the radar was equal to zero. The effect of loosening this
assumption can be seen by observing that the GLR detector
depends on the measurement data only through Ptot (10)
and D1 (11). Of these, Ptot is phase-invariant, while E[D1] is
proportional to ρ cos φ. It follows that the ROC curve for the
GLR detector when φ 
= 0 is the same as in (29), but with
ρ replaced by ρ cos φ. This suggests that one method of
estimating φ (when sufficient data and time are available)
is to apply a rotation matrix to the I and Q voltages of
the reference signal to artificially induce a phase shift, then
find the rotation angle that maximizes the ROC curve. One
simplistic way to do this is with a battery of GLR detectors,
each at a different phase shift; the number of detectors need
not be very large.

As for the σ1 = σ2 = 1 assumption, we will show in the
following section that this assumption is not strictly needed
for (29) to hold.

A. Simulations

In order to bolster our confidence in the ROC curve
formula (29) and the small-ρ approximation (18), we ver-
ified these expressions using simulations as described in
Section II-C. This is desirable because Lemma 1 was not
strictly satisfied when we invoked it to prove Preposition 3.
In Fig. 2, we can see that the resulting histograms match up
with the theoretical distributions obtained above. In Fig. 3,
we plotted the ROC curves that arise from the simulations.
The results show that the simulated data agrees extremely
closely with the theoretical expression (29), at least for small
values of ρ.

In Fig. 4, we show how pd behaves as a function of ρ

for various fixed values of p fa. This plot corresponds to the
plots of pd versus single-pulse SNR that are often seen in
the radar literature, except that ρ takes the place of SNR
and Fig. 4 is not for the single-pulse case (we have used
N = 50 000).

We will now show that, although the approximate
GLR detector was derived under the assumption that
σ1 = σ2 = 1 in (1), it is nevertheless still a viable detector
function when σ1 and σ2 are unknown. In Fig. 5, we plot
simulated ROC curves for the approximate GLR detector
when (σ1, σ2) = (0.1, 10) and (0.01, 10 000). Even in the

Fig. 2. Histograms of simulated GLR detector outputs for N = 50 000,
plotted together with theoretical probability density functions. Blue:

ρ = 0. Orange: ρ = 0.01.

Fig. 3. Comparison of simulated ROC curves for the GLR detector with
theoretical ROC curves calculated from (29) for N = 50 000 and varying

values of ρ.

Fig. 4. Probability of detection pd as a function of ρ for the GLR
detector for various values of p fa, calculated from (29) with N = 50 000.

second case, where there is a large deviation from the
assumption σ1 = σ2 = 1, the ROC curves do not notice-
ably deviate from the theoretical expression (29). From
these results, it appears plausible that so long as ρ � 1
and P̄tot > 2, the approximate GLR detector gives results
that are reasonably close to the theoretical expression (29).
[The condition P̄tot > 2 is necessary because, otherwise, the
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Fig. 5. Comparison of simulated and theoretical ROC curves for the
approximate GLR detector when (σ1, σ2) equals (a) (0.1, 10) and

(b) (0.01, 10 000). In all cases, N = 50 000.

denominator of (18) would become negative, but this can
trivially be achieved by multiplying all I and Q voltages by
a sufficiently large scaling factor.]

Although Fig. 5 shows plots for the approximate GLR
detector, simulations using the exact GLR detector show the
same behavior, so the assumption σ1 = σ2 = 1 is unneces-
sary for either version of the detector. Recall that only the
approximate detector requires ρ � 1. Therefore, we may
state that the exact GLR detector is viable even if the powers
of the radar signals are unknown, irrespective of whether
ρ � 1 holds or not.

V. NONOPTIMALITY OF THE GLR DETECTOR

It is well known that, according to the Neyman–Pearson
lemma, the (nongeneralized) LR test is the most powerful
one when deciding between two simple hypotheses [27].
Referring back to (4), however, we see that the target
detection problem does not satisfy the premises of the
Neyman–Pearson lemma. The hypothesis that a target is
present is not a simple hypothesis. We are not deciding
between ρ = 0 and ρ = ρ0 for some known value ρ0. It is,
therefore, not permissible to rely on the Neyman–Pearson
lemma to state that the LR test is optimal.

Fig. 6. Comparison of the GLR detector with D1 for N = 50 000 and
various values of ρ.

There is, however, an extension to the Neyman–Pearson
lemma which applies to composite hypotheses of the type
seen in (4): the Karlin–Rubin theorem [27]. It states that the
LR test is the most powerful test for one-sided composite hy-
potheses, such as (4), when certain conditions are satisfied.
One of these conditions is that there exist a scalar-valued
sufficient statistic T (x) for ρ. The Fisher–Neyman factor-
ization theorem states that T (x) is a sufficient statistic for ρ

if and only if the LR factorizes into the form h(x)gρ[T (x)],
where h(x) does not depend on ρ while gρ[T (x)] depends on
the data x only through the statistic T (x). Such a statistic T ,
however, cannot be found. To see this, it is necessary only
to inspect the log-likelihood (9). It is clear that gρ[T (x)]
satisfies

ln gρ[T (x)] = −N

2

[
P̄tot − 2D̄1ρ

1 − ρ2
+ 2 ln(1 − ρ2)

]
. (31)

But this expression depends on the data through two statis-
tics, namely P̄ and D̄1. There is no way to combine P̄
and D̄1 so that (32) is a function of a single scalar-valued
statistic for ρ. Therefore, the LR does not factor into the
form h(x)gρ[T (x)] when T is a scalar, and there exists
no scalar-valued sufficiently statistic. It follows that the
Karlin–Rubin theorem does not apply, and we cannot rely
on this theorem to state that the LR test is optimal.

The above discussion shows that the GLR detector is
not necessarily the most powerful detector for the target
detection problem. It serves as a plausibility argument for
the following proposition, which would otherwise appear
surprising.

PROPOSITION 5 The GLR detector is not optimal.

PROOF Fig. 6 shows the ROC curves that would be obtained
when D1 is used as a detector function. There is a small but
clear advantage in using D1 for target detection compared to
using DGLR, at least for certain values of ρ and N . Therefore,
the GLR detector is not optimal. �

In the discussion following the definition of D1 in (11),
we noted that the use of D1 as a detector function was studied
in [19]. When σ1 = σ2 = 1, φ = 0, and N → ∞, the ROC
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Fig. 7. Comparison of simulated ROC curves for the exact GLR
detector (13) with the small-ρ approximation (18) for N = 10 and

various values of ρ.

curve for D1 is

pd (p fa) = 1

2
erfc

(
erfc−1(2p fa) − √

Nρ√
1 + ρ2

)
(32)

where erfc is the complementary error function. These
parameter values were chosen in order to obtain an expres-
sion that can be compared with (29), which was derived
assuming the same parameter values.

We do not claim that D1 outperforms DGLR in all cases.
On the contrary, we will show in the following section that
when N is small, there are regimes where the GLR detector
is better than D1. Therefore, it is not possible to make
blanket statements about the superiority of one detector over
another, and the search for good detector functions remains
an open problem.

VI. SIMULATION RESULTS FOR SMALL N

The ROC curve expressions in the previous section have
all been derived under the assumption that the number of
samples N is large. However, in the context of radar detec-
tion, it is not always possible to use very large values of N .
This corresponds to the use of long integration times, which
is undesirable in situations where radars need to detect
targets quickly. Therefore, it is of interest to characterize
the detection performance of the GLR detector for small N .
Unfortunately, there are no analytical results that we can
rely upon. We, therefore, turn to simulations.

We note that, when N is small, it is necessary that ρ

be made larger in order to compensate. For this reason, the
results in this section apply to cases where the target is easier
to detect (e.g., smaller range or larger radar cross section)
and we wish to detect the target very quickly.

Our first comparison is between the GLR detector (13)
and the approximate detector (18). We have shown pre-
viously that, even if the assumption that σ1 = σ2 = 1 is
violated, the approximate detector is still viable. If we could
show that it is similarly viable when the assumption ρ � 1
is violated, we could eschew the use of the exact GLR
detector (13) altogether. This would be desirable because
the approximate detector requires far less computational

Fig. 8. Comparison of simulated ROC curves for the GLR detector with
theoretical ROC curves calculated from (29) for N = 10 and various

values of ρ.

Fig. 9. Simulated ROC curves for the GLR detector compared with the
D1 detector for N = 10 and various values of ρ.

requirements. Unfortunately, as shown in Fig. 7, the ap-
proximate GLR detector does not perform nearly as well as
the exact GLR detector when ρ is high.

Our next comparison is between simulated ROC curves
for the exact GLR detector and the corresponding theoreti-
cal ROC curves calculated using (29). The motivation is to
see how far we may rely on the theoretical expression even
when ρ is large and N is small. Fig. 8 shows that, in fact,
(29) is not reliable for large ρ and small N . As a matter of
fact, when ρ is very large, the simulated ROC curves are
significantly better than the corresponding theoretical ROC
curves.

Finally, we compare the performance of the (exact) GLR
detector with the D1 detector function. As we already saw in
Fig. 6, the theoretical ROC curve expressions show that D1

is a better detector function when ρ is small. However, the
simulation results in Fig. 9 suggest that there is a crossover
in detection performance, and when ρ is high, DGLR is better
than D1. Therefore, we are not justified in making blanket
statements about the optimality of any detector function.
Instead, it may be a better strategy to choose DGLR when
ρ is expected to be large, and D1 when ρ is expected to be
small.
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VII. CONCLUSION

In this article, we derived and analyzed two detector
functions for QTMS radar and noise radar that are based
on the LR. In addition to an exact formula for the GLR
detector, we derived an approximate detector function that
holds in the limit of small correlation coefficients ρ. We
derived a mathematical formula for the ROC curve of the
GLR detector which holds when the number of samples
N is large; we also performed simulations to understand
the behavior of the detector when N is small. We found
that the GLR detector is not optimal, which runs counter
to the intuition that the LR test is optimal or nearly so;
it is outperformed by the D1 detector function when ρ is
small. However, the GLR detector is a strong competitor,
significantly outperforming D1 when ρ is very large and N
is small.

One drawback of our work is that it assumes that the
values of the nuisance parameters σ1, σ2, and φ are known.
Although there exist situations where this is a reasonable
assumption, especially in the context of biomedical sensing,
it would be more satisfying if we could derive the GLR
detector function without the use of these assumptions. This
will be the subject of future work.
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