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Classifiers based on machine learning are usually trained to dis-
tinguish between several known classes. For an electronic intelligence
application, however, it is of great importance to recognize if an inter-
cepted signal belongs to an unknown radar emitter. In the machine
learning literature, this task is called open-set recognition. This arti-
cle investigates six approaches in several configurations to recognize
unknown emitters. It is based on a hierarchical emission model that
understands emissions as a language with an inherent hierarchical
structure. We consider two general approaches, which are the “mem-
oryless” Markov chain and the Long Short-Term Memory recurrent
neural network, which is especially designed to “remember” the past.
The performance is demonstrated with two evaluation metrics in ten
scenarios that contain different combinations of known and unknown
emitters. An evaluation with corrupted data provides an estimate on
the methods’ accuracies under challenging conditions. The results
show that unknown emitters that do not use known waveforms are
reliably recognized even with corrupted data, while unknown emitters
that are more similar to known ones are harder to detect.
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I. INTRODUCTION

The goal of electronic intelligence (ELINT) is to collect
information about radar systems by intercepting and ana-
lyzing their signals. A passive ELINT receiver intercepts
the radar signals in the environment and converts received
pulses into pulse descriptor words (PDWs), which consist of
at least the parameters radio frequency (RF) and pulsewidth
(PW), as well as the time of arrival that is used to deter-
mine the pulse repetition interval (PRI) or pulse repetition
frequency (PRF). Usually, several emitters are active such
that PDWs from different emitters are interleaved. Before
an analysis, the PDWs must, hence, be deinterleaved (see,
e.g., [1]). After this step, separated PDW sequences are
obtained, but no information about the emitters’ identities
is given. Fig. 1 provides a visualization. The input to an
analysis method or classifier is shown on the right. It
contains three separated PDW sequences that the classifier
processes sequentially. However, it is not known whether
the sequences belong to one, two, or three emitters, and
usually, the classifier’s input consists of deinterleaved PDW
sequences from different emitters.

Traditionally, the waveform parameters extracted from
the stream of PDWs are compared to entries in a database to
identify the emitter type. However, with the introduction of
agile multifunction radars, this pattern matching approach
no longer provides satisfactory performance. Therefore,
methods based on machine learning techniques such as
neural networks have been proposed [2]–[7]. For an ELINT
application, recognition of unknown emitters is of great im-
portance. If unknown radars are detected, the corresponding
signals need to be prioritized and recorded such that further
analysis can be performed. However, classifiers such as
neural networks are generally trained to identify a set of
known classes, which is sometimes called the closed-set
assumption. Recognizing if an input does not belong to any
of the known classes is referred to as open-set or open-world
recognition (see, e.g., [8]–[13]). The major differences
between open-set recognition, classification, and anomaly
detection are the goal, the available training data, and the
output that the classifier provides in each task. Anomaly
detection could also be used to classify input as unknown,
but an anomaly detector does not distinguish between sev-
eral known classes. A classification method, on the other
hand, is not suited to recognize unknown input. An anomaly
detector can be combined with a classification approach to
yield a method for open-set recognition. The different types
of input that a classifier for open-set recognition needs to
handle are the following [9]:

1) Known Classes: the set of classes that the classifier
should recognize and identify, denoted by K below;

2) Known Unknown Classes: the set of classes V that
should be classified as unknown/rejected. Type and
structure are known and either training data is avail-
able or can be generated;

3) Unknown Unknown Classes: data of unknown un-
known classes, denoted by U, should as well be
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Fig. 1. Input to the classifier consists of sequences of deinterleaved
PDWs, which possibly belong to different emitters [2].

classified as unknown, but is unavailable at training
time and only encountered at test time.

Open-set recognition can be regarded as a learning task
with these properties [12]:

1) If the input x belongs to a known class kc ∈ K,
i.e., class(x) = kc, the label y corresponds to the class
index idx(kc) = c; otherwise, y = ∅, with ∅ meaning
“unknown.”

2) The goal is to train a classifier ĉ that returns ĉ(x) = c
for all x with class(x) = kc ∈ K and ĉ(x) = ∅ other-
wise.

3) Predicting the class ĉ(x) = ∅ is called the reject
option. The learning process is supposed to adjust
the selection of this option.

This article investigates six methods to recognize un-
known radar emitters, which are either based on a “memo-
ryless” Markov chain (MC) or a Long Short-Term Memory
(LSTM) recurrent neural network [14] that possesses a
“memory.” These approaches build on previous work of the
authors on modeling and predicting emissions [15], [16], as
well as the identification of the radar emitter type [2], [16].

A. Related Work

There are two alternative principles for open-set
recognition. The first one is to compare the classifier’s
output ŷ = (ŷ0, ŷ1, . . . , ŷC−1) for each class kc ∈ K =
{k0, k1, . . . , kC−1} to a threshold δ and reject the input as
unknown if none of the values exceeds it, i.e.,

ĉ(x) =
{

T (ŷ), if max(ŷ) ≥ δ

∅, else
(1)

where T (ŷ) denotes the index c of the most probable known
class kc. The second approach is to add an extra class with
index C called “unknown” to the possible output classes.
The classifier can be trained on the classes in K and V but
obviously not on U.

The work presented in [10] introduces OpenMax, which
estimates the probability that the input belongs to an un-
known class, to replace the commonly used softmax layer
in a neural network with the softmax function being defined
by

softmax(ỹc) = exp(ỹc)∑C−1
i=0 exp(ỹi )

, c = 0, 1, . . . ,C − 1. (2)

The basis is the analysis of the logits, i.e., the activations ỹ of
the final dense layer before softmax. Per class, the logits of
every correctly classified training input are combined into
a mean activation vector to yield a single representation of
the class. OpenMax then adapts the top k logits based on the

distance between the input x and the mean activation vector
of the class. In addition, a pseudo-activation of the unknown
class is determined. If the probability for the unknown
class is the highest after the normalization using softmax
or all values are below a threshold, the input is rejected as
unknown.

Although achieving good performance in comparison
to directly using the softmax function with a threshold, it
is not clear how to apply OpenMax to sequential data like
radar signals. The mean activation vector would need to be
calculated for many sequences with different offsets and
lengths to capture the general distribution of the logits for
a certain class, which does not seem to be practical.

A network is designed in [17] to find data samples that
are close to the known classes but still rejected. The classi-
fier’s training data are augmented with this known unknown
data, which results in a regularization of the network by
increasing the uncertainty for unknown input. The work [13]
introduces a new loss function, called the entropic open-set
(EOS) loss, to evenly distribute the probability across known
classes if the input belongs to an unknown class. This
loss function is described in Section III, as well as the
approach called deep open classification (DOC) presented
in [11]. In addition to the EOS loss, the work [13] introduces
the objectosphere loss as an extension, which targets the
“deep feature layer” that exists in all convolutional neural
networks but not in the LSTM architecture of this article.
Hence, the evaluations of this article are restricted to the
EOS loss.

Literature on recognizing an unknown emitter or signal
for an ELINT application is very sparse. Moreover, most of
the existing papers either use methods that have not estab-
lished themselves and have been replaced by neural network
types like LSTMs [18]–[20] or exhibit a lack of details on
how training for the unknown class is performed [20], [21].
In [22], the class probability output network as introduced
in [23] is employed, which normalizes the output of a classi-
fier in order to obtain probability values, i.e., an alternative
to using the softmax function.

B. Our Contributions

This article provides a thorough investigation of six
approaches in several configurations to recognize unknown
emitters based on the hierarchical emission model presented
in [15], [24], and [25], which is briefly repeated in Section II-
A. Four of the methods employ LSTMs and two are based
on MCs. The LSTMs are implemented with three different
loss functions, which are cross-entropy (CE), EOS, and
DOC. To the best of the authors’ knowledge, this is the first
implementation of the EOS loss with LSTMs in general and
the first implementation of the DOC loss with unidirectional
LSTMs. Moreover, it is also the first application of LSTMs
and MCs for the task of unknown emitter recognition.

In addition, an MC-based method for generating known
unknown data is proposed. All considered classifiers for
unknown emitter recognition are trained with five training
cases, which differ in the contained known unknown data.
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Fig. 2. Example of the signal processing chain. The pulses of two emitters are intercepted and deinterleaved. Afterward, the PDW sequences are
mapped to symbols, e.g., syllables. The symbol sequences are processed by the open-set recognition method. Image based on [2].

Another training case that follows the closed-set assumption
is used for the LSTM-CE and the MC, as shown in [2], [15],
and [16]. The evaluation is performed with ten different test
cases containing several combinations of classes fromK,V,
and U. It is analyzed how the generated known unknown
data influences the rejection accuracy for unknown input.

A compromise between the true and false rejection rate,
as well as the accuracy for discriminating between known
classes, is found by selecting the configuration of the classi-
fier, which consists of the training case and the value of the
threshold δ, if a threshold is used. This article estimates the
expected performance for the distinction between known
and unknown input when choosing the best configuration
for the identification of known classes and vice versa. We
also analyze whether a single classifier is enough for a
good accuracy or a hierarchical combination of different
classifiers is to be preferred. An evaluation with corrupted
data further provides estimates on the robustness of the
classifiers.

Section II details the radar data used in the evaluations of
this article and describes the cases employed for training the
approaches introduced in Section III. Section IV presents
the results. Finally, Section V concludes this article.

II. RADAR DATA AND TRAINING CASES

A. Hierarchical Emission Model

A hierarchical emission model that considers the emit-
ters as systems that speak a language [15], [24], [25] is the
basis for the presented methods. In analogy to natural lan-
guage, the different modeling levels are defined as follows:

1) Letters: Letters correspond to the radars’ emitted
pulses, which are defined, e.g., by PRI or PRF, RF,
and PW.

2) Syllables: Syllables, which correspond to radar
bursts, are common combinations of letters.

3) Words: Syllables can be combined to form words,
which resemble radar dwells.

4) Commands: Commands describe word types or
classes on a higher level of abstraction.

5) Functions: Different purposes of the emissions map
to functions, e.g., searching or tracking targets.

Fig. 2 illustrates the processing chain. In this example,
the pulses of two emitters (blue and green) are intercepted.
At first, the pulses are sorted by common properties into
two separated sequences, such that each sequence only
contains the PDWs of a single emitter. After deinterleav-
ing, the symbol extraction maps the PDW sequences to

the symbols defined by the emission model. For example,
the result might be a sequence of blue and a sequence
of green syllables. Finally, these symbol sequences are
the input to the open-set recognition method. Note that
a low signal-to-noise ratio might lead to a missed or
wrong detection of symbols, but does not influence the
processing after a correct detection. The radar symbols
are encoded into a numerical representation using word
embeddings, namely, word2vec [26], [27]. Each emitter e
has its individual dictionary �l

e at modeling level l with
l ∈ {letters, syllables, words, commands, functions}. In ad-
dition, there exists a global dictionary �l containing all
symbols. word2vec introduces a symbol called UNK, which
is a placeholder for new input without an embedding.
Details on the parameters are given in [2] and [15]. As
the identification accuracies for letters, commands, and
functions are not satisfactory for the LSTMs even without
unknown emitters [2], [16], only syllables and words are
considered, i.e., l ∈ {syllables, words}.

B. Example Emitter

Training and testing of the approaches is performed with
data from simulations of an airborne multifunction radar. It
is implemented with three different resource management
methods such that the emissions differ in their order and
agility, but the waveform parameters highly overlap. The
first resource management method employs a quality-of-
service (QoS) approach, which uses the expected utility
of the tasks to assign the radar resources, e.g., time. The
other two approaches are rule-based. One employs a set of
simple rules, while the other is more sophisticated. Since
the resource management method influences the emissions
a lot, the radar can be regarded as three emitters with the
same language but different grammars. In the following,
they are abbreviated with QoS, Rules-v1, and Rules-v2.
The QoS radar uses 25 380 syllables and 26 653 words,
the Rules-v1 radar uses 103 syllables and 21 words, and the
Rules-v2 radar emits 27 786 syllables and 34 440 words.
More details are given in [15], [28], and [29].

C. Generation of Known Unknown Emitters

This section describes the generation of data in V. For
simplicity, the unknowns are also called “emitters” although
the data might be artificially generated.

The signal of an unknown emitter either contains only
unknown symbols, known and unknown symbols, or only
known symbols. In the first case, the input sequence to
the open-set recognition method always consists of UNK
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symbols introduced by the word embedding and is, hence,
known in advance. So, this case falls in V and can be
included in the training. If a completely unknown signal is
received, the symbol extraction step cannot connect it to any
of the symbols in the global dictionary �l and needs to as-
sign new symbols to it. As these are not part of �l , no vector
representations exist, and the word embedding maps them
to UNK. Hence, a signal that does not contain any known
symbols is always represented as a sequence consisting of
UNK symbols only, which is referred to as “UNKs” in the
following. Of course, recognizing a sequence of UNKs as
unknown does not require a sophisticated method, but it is
included for completeness.

Based on the data from the classes in V, the classifier
is supposed to learn to distinguish between known and
unknown input. If the unknown input is similar to K, this
task is more complicated. In the application considered in
this article, the classifier should also be able to tell that an
emitter is unknown if it uses the same symbols as the known
classes but with different frequencies and agility. Hence,
emitters in V that make use of known symbols are needed.
The simplest way is to generate random sequences of known
symbols. This approach is referred to as “Random.” To
make the data in V even more similar to K, altered versions
of the QoS and the Rules-v1 radar are created. The data of
the Rules-v2 radar are not used here since it is defined to
belong toU later on. The altered versions are called “QoSalt”
and “Rules-v1alt”, respectively. The data are created from
the MC emitter models that are developed in [16] for
predicting an emitter’s next symbol. The symbol transition
matrices are modified, and sequences are sampled from
the new distribution P̂alt

e (ω j|ωi ) with ωi, ω j ∈ �l
e being

symbols in the dictionary of emitter e. Each row of the
transition matrix is altered by randomly choosing one of
three different operations. The first one reverses the order
of the n most probable entries, while n is chosen uniformly
at random in [2, 3, . . . , � 1

2 |�l
e|�]. For example, with n = 2,

the second most probable next symbol is assigned the prob-
ability of the most probable symbol and vice versa. With
n = 3, reversing the order of the entries equals swapping the
first and the third entry. The second operation reweights the
entries by adding random values between 0 and N , followed
by a normalization of the row. Due to the normalization,
the choice of N is irrelevant as long as N > 0. The third
operation leaves the row unchanged. The transition matrices
are modified 16 times per radar. Afterward, symbols are
sampled from the altered distributions to create data in V.

D. Training Cases

Table I gives an overview of the different training
cases defined for the classifiers considered in this article.
Cases 0 and I contain all three emitters, as introduced in
Section II-B, as K, while case 0 corresponds to the conven-
tional training and case I contains additional data in V, as
described in Section II-C. Cases II–V do not include the
Rules-v2 radar in K because it is used in U for testing later
on. Hence, the dictionary used by the open-set recognition

TABLE I
Training Cases

TABLE II
Overview of the Methods Employed for Unknown Emitter Recognition

Rv1 = Rules-v1, Rv2 = Rules-v2.

methods does not contain the symbols exclusively emitted
by the Rules-v2 radar in these cases, which are about 12%
of its syllables and 38% of its words. Several combinations
of emitters in K and V are defined in the different training
cases.

III. IMPLEMENTATION OF THE RECOGNITION
METHODS

As described in the introduction, two alternative ap-
proaches can be applied for open-set recognition, which
are employing a threshold or adding an extra unknown
class. In this article, both approaches are analyzed, as well
as a classifier that only distinguishes between known and
unknown, i.e., an anomaly detector. It is not a method
for open-set recognition, but it can be turned into one in
combination with a classification method. Table II gives an
overview of the methods. The implementation uses Python
and TensorFlow. Training and evaluation are performed on
a computer with two Intel Xeon E5-2637 v2 CPUs and two
GPUs (NVIDIA GeForce RTX 2080 Ti and GTX TITAN),
as well as 130 GB RAM. The resources allowed to run
several training and evaluation sessions in parallel.

The general architectures of the LSTM-based methods
are shown in Fig. 3, and the authors’ previous work [2]
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Fig. 3. Architectures of the different LSTM-based approaches.

Fig. 4. Architectures of the MC variants.

provides the details. Fig. 4 visualizes the different MC
variants. In contrast to the LSTM-based approaches, the
MCs use the index of the symbol in the dictionary �l

instead of the embedding vector. Therefore, the symbols
are mapped to an integer.

For the known emitters, this article uses the same data
as [2], [15], and [16]. It contains eight different scenarios,
which include situations with raids of hostile aircraft, mis-
siles, and jamming. Each scenario consists of 300 Monte
Carlo runs per emitter type, i.e., 7200 runs in total. Six of the
eight scenarios are used for training, and the validation set,
which is only used for the LSTMs, contains two scenarios.
Testing uses all eight scenarios with 480 runs per emitter
type.

The LSTMs are trained with a batch size of⌊
120

|K ∪ V|
⌋

· |K ∪ V| (3)

where each batch is split into chunks of size |K ∪ V| such
that several emitters are represented in each batch, and
on average, the same amount of data for each emitter is
used during training. A basic batch size of 120 is chosen
because it is a common factor of the number of simulation
runs in the training, validation, and test set. By training

TABLE III
Parameters of the LSTM Architectures

several networks with different parameters, the best number
of layers and number of LSTM cells per layer are found.
During training, checkpoints are created when the current
validation loss is lower than all previous values. The final
network is then the checkpoint with the lowest loss on the
validation set. Table III provides the parameters for each
LSTM-based method. For all methods, also the MC-based
approaches, the dictionary only contains the symbols of K.
This includes the symbols of V as the data are generated
from the known emitters.

A. Long Short-Term Memory With Cross-Entropy Loss

The CE describes the difference between two probabil-
ity distributions P and Q as

H(P, Q) = −Ex∼P log Q(x) (4)

where E is the expected value. In information theory, the
CE corresponds to the average number of bits required to
encode an event of Q with a code that is optimal for P. The
more similar P and Q are, the closer the required length is to
the optimal code for P. In the context of neural networks, P
describes the true probability distribution that is to be learnt
and Q the distribution estimated by the network. During
training, the distributions should become more similar, and
the code length approaches the optimum.

The LSTM-CE is considered in two variants, which
either employs a threshold δ for rejection or uses an extra
unknown class. The variant with a threshold equals the
network used for classification in [2] and corresponds to
training case 0. The variant employing an extra unknown
class is described by the training cases I–V. It is also trained
with the CE loss, while the data from V are labeled to
belong to the unknown class. Therefore, the training data
consist of pairs (ω, idx(e)), where ω ∈ �l is a symbol at
modeling level l and idx(e) is the class index c of the emit-
ter e ∈ K ∪ V. Here, idx(QoS) = 0 and idx(Rules-v1) = 1.
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In training cases 0 and I, idx(Rules-v2) = 2 and idx(e) = 3
∀e ∈ V. In the other training cases, idx(e) = 2 ∀e ∈ V.

The work [2] presents the architectures and the training
procedure with different sequence lengths for the LSTMs
in the training case 0. The sequence length is the number of
symbols from the same emitter received in a row, e.g., the
number of consecutive blue symbols in Fig. 2. For syllables,
the LSTM trained on the complete scenarios is shown to
provide the best results and is, hence, used here. For words,
the LSTM trained with random sequence lengths achieves
the highest accuracies with ideal data. However, it is not as
robust with respect to corrupted data. It is still employed for
words in this article as the conducted investigations serve as
a feasibility study for recognizing a very similar emitter as
unknown and, therefore, require high accuracies with ideal
data.

B. Long Short-Term Memory with Entropic Open-Set
Loss

The EOS loss function [13] forces the classifier to uni-
formly distribute the class probabilities for unknown input
such that it is possible to define a threshold on the confidence
for rejection:

JE (x) =
{

− log ŷc, if class(x) = kc ∈ K

− 1
|K|

∑
kc∈K log ŷc, if class(x) ∈ V.

(5)

Here, ŷc is the estimated probability value obtained by the
softmax function for class kc ∈ K. For an input x with
class(x) = kc ∈ K, the EOS loss is equal to the CE loss.
Hence, it is not trained with training case 0.

C. Long Short-Term Memory with Deep Open Classifi-
cation Loss

Usually, the logits ỹ of a neural network are normalized
by the softmax function such that the output can be inter-
preted as a probability distribution. Like this, the network
is forced to output a probability > 0 for at least one class.
However, if the input does not belong toK, the correct output
might be a probability of 0 for all the known classes. Hence,
Shu et al. [11] replace the softmax by a layer of independent
sigmoids σ (ỹc) ∀c ∈ {0, 1, . . . ,C − 1} with

σ (x) = 1

1 + exp(−x)
. (6)

The probability assigned to each known class kc is con-
sidered individually, and therefore, the probabilities of all
classes do not need to sum to 1. The corresponding loss
function JDOC for training the network is defined by

JDOC(x) =
∑
kc∈K

−1kc (class(x)) log(σ (ỹc))

− (1 − 1kc (class(x))) log(1 − σ (ỹc)) (7)

where 1a(x) is a variation of the indicator function to
determine equality instead of set membership

1a(x) =
{

1, if x = a

0, otherwise.
(8)

This loss function corresponds to the binary CE loss with
the result of 1kc (class(x)) as the label. For an input x with
class(x) ∈ V, the desired output of the network consists of
all 0. To reject an input, a threshold is needed.

Unfortunately, the LSTMs are hard to train using the
DOC loss, as seen in the evaluation below. The best valida-
tion loss for training case I with syllables was achieved di-
rectly after random initialization of the weights and diverged
afterward. No architecture could be found that solved the
problem. Also, the networks are much larger than with the
other loss types. The LSTMs with DOC loss are not trained
with case 0 since it is especially designed to handle unknown
input, and the experience during the training suggests that
it would not provide better results than the LSTM-CE.

D. Long Short-Term Memory as Unknown Gate

Adding an extra output class might decrease the accu-
racy for K. Therefore, a classifier that only distinguishes
between known and unknown is trained. It can act as a gate
that only passes the known data to the classifier that distin-
guishes between different known classes. The LSTM-based
unknown gate (UG) is trained with the CE loss, while the
training data consist of pairs (ω, idx(e)) with idx(e) = 0
if e ∈ K and idx(e) = 1 if e ∈ V. It is only trained with
cases I–V since case 0 does not contain any classes in V,
and hence, idx(e) = 0 for the complete training data.

E. Markov Chain

For every known emitter e ∈ K, the transition matrix
P̂e(ω j |ωi ) that describes the probability that symbol ω j is
the next symbol having observed ωi is estimated. Based on
this matrix, the probability that the emitter generated the
input sequence ω = ω1ω2 . . . ω|ω| is determined by Bayes’
rule, i.e.,

P̂(e|ω) = P̂(ω|e) · P̂(e)

P̂(ω)
. (9)

This principle of the MC-based approach is the same as
described in [16], and the MC trained with case 0 is equal
to the approach from [16]. In this case, a threshold δ is
applied to reject an input. For the other training cases, the
MCs are extended to contain an unknown class, like for the
LSTM-CE. The probability of the unknown class is also
obtained by Bayes’ rule

P̂(∅|ω) = P̂(ω|∅) · P̂(∅)

P̂(ω)
. (10)

Here, P̂(ω|∅) needs to be estimated based on the data in V.
A common symbol transition matrix is learnt for V because
calculating

∑
e∈V P̂(ω|e) to obtain P̂(ω|∅) would result in a

probability of 0 for most of the emitters in U since they did
not actually generate the data. With a common transition
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TABLE IV
Test Cases for the Different Classifiers

matrix, the data of U do not need to specifically match one
of the emitters inV but only the common distribution, which
is what is desired. The different training cases, hence, influ-
ence the estimated unknown distribution. The probabilities
P̂(∅) and P̂(e) for e ∈ K are set to 1

|K|+1 . Note that obtaining

P̂(∅|ω) by 1 − ∑
e∈K P̂(e|ω) without estimating P̂(ω|∅) is

not possible since P̂(ω) is computed by marginalization

P̂(ω) = P̂(ω|∅) +
∑
e∈K

P̂(ω|e). (11)

F. Markov Chain as Unknown Gate

Analogous to the LSTM employed as an UG, an MC is
learnt. The probability for the unknown class is determined
as described above, while the probability for the known class
is calculated by summing the probabilities of the known
emitters

P̂(known|ω) =
∑
e∈K

P̂(e|ω). (12)

Therefore, the MC is basically identical to the one described
in the section before, except for this summation.

IV. EXPERIMENTAL RESULTS

The classifiers are tested with several combinations
of emitters in K,V, and U. The test cases 1a–5a for the
classifiers trained with cases 0 and I are displayed in
Table IV a, and the test cases 1b–5b for the other classifiers
are given in Table IV b. The difference is in the role of the
Rules-v2 radar, which belongs to K in the test cases “a” and
to U in the test cases “b”. Test case 2a corresponds to the
evaluation performed in [2] and [16] and is included to see
whether training with an extra unknown class decreases the
performance in a scenario without unknown emitters. The
only known unknown emitter contained in the test cases
is the sequence consisting only of the UNK symbol since
this is expected to actually appear during deployment of
the system. Four additional emitters in U are used, which
are artificially generated. They emit known and unknown

syllables and words. Emitters that use more than one sym-
bol randomly switch between them. The emitters are the
following:

1) Unk-1: one known word with one known syllable;
2) Unk-2: one known word with eight known syllables;
3) Unk-3: two known words with one/three known syl-

lables and one unknown word with one unknown
syllable;

4) Unk-4: one known word with one known syllable and
two unknown words with three/five known syllables.

Note that the Unk-1 emitter makes use of the most common
word in the data of the known radars and, hence, their
syllables.

The methods that need a threshold for accepting the
current input (see Table II) are evaluated with the values
δ ∈ {0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}. The minimum is chosen
to be 0.4 as with three known emitters, a lower confidence
value comes close to random guessing. For the methods with
an extra unknown class in the output, the threshold can be
interpreted being equal to 0.0. Therefore, each approach
exists in several configurations, which consist of a training
case and an acceptance threshold. The methods are tested at
different sequence lengths, i.e., the number of consecutive
symbols from the same emitter, in the set S = {1, 10, 50,
100, 200, 400, 600, 800, 1000, 1200, 1400}. After the
specified number of symbols has been processed by the
classifier, data from a different emitter are presented at
the input. Two different evaluation metrics are employed,
which are the distinction and the identification accuracy.
The distinction accuracy accdist is defined as the mean
accuracy of distinguishing between known and unknown,
while ignoring confusions between known emitters. It is
composed of two parts, which are the acceptance accu-
racy accacpt and the rejection accuracy accrej. These use the
top k accuracy acc(Ŷ ,Y, k), which gives the percentage of
cases that the true class is among the top k outputs of the
network sorted by probability. Here, Ŷ is the output of the
network and Y are the labels. The accuracies are given by

accacpt(s) = 1

|K|
∑
ei∈K

∑
e j∈K

acc(Ŷ ei
s ,Ye j , k), k = 1 (13)

accrej(s) = 1

|V ∪ U|
∑

e∈V∪U
acc(Ŷ e

s ,Yunk, k), k = 1 (14)

where Ŷ e
s corresponds to the output of the classifier for the

data of emitter e after a sequence of s symbols and Ye is the
set of labels containing only idx(e), while Yunk is the set of
labels only containing the index of the unknown class. The
distinction accuracy is then defined as

accdist(s) = 1

2

(
accacpt(s) + accrej(s)

)
. (15)

The identification accuracy accid is given by the mean
classification accuracy for the emitters in K

accid(s) = 1

|K|
∑
e∈K

acc(Ŷ e
s ,Ye, k), k = 1. (16)
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TABLE V
Configurations (Training Case, δ) With the Best Distinction Accuracies,

Averaged Over the Test Cases “a” or “b”, Respectively

Fig. 5. Dependence of the distinction accuracy on the threshold at a
sequence length of 1400 symbols.

Both metrics are considered because in several test cases,
there are more unknown emitters than known ones, resulting
in a high overall accuracy by rejecting every input.

A. Results for the Distinction Accuracy

Table V provides an overview of each method’s con-
figurations that achieve the highest mean distinction accu-
racy. These are obtained by averaging the accuracies for
each configuration over the test cases 1a–5a and 1b–5b,
respectively, and choosing the best configuration. Sequence
lengths of 1, 600, and 1400 symbols are exemplarily shown.
For most methods using a threshold, a value of δ ≥ 0.5
is beneficial to distinguish between known and unknown
(see Fig. 5). As seen in Table V, the majority of the meth-
ods achieve the best results using the same configuration
with 600 and 1400 symbols. Only in two cases, the best
configurations differ for these lengths, both for syllables
and words. For syllables, the best configuration for a single
symbol differs from the configuration with 600 symbols in
five out of 12 cases. For words, it is different in six scenarios.
The LSTM-CE and the MC are the only methods trained
with case 0. For both, the best results in the test cases “a”
are most often obtained with training case 0 when using

Fig. 6. Mean distinction accuracies of the best configurations.

syllables. For words, however, the training case I works
best for the LSTM-CE but not for the MC.

For the test cases “b”, the highest distinction accura-
cies with syllables are most often achieved with training
case IV. This shows that to distinguish between known and
unknown, training with all known unknown data provides an
advantage. The results are not as clear for words, but four of
the six methods provide the best results with training case IV
at a sequence length of 600 words and three methods at 1400
words. The LSTM-CE achieves the highest accuracies with
training case III for words, which does not contain the UNKs
or random sequences. Still, it rejects the UNKs sequence
(see Fig. 17). The LSTM-EOS applies high thresholds of
up to 0.8. The relation between threshold and distinction
accuracy is shown in Fig. 5 for 1400 symbols. Only the
results of the best configurations that employ a threshold
are depicted for the corresponding training case. As is seen,
the accuracy variation with respect to the threshold depends
on the method.

Fig. 6 presents the mean distinction accuracies of the
best configurations, averaged over all test cases “a” and “b”.
As observed in [16], the MC outperforms all methods for
syllables, especially with only one symbol. However, the
LSTM-UG provides higher accuracies than the MC-UG
with longer sequences. For words, the MC is most accu-
rate with only one symbol, but the MC-UG comes close.
With longer sequences, the LSTM-CE is the best method
on average. The LSTM-EOS and the MC achieve about
the same results, just as the LSTM-UG and the MC-UG.
The LSTM-DOC slightly falls behind the other methods.
Overall, the distinction accuracies are higher for words
since the unknown emitters have less words than syllables in
common with the known emitters, which shows the benefit
of the hierarchical emission model.
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Fig. 7. Mean distinction accuracies of the best configurations with 20%
missing or additional symbols, respectively, at a sequence length of 1400

symbols.

To provide a more realistic scenario, the methods are
also tested with corrupted data. Note that they are trained
with ideal data only. As an example, the evaluation on
sequences of length 1400 is presented with 20% missing or
additional symbols, which is the worst-case scenario in [2]
and [16]. There is no need for a short reaction time in ELINT,
hence, longer sequences can be processed before making a
decision. The symbols are removed or inserted randomly,
choosing additional symbols from the global dictionary �l .
Hence, also symbols of other emitters might be inserted.

Fig. 7 (top) shows the results of the best configurations
for the distinction accuracy with missing or additional syl-
lables in comparison to the ideal results. The labels of the
bars are the accuracies relative to the ideal case

accrel = acccorrupt − accideal

accideal
· 100%. (17)

All LSTM-based methods are very robust with respect to
missing syllables. The LSTM-CE and the LSTM-EOS only
exhibit a small accuracy decrease with additional syllables.
As also shown in [16], the MC is not robust against corrupted
data. The MC-UG is much more robust than the MC but still
outperformed by the LSTMs. Fig. 7 (bottom) depicts the
distinction accuracies for words with corrupted data. All
LSTM-based methods are trained with random sequence
lengths as this variant works best with ideal data. However,
it is not as robust with respect to additional words as the
LSTM trained with the complete scenarios [2]. Missing
words cause no accuracy loss for the LSTM-based methods
and only a slight decrease for the MCs. With additional
words, however, the accuracy decreases significantly. In this
case, the LSTM-CE is outperformed by the LSTM-DOC
and the LSTM-UG. With missing words, it still provides
the best average performance.

TABLE VI
Configurations (Training Case, δ) With the Best Identification

Accuracies, Averaged Over the Test Cases “a” or “b”, Respectively

Fig. 8. Comparison of the mean identification accuracies in the test
cases “a” with training case 0 or I at a sequence length of 1400 symbols.

B. Results for the Identification Accuracy

Table VI depicts the configurations with the best identifi-
cation accuracies. In contrast to the distinction accuracy for
syllables, the identification accuracy is highest with training
cases that do not contain all known unknown data in the test
cases “b” for most methods. Especially for the LSTM-CE,
the conventional training (case 0) works best. A comparison
between the training cases 0 and I is shown in Fig. 8, which
are only employed in the test cases “a”. Hence, the results
in this figure are different from those presented in Fig. 10,
which takes the test cases “b” into account as well.

With only one exception, all methods that apply a
threshold use δ = 0.4 for a high identification accuracy,
which reduces the false rejection rate. Fig. 9 shows the
dependence of the identification accuracy on the threshold
with 1400 symbols. The training case that is part of the
best configuration is depicted for each method that employs
a threshold. Most of the methods reject every input using
δ = 1.0. Especially the LSTM-EOS, shows a distinctive be-
havior for syllables in the test cases “b”. Both known radars
are correctly identified with a confidence of at least 0.9, but
they are rejected with δ = 1.0.

The MC achieves much higher identification accuracies
than all other methods with syllables (see Fig. 10). The
difference is even bigger than for the distinction accuracy.
For words, only the LSTM-CE achieves about the same ac-
curacy as the MC with 1400 symbols. In the other cases, the
MC significantly outperforms all other methods, especially
with only one symbol. This confirms the results from [16].
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Fig. 9. Dependence of the identification accuracy on the threshold at a
sequence length of 1400 symbols.

Fig. 10. Mean identification accuracies of the best configurations.

Fig. 11. Mean identification accuracies of the best configurations
with 20% missing or additional symbols, respectively, at a sequence

length of 1400 symbols.

Both clearly outperform the other two LSTM-based ap-
proaches. The LSTM-DOC is again by far the least accurate
method.

Fig. 11 (left) displays the results for syllables of the best
configurations for the identification accuracy with corrupted
data. Also, in this case, missing syllables barely affect the
LSTMs, but the accuracy of the MC decreases significantly,
mainly because of a confusion between emitters in K. With
additional syllables, the MC rejects some of the known input
and accepts about 25% of the UNKs in some cases. The
LSTM-CE is the most robust method with higher average
accuracies than the MC. The other LSTMs exhibit more
decrease with additional syllables. Especially, the LSTM-
DOC is not robust and sometimes rejects the complete input.

The results for words of the best configurations for the
identification accuracy are shown in Fig. 11 (right). Again,
missing words do not cause much harm, but with additional
words the MC’s accuracy decreases by 33%. This is due

to a higher false rejection rate and since the emitters in K

are more often confused. Also, the LSTM-CE’s accuracy
decreases significantly with additional words due to con-
fusing the known emitters. The LSTM-EOS’ configuration
for the identification accuracy is much more robust than
for the distinction accuracy, and it provides the best results
with corrupted data, but its performance with ideal data is
not competitive.

C. Results for the Rejection and Acceptance Accuracy

A high rejection accuracy might be accompanied by a
low acceptance accuracy and vice versa. Figs. 12 and 13
depict these accuracies for each method and each test case
with 1400 symbols using ideal data and 20% additional
symbols. Test case 2a only contains known emitters, so to
avoid a division by 0 in (14), its rejection accuracy is set
to 100%.

Most methods provide an acceptance accuracy ≥ 90%
for syllables and ≥ 80% for words with ideal data, while
the rejection accuracy varies greatly between the test cases.
The LSTM-DOC, however, tends to reject nearly every
input for the test cases “a” with syllables and also has the
lowest acceptance accuracy in the test cases “b”. Still, it
achieves much higher rejection accuracies for syllables.
As some of the unknown emitters are very similar to K,
correctly rejecting the unknown emitters also results in a
false rejection of some of the known sequences. The best
configuration of the LSTM-EOS includes a high threshold
of 0.8 in the test cases “b” for words, which leads to a
lower acceptance accuracy. However, with ideal data, more
than 80% of the input is accepted with a value ≥ 0.8. With
additional symbols, on the other hand, the high threshold
leads to a low acceptance accuracy.

Overall, the rejection results are better with words than
with syllables. For most of the test cases and methods,
the rejection accuracies are above 25% with words and
ideal data, while the majority lies in the range 10–60% for
syllables. With 20% additional symbols, the methods reject
more sequences, leading to a higher rejection but a lower
acceptance accuracy.

D. Rejection Accuracies for the Unknown Emitters
Fig. 14 shows the rejection accuracies with syllables for

the Unk-1 to Unk-4 emitters in the test cases “a” and “b”.
The figure considers sequences of 1400 syllables and the
best configurations for the distinction accuracy. An accuracy
of 100% is not marked. As the LSTM-DOC classifies nearly
every input as unknown in the cases “a”, its rejection accu-
racy is high. For the Unk-3 and the Unk-4 emitter, the MC
also achieves high accuracies but not for Unk-1 and Unk-2.
Both only use known syllables, while Unk-3 and Unk-4
also emit unknown ones, aiding a rejection. The rejection
accuracies are much higher in the test cases “b” than in
the cases “a”. Only the accuracies of the MC significantly
decrease. The Rules-v2 emitter belongs to U here, which
helps the LSTM-based methods to distinguish known from
unknown.
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Fig. 12. Rejection and acceptance accuracies with 1400 syllables.

Fig. 13. Rejection and acceptance accuracies with 1400 words.

Fig. 14. Rejection accuracies for the Unk-1 to Unk-4 emitters
with 1400 syllables.

Fig. 15. Rejection accuracies for the Unk-1 to Unk-4 emitters
with 1400 words.
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Fig. 16. Rejection accuracies for the Rules-v2 emitter with 1400
symbols.

Fig. 15 depicts the individual rejection accuracies with
words of the Unk-1 to Unk-4 emitters per method. Also
when using words, the Unk-1 and Unk-2 emitters are not
rejected in the test cases “a”. In the cases “b”, the LSTM-
EOS reliably rejects the Unk-2 emitter, and the LSTM-CE
also achieves higher accuracies than in the test cases “a”.
All methods classify the Unk-3 and the Unk-4 emitter as
unknown with more than 40% accuracy in all cases.

Fig. 16 compares the rejection accuracies for the Rules-
v2 radar with syllables or words. As for the other radars
in U, words are much better suited for rejection than
syllables. Only the LSTM-DOC achieves accuracies of
more than 40% with syllables, while wrongly rejecting at
least 25% of K. Although the Rules-v2 radar is very similar
to the known emitters, it is rejected with about 70% accuracy
by the LSTM-CE with words, which is enough to recognize
that there is something unknown in the intercepted data.
With syllables, the best rejection accuracy is 3% for this
method. One reason is that the Rules-v2 radar has less words
than syllables in common with the emitters in K, and hence,
more words are mapped to UNK. This shows the benefits
of the hierarchical structure of the emission model.

Overall, the results of the LSTMs for the emitters in U

depend on the test case. In contrast, the performance of the
MCs is stable except for small statistical deviations. As an
MC does not have a memory, processing the data of other
emitters in the scenario does not influence the output, while
past sequences impact the LSTMs’ internal state.

The only emitter belonging to V considered in the eval-
uation is the UNKs, because this kind of data is expected to
actually appear when employing the system. All methods
reject the UNKs sequences with at least 96% accuracy in all
cases. Therefore, the results for ideal data are not shown,
but, instead, the accuracies with 20% additional symbols
are depicted in Fig. 17. Missing symbols do not cause a
difference since the sequences consist of the UNK symbol
only. All methods except for the MC-UG in the test cases “a”
are able to reliably reject the UNKs emitter with 20% known
symbols. Hence, if the symbol extraction step wrongly

Fig. 17. Rejection accuracies for the UNKs emitter with 1400 symbols.

TABLE VII
Evaluation Matrices at a Sequence Length of 1400 Syllables

The rows show the configuration that is best for the specified metric and the columns
denote the metric used. Values in [%].

maps an unknown input to a known symbol, it does not
change the result as long as there are sufficiently many UNK
symbols.

E. Impact of the Configuration

The results above represent the accuracies of the best
configuration for the specific evaluation metric. Table VII
provides “evaluation matrices” for syllables, whose rows
represent the best configuration for the specified metric,
while the columns denote the metric that it is evaluated
with. For example, the row “accdist” in combination with
the column “accid” provides the mean identification ac-
curacy of the configuration that is best for the distinction
accuracy. The values on the diagonal are the accuracies
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TABLE VIII
Configurations (Training Case, δ) With the Best Mean of Distinction and

Identification Accuracy, Averaged Over the Test Cases “a” or “b”,
Respectively

TABLE IX
Evaluation Matrices at a Sequence Length of 1400 Words

The rows show the configuration that is best for the specified metric and the columns
denote the metric used. Values in [%].

of “matching” configuration and evaluation metric. The
results are shown for sequences of 1400 syllables, averaged
over all test cases “a” and “b”. The label “mean” refers
to the mean of the identification and the distinction accu-
racy. The corresponding best configurations are given in
Table VIII. For the LSTM-DOC, the best configuration is
always the same, and hence, the results do not change with
another evaluation metric (see Table VII c). For the other
LSTM-based methods, the distinction accuracy decreases
especially with the configuration that is best for the identi-
fication accuracy. By selecting a configuration, a decision
between true and false rejection rate is made. As ELINT
is supposed to collect new information, it is better to reject
some known input than to misclassify something unknown.
However, if much of K is rejected, more manual analysis is
required.

Table IX shows the evaluation matrices for words, ex-
hibiting similar patterns. The best configuration for the
identification accuracy provides much worse results for the
distinction accuracy with the LSTM-CE and the LSTM-
EOS. The best configuration for the average of both metrics
seems to be a good compromise if no hierarchical combina-
tion of an UG and a classifier for K is desired. For the MC,

TABLE X
Comparison of the Methods With Respect to Accuracy,
Robustness, and the Performance With Short Sequence

Lengths

++ very high, + high, o satisfactory, - low, -- very low.

the decrease of the distinction accuracy is smaller. Again,
the LSTM-DOC obtains its best results for all metrics with
the same configuration in most cases.

F. General Comparison of the Methods

Table X provides a more general comparison of the
methods with respect to the accuracy, robustness, and the
performance that is achieved with short sequence lengths.
The LSTM-CE, the LSTM-EOS, and the MC work well
in comparison to the other approaches. When selecting
the most promising method for an actual application, the
task and the quality of the data need to be considered.
If the data are expected to be corrupted, the LSTM-CE
or LSTM-EOS should be chosen. The decision for one
of the two methods depends on whether the distinction
between known and unknown or the identification of known
emitters is more important. With ideal data and short se-
quences, i.e., if a fast decision is needed, the MC is the best
choice.

V. CONCLUSION

This article investigates open-set recognition to de-
tect unknown radar emitters in an electronic intelligence
(ELINT) context. The presented methods are based on a
hierarchical emission model, which interprets the radar
emissions as a language that consists of letters, syllables,
words, commands, and functions. We compare several vari-
ants of Long Short-Term Memory networks (LSTMs) and
Markov chains (MCs), which differ in the training and
output classes. The LSTMs are employed with the cross-
entropy (CE), entropic open-set (EOS), and deep open clas-
sification (DOC) loss. All methods are tested with different
combinations of known and unknown emitters, as well as
ideal and corrupted data.

The challenge in open-set recognition is that no data
for the “unknown unknown” classes exist, but the classifier
needs to be trained with “known unknown” data, which
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hopefully allow for the rejection of the unknown unknown
input. We suggest approaches for the generation of known
unknown data, which include sampling random sequences
from the emitters’ dictionaries or altering an MC-based
emitter model.

All methods reject sequences consisting only of the
special symbol UNK, even though not all of them are trained
to do so. The LSTM-CE trained without known unknown
data also rejects the UNKs with a confidence threshold
of 0.5. Although “thresholding softmax” is claimed to be
problematic [13], it works very well in this case. Hence, a
completely unknown emitter can be reliably detected. This
is even possible when the UNKs sequences contain 20%
known symbols.

Unknown emitters that are more similar to the known
ones are less reliably recognized, while higher accuracies
are achieved with words. For four of the five unknown
unknown emitters, the best rejection rates are above 65%
with words, which is enough to tell that there are active un-
known emitters. This shows the benefits of the hierarchical
emission model.

With corrupted data, the performance naturally de-
creases. Missing symbols only have a small impact, and
additional symbols can cause a very large accuracy de-
crease. Especially the MC is not robust, while most of the
LSTM-based methods exhibit less accuracy decrease. Both
for syllables and words, the LSTM outperforms the MC
with corrupted data at longer sequence lengths, although the
MC’s accuracy in the ideal case is much higher for syllables
and comparable for words.
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