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Nowadays, liquid rocket engines use closed-loop control at most
near-steady operating conditions. The control of the transient phases
is traditionally performed in open loop due to highly nonlinear system
dynamics. This situation is unsatisfactory, in particular for reusable
engines. The open-loop control system cannot provide optimal engine
performance due to external disturbances or the degeneration of
engine components over time. In this article, we study a deep reinforce-
ment learning approach for optimal control of a generic gas-generator
engine’s continuous startup phase. It is shown that the learned policy
can reach different steady-state operating points and convincingly
adapt to changing system parameters. Compared to carefully tuned
open-loop sequences and proportional-integral-derivative (PID) con-
trollers, the deep reinforcement learning controller achieves the high-
est performance. In addition, it requires only minimal computational
effort to calculate the control action, which is a big advantage over
approaches that require online optimization, such as model predictive
control.
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[. INTRODUCTION

The demands on the control system of liquid rocket
engines have significantly increased in recent years [1],
in particular for reusable engines. The aging of reusable
engines requires a robust control system as the performance
of engine components might degrade over time, e.g., due
to soot depositions [2]-[4], increased leakage mass flows
caused by seal aging [5], or turbine blade erosions [6]. The
cost-efficient operation of a reusable launch vehicle is only
possible if the engines possess a long service life with-
out expensive maintenance. Additionally, advanced mission
scenarios, e.g., in-orbit maneuvers or propulsive landings,
require deep throttling and restart capabilities.

Nowadays, most liquid rocket engines use predefined
valve sequences to drive the system from the start signal
to a desired steady-state and to shut down the engine
safely. These control sequences are usually determined
during costly ground tests. Closed-loop control is at most
used near steady operating conditions to maintain a desired
combustion chamber pressure and mixture ratio [7]. For an
extensive overview of the different studied control strate-
gies, which include proportional-integral (PI), PID, linear-
quadratic-regulator (LQR), and robust control methods, the
reader is referred to the survey by Pérez-Roca et al. [8].
The resulting lower deviations of the controlled variables
decrease the amount of extra propellant to be carried, which
in turn increases the payload capacity of the launch vehicle.
Although the importance of closed-loop control has been
evident for many years, the majority of rocket engines still
employ valves which are operated with pneumatic actua-
tors, too inefficient for a sophisticated closed-loop control
system. The development of an all-electric control system
started in the late 90s in Europe [9]. The future European
Prometheus engine will have such a system [10]. Other
countries are also well advanced in the research and de-
velopment of electrically operated flow control valves [11].
With the electrification of actuators and the grown demands,
interest in closed-loop solutions has increased recently and
will continue to rise in the future when launch vehicles
and the associated rocket engines will be designed with
multidisciplinary design optimization tools [12].

Optimal control of the engine operation, including the
transient phases, is the only way to realize high-performing
systems, which also comply with the aforementioned de-
mands on the control system of future liquid rocket en-
gines [8]. One way to solve optimal control problems is to
use reinforcement learning (RL). Although the application
of such modern methods of artificial intelligence seems
unorthodox in this setting, it offers certain advantages. First,
given a suitable simulation environment, RL algorithms
can automatically generate optimal transient sequences.
Second, the trained RL controller features a minimal com-
putational effort to calculate the control action, so it can
easily be used for closed-loop control of the demanding
transient phases. Third, RL is perfectly suited for complex
control tasks, including multiple objectives and multiple
regimes [13]. Optimal control using RL [14] has been
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studied in many different areas, from robotics [15], [16]
and medical science [17] to flight control [18], [19] and
process control [20]. Cheng et al. [21] applied RL to real-
time control for a fuel-optimal moon landing. A guidance
strategy for spacecrafts based on RL has been developed
by Hovell and Ulrich [22]. Furthermore, the benefits of an
intelligent engine control system, where artificial intelli-
gence techniques are used for control reconfiguration and
condition monitoring, have already been investigated in the
space shuttle area [23], [24].

The objective of our article is analogous to the investi-
gation of Pérez-Roca et al. [25], where a model predictive
control (MPC) approach to control the startup transient of
a liquid rocket engine was studied. After the derivation of
a suitable state-space model [26], a linear MPC controller
was synthesized. The controller completes the startup and
can track the end-state references with sufficient accuracy.
MPC and RL have specific advantages and disadvantages.
The work presented here aims to evaluate the capabilities
and limitations of RL for liquid rocket engine control.

Our main contributions are the following:

* Formulation of optimal startup control as a RL problem.

* Training and evaluation of the RL controller for multiple
operating conditions and degrading turbine efficiencies.

* Quantitative comparison with carefully tuned open-loop
sequences and PID controllers.

The remainder of this article is structured as follows.
Section II describes the basics of RL and presents pseu-
docode of the used RL algorithm. The simulation environ-
ment and its coupling with the RL algorithms are outlined
in Section III. Section IV discusses the test case. Section V
reports the results, including the comparison with the per-
formance of PID controllers. Finally, Section VI concludes
this article.

[I. REINFORCEMENT LEARNING

In this section, we review basic RL concepts [27]. RL
algorithms can be used to solve optimal control problems
stated as Markov decision processes (MDPs) [28]. MDPs
provide a mathematical framework for modeling decision
making in situations where the system changes possibly in
a stochastic manner. Standard MDPs work in discrete time:
at each time step, the controller (usually called the agent in
RL) receives information on the state of the system and takes
an action in response. The decision rule is called a policy in
RL. The action changes the state of the system, and the latest
transition is evaluated via a reward function. The optimal
control objective is to maximize the (expected) cumulative
reward from each initial state. Formally, an MDP consists
of the state-space X of the system, the action (input) space
U, the transition function (dynamics) f of the system, and
the reward function p (negative costs). Due to the origins of
the field in artificial intelligence, the usual notation would
be S for the state-space, A for the action space, P for the
dynamics, and R for the reward function. In this article,
notation inspired by control theory is used. As aresult of the
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action u; applied in state x; at discrete time step k, the state
changes to x;; and a scalar reward ryy 1 = o (Xk, U, Xpr1)
is received. The goal is to find a policy m, so that u; =
7 (xy ), that maximizes the cumulative reward, typically the
expected discounted sum over the infinite horizon

@]
]Exk+|~f'(xk,n(xk),~){ Z v oo, (), xk+1)} (1
k=0
where y € (0, 1] is the discount factor. The mapping from
a state x to the value of the cumulative reward for a policy
7 is called the (state) value function V7 (xg)

o
V7 (x0) = EXH.N,«@,{,H(X“,){ > v oo (), ka}.

k=0

2)
The control objective is to find an optimal policy 7 * that
leads to the maximal value function, for all x,

V*(x0) := max V™ (xg), Vxo. 3)

Although state-values functions suffice to define optimal-
ity, it is useful to define action-value functions, called
Q-functions. The action-value function gives the expected
reward if one starts in state x, takes an arbitrary action
u (which may not have come from the policy), and then
forever after acts according to policy

Q" (x, u) = By s {pCr,u, )+ y V7D ()

where the prime notation indicates quantities at the next
discrete time step. The optimal Q-function Q* is defined
using V*. Once an optimal Q-function Q* is available, an
optimal policy 7* can be computed by

7*(x) € argmaxQ*(x, u), (5)

while the formula to compute 7* from V* is more compli-
cated. As a consequence of the definitions, the Q-functions
Q7 and Q* fulfill the Bellman equations

0" (x, u) = By~ piun{o, u, x' )+ y O™ (x,) 1 (x)} (6)

and
Q" (xs ) = B ey (o0, 1, x) 4 y max Q°(x,"uD)} (7)

which are of central importance in RL. The crucial advan-
tage of RL algorithms is that they do not require a model
of the system dynamics. Instead, an optimal policy can be
found by learning from samples of transitions and rewards.
The problem formulation with MDPs and the associated
solution techniques also handle nonlinear, stochastic dy-
namics, and nonquadratic reward functions. Perhaps, the
most popular RL algorithmis Q-learning. In Q-learning, one
starts from an arbitrary initial Q-function Qy and updates
it using observed state transitions and rewards. The update
rule is of the following form:

Q1 Ok, ) = O (e, uye)
+ oulricer + y max Qr (X1, u') — Ok (xk, up)]

®)
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where oy € (0, 1] is the learning rate. The term inside the
square bracket is nothing else than the difference between
the updated estimate of the optimal Q-value of (x, uy) and
the current estimate QO (xy, #x). Under mild assumptions
on the learning rate and that a suitable exploratory policy
is used to obtain samples, i.e., data tuples of the form
(Xks Uk Xpta» Tk+1), Q-learning asymptotically converges to
Q*, which satisfies the Bellman optimality equation. The
reader is referred to [29] for a description of similar RL
algorithms. Q-learning and its many variants require that
Q-functions and policies are exactly represented, e.g., as a
table indexed by the discrete states and actions. Especially
for the control of physical systems, the states and actions are
continuous; moreover, exact representations are in general
impossible. Normal Q-learning does not work in this setting.
Fortunately, methods like Q-learning can be combined with
function approximation. We denote approximate versions
of the Q-function and the policy by O(x, u; ) and # (x; w),
where 6 and w are the parameters of parametric approxi-
mators. There are many different function approximators to
choose from.

The combination of RL with deep neural networks
(DNNp) as function approximators leads to the field of deep
RL. In the last years, deep RL algorithms have achieved im-
pressive results, such as reaching super-human performance
in the game of Go. Besides the sensational results in board
games or video games, those algorithms are successfully
used in areas like robotics. In deep Q-learning, one uses
a neural network to approximate the Q-function. Neural
networks can represent any smooth function arbitrarily
well given enough parameters, and therefore they can learn
complex Q-functions. Loss functions and gradient descent
optimization are used to fit the parameters of the models.
Gradient estimates are usually averaged over individual
gradients computed for a batch of experiences.

Nevertheless, the simple training procedure is unstable,
because sequential observations are correlated, and tech-
niques like experience replay have to be used. Correlated
experiences are saved into a replay buffer. When batches of
experiences are needed for training, these batches are gen-
erated by sampling from the replay buffer in a randomized
order. A further reason for the simple training procedure’s
instability is that the target values depend on the parameters
one wants to optimize. The solution is to use a so-called tar-
get network, Q(x, u; 67), with target parameters 6 ~, which
slowly track the online parameters. While deep Q-learning
solves problems with continuous state-spaces, it can only
handle discrete and low-dimensional action spaces. The rea-
son for that is the following: (deep) Q-learning requires fast
maximization of Q-functions over actions. When there are
a finite number of discrete actions, this poses no problem.
However, when the action space is continuous, this is highly
nontrivial (and would be a very computational expensive
subroutine).

The deep deterministic policy gradient (DDPG) [30]
algorithm is specially adapted for environments with contin-
uous action spaces. It uses neural networks to approximate
both the Q-function and a deterministic policy, i.e., the
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Algorithm 1: Twin Delayed DDPG (TD3).
1: Input: initial policy parameters w, Q-function
parameters 0y, 6,, empty replay buffer D
2:  Set target parameters equal to main parameters
wo < w, 0 < 0,0, <6,

3: repeat

4: Observe state x and select action
u = clip(7 (x; w) + €, XLow, XHigh), Where
e~N

5: Execute u in the environment

6: Observe next state x’, reward r, and done signal

d to indicate whether x’ is terminal
7:  Store (x, u, r, x,” d) in replay buffer D
8: If X is terminal, reset environment state
9: ifitis time to update then
0 for j in range(however many updates) do
1 Randomly sample a batch of transitions
B ={(x,u,rx,d)} fromD

12: Compute target actions

u'(x") = clip(® (x'; w™) + clip(e, —c, ¢),

XLow XHigh), € ~ N(0,0)

13: Compute targets

q(r.xd)=r+y (1 —d)min Ox."u' () 67)

14: Update Q-functions by one step of gradient
descent
Vo g > (O u;0) — q(rx. d)Y,
(x,u,r,x,’d)eB
fori=1,2
15: if j mod policydelay = O then
16: Update policy by one step of gradient
ascent
1 A
V= Y O0x, #(x; w); 6y)
1Bl =
17: Update target networks
07 <~ (1 —1)0 +16;, fori=1,2
w <~ (1—7tw +1tw
18: end if
19: end for
20: end if

21: until convergence

policy network deterministically maps a state to a specific
action. For exploration, one adds noise sampled from a
stochastic process A to the actions of the deterministic
policy and updates it by a gradient-based learning rule.
As in deep Q-learning, the DDPG algorithm uses a replay
buffer and target networks to improve stability during neural
network training. Further details of the DDPG algorithm
and its performance on different simulated physics tasks
are given by Lillicrap et al. [30].
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Although the DDPG algorithm is quite powerful, it has
a direct successor, the Twin Delayed DDPG (TD3) [31] al-
gorithm, which further improves the stability by employing
three critical tricks. The first trick addresses a particular
failure mode of the DDPG algorithm: if the Q-function
approximator develops an incorrect sharp peak for some
actions, the policy will quickly exploit that peak and then
have brittle or incorrect behavior. This failure mode can
be averted by smoothing out the Q-function over similar
actions. For this, one computes the action that is used to
form the Q-learning target in the following way:

W' (x') = clip( (x'; w™) + clip(e, —c¢, €), XLow, XHigh) (9)

where € ~ N(0, o) is noise sampled from a Gaussian pro-
cess (target policy noise). The action is based on the target
policy, but with clipped noise added (target noise clip c).
After adding the noise, the target action is also clipped to
lie in the valid action range (xpow, XHigh). The second trick
is to learn two Q-functions Q(x, u; 0;), fori = 1, 2, instead
of one and use the smaller of the two Q-values to form
the target. This improvement reduces overestimation in the
Q-function.

q(rx,/d) =r+y(1—d)min O(x."w/'(x): 6;).  (10)

The third trick is to update the policy less frequently than
the Q-functions (policy delay) to damp the volatility that
arises in the DDPG algorithm. Algorithm 1 shows the full
pseudocode of the TD3 algorithm. The done signal d is
equal to one when x’ is the terminal state and otherwise
equal to zero. The done signal guarantees that the agent
gets no additional rewards after the current state at the end
of an episode.

In addition to enhancements that improve the stabil-
ity of the training process, research is also carried out to
speed up the learning process of RL agents [32]. Besides
DDPG, TD3, or SAC [33], which are so-called off-policy
algorithms, there are also state-of-the-art on-policy algo-
rithms like TRPO [34] or PPO [35]. Nevertheless, on-policy
methods are much more sample inefficient and have longer
training time to achieve equivalent performances. From a
control perspective, RL converts the system identification
problem and the optimal control problem to machine learn-
ing problems. Similar to explicit MPC, it also addresses the
problem of removing one of the main drawbacks of MPC,
namely the need to solve a complex optimization problem
online to compute the control action.

The main advantages of RL for control are as follows.

e No derivation of a suitable state-space model, model
order reduction, or linearization needed.

» Direct use of a nonlinear simulation model.

 Ideal for highly dynamic situations (no complex online
optimization needed).

* Complex reward functions enable complicated goals.

The main disadvantage of RL for control are as fol-
lows.

 Stability of the controller is in general not guaranteed.
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Concerning the last point (stability), we would like
to make a remark. The controller’s output can always be
tested using the simulation environment, and there has
been promising recent work on certifying stability of RL
policies [36].

[ll.  SIMULATION ENVIRONMENT AND RL IMPLEMEN-
TATION

A suitable simulation environment for our intended use
is given by EcosimPro [37]. EcosimPro is a modeling and
simulation tool for OD or 1D multidisciplinary continuous
and discrete systems. The system description is based on
differential-algebraic equations and discrete events. Within
a graphical user interface, one can combine different com-
ponents, which are arranged in several libraries. Of par-
ticular interest are the European Space Propulsion System
Simulation (ESPSS) libraries, which are commissioned by
the European Space Agency (ESA). These EcosimPro li-
braries are suited for the simulation of liquid rocket en-
gines and have continuously been upgraded in recent years.
Furthermore, EcosimPro models can be converted to run
on typical hardware-in-the-loop simulators that could, for
example, be used to demonstrate the reliability of advanced
control algorithms deployed on space-graded embedded
systems [38].

We wuse the TD3 implementation of Stable-
Baselines [39]. Stable-Baselines is a set of improved
implementations of RL algorithms based on OpenAl
Baselines. It features a common interface for many modern
RL algorithms and additional wrappers for preprocessing,
monitoring, and multiprocessing. We encapsulate our
simulation environment into a custom OpenAl Gym
environment using an interface between EcosimPro and
Python. Hence, we can directly use Stable-Baselines for
training and testing. A big advantage of the RL approach
is that it works regardless of whether one uses a lumped
parameter model, continuous state-space models, surrogate
models employing artificial neural networks [40], [41], or
a combination of the above.

IV. TEST CASE

The engine architecture considered to study the suit-
ability of an RL approach for the control of the transient
startup is shown in Fig. 1. It is similar to the architecture
of the European Vulcain 1 engine [42], which powered the
cryogenic core stage of Ariane 5 launch vehicle before it
got replaced by the upgraded Vulcain 2 engine. It is fed
with cryogenic liquid oxygen (LOX) at a temperature of
92 K and liquid hydrogen (LH2) at 22 K. The engine
generates approximately 1 MN of thrust at a main com-
bustion chamber (CC) pressure of 100 bar and a chamber
mixture ratio of 5.6, i.e., the chamber mass flow of the
oxidizer divided by the chamber mass flow of the fuel
equals 5.6. The engine cycle is an open gas-generator cycle,
where a small amount of the propellants is burned in a
small combustion chamber, the gas-generator (GG). The
gas-generator is operated at a fuel-rich mixture ratio of 0.9.
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Fig. 1. Flow plan of the considered engine architecture. Some of the
propellants are burned in an additional combustion chamber, the
gas-generator (GG), and the resulting hot gas is used as the working
medium of the turbines which power the engine’s pumps. The gas is then
exhausted. The engine architecture features five valves, but only three
valves (VGH, VGO, VGC) are used for closed-loop control.

The produced hot gas is used to drive the turbines before
it is exhausted. The turbines power the pumps which force
the propellants into the combustion chambers. LH2 is used
to cool the nozzle and main combustion chamber before it
gets burned. A convergent-divergent nozzle, which usually
includes an uncooled nozzle extension (NE), accelerates the
combustion gases to generate thrust.

The actuators are given by five flow control valves
(VCO, VCH, VGO, VGH, VGC). VCO and VCH are the
main combustion chamber valves that regulate the propel-
lant flow to the combustion chamber. VGO and VGH, the
gas-generator valves, are used to control the gas-generator
pressure and mixture ratio. The turbine valve, VGC, is
located downstream of the gas-generator and is used to
determine the hot-gas flow ratio between the LOX and
LH2 turbines. Thus, this valve mainly influences the global
mixture ratio (PI, pump-inlet). Further actuators are the
ignition systems (IGN) for the main combustion chamber
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and the gas-generator, as well as a turbine starter. The
turbine starter produces hot gas for a short period to spin up
the turbines during the startup.

To start the engine and reach steady-state conditions, a
succession of discrete events, including valve openings and
chamber ignitions are necessary. The startup sequence of
an engine, i.e., the chronological order of oxidizer and fuel
valve openings, as well as the precise ignition timings, deter-
mines the engine’s thermodynamic conditions and mechani-
cal stresses during start-up. A nonideal startup sequence can
damage the engine, e.g., by excessive temperatures. These
high temperatures can substantially damage the turbine
blades or at least reduce their live expectancy [43]. An
optimal startup sequence leads to a smooth ignition of the
combustion chamber and gas-generator with low thermal
and mechanical stresses. An open-loop startup sequence
(OLS) for a steady-state chamber pressure of 100 bar is
shown in Fig. 2. The sequence does not correspond exactly
to the Vulcain 1 startup sequence, but it is realistic for
such an engine cycle. The flow control valves are opened
monotonically until the end positions are reached. First, the
VCH valve starts to open at ¢ = 0.1 s, followed by VCO at
t = 0.6 s. A fuel-lead transient is usually used for a smooth
ignition of the combustion chamber, which takes place at
t = 1.0 s. At this point, the main combustion chamber is
burning at low pressure, only fed by the tank pressurization.
At t = 1.1 s, the turbine starter activates to spin up the
turbopumps, which start to build up the pressure in the
main combustion chamber and at the gas-generator valves
VGO, VGH. Att = 1.4 s and ¢t = 1.5 s, the gas-generator
valves VGH and VGO open and the gas-generator is ignited.
The VGC valve is set to a fixed position during the entire
startup sequence. At ¢ = 2.6 s, the turbine starter is burned
out and the engine reaches steady-state conditions after
approximately 4 s. The valve positions in Fig. 2 are tuned to
reach a main combustion chamber pressure p.. of 100 bar,
a global mixture ratio MRp; of 5.2, and a gas-generator
mixture ratio MRgg of 0.9.

Although RL can solve discrete or hybrid control prob-
lems, there are controllability and observability issues dur-
ing the first phase of discrete events due to very low mass
flows [24]. Thus, we focus on the fully continuous phase
starting at t = 1.5 s. The goal of the controller (agent) is
to drive the engine as fast as possible toward the desired
reference by adjusting the flow control valve positions. In
our multi-input-multi-output (MIMO) control tasks, only
three flow control valves, VGO, VGH, and VGC, are used
for active control of the combustion chamber pressure, and
the mixture ratio of the gas-generator as well as the global
mixture ratio. The valve actuators are modeled as a first-
order transfer function with a time constant of T = 0.05 s
and a linear valve characteristic. The minimum valve posi-
tion is set to 0.25 for VGH and VGO and 0.20 for VGC,
respectively. The maximum valve position is 1.0 for all
valves.

We study different reference values for the combustion
chamber pressure, namely 80 and 100 bar. The reference
mixture ratios remain the same, 5.2 for the global mixture
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100 bar nominal open-loop start-up sequence. The main combustion chamber pressure settles at 100 bar, while the gas-generator pressure

reaches 75 bar. The reference mixture ratios are given by 5.2 and 0.9. The engine reaches steady-state conditions after approximately 4 s.

ratio, and 0.9 for the mixture ratio of the gas-generator. For
a combustion chamber pressure of 80 bar, the valve timings
are the same, but the final valve positions were adjusted
accordingly (see Fig. 9). Furthermore, we study the effect
of degrading turbine efficiencies on the startup transient.
This scenario has practical relevance for future reusable en-
gines. The use of cryogenic propellants leads to significant
thermostructural challenges in the operation of turbopumps.
Since thermal stresses depend on the temperature gradient,
they can cause significant loads on the metal parts that have
to react to these stresses. The resulting fatigue deforma-
tion [43] affects the performance of the turbines. Further-
more, the aging of seals can cause increased leakage mass
flows, which in turn decreases the turbine efficiency [5].
Additional reasons are turbine blade erosions [6] and soot
depositions on the turbine nozzles by fuel-rich gases when
using hydrocarbons as fuel. These soot depositions can
decrease the effective nozzle area up to 20% [2], thus
reducing the turbopump performance. Furthermore, soot
depositions are a main shortcoming for reusable engines due
to the unpredictable impacts for engine restart [44]. To study
the effect of degrading turbine efficiencies for our generic
test case, we simulate and evaluate the performance of the
open-loop startup sequence, a family of PID controllers, and
our RL-agent for 16 different combinations of LOX and
LH?2 turbine efficiencies. For each turbine, four different
efficiencies are considered ranging from 100 to 85% of the
nominal value.
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The reward, which is used to evaluate a startup sequence
and to train the RL agent, consists of three different terms

r:rsp+rGG+rvalve- (11)
The first term
ro ==Y clip ( A Tt ,o.z) (12)
Xi,ref
Xi h

for x; € [pcc, MRgg, MRpr] penalizes deviations from the
desired set-point for all controlled variables. Each reward
component in this term is clipped to a maximum value of
0.2 to improve training and to balance the accumulated
reward during startup and steady state. The second term
of the reward

MRGG6 —MRGG et if MRgg
. b .
rog = — MRGG,ref MRGG,'rex (13)
0, otherwise

additionally penalizes high mixture ratios in the gas-
generator. High mixture ratios are dangerous because they
resultin increased temperatures and thus possible damaging
conditions to the turbines. The last reward component

[sveu| + |sveol + Isvacl
Fvalve = — 3

(14)

where s is the change in valve position between two time
steps, and penalizes excessive valve motion. By adding this
component, we encourage the agent to move the valves as
little as possible to avoid valve wear, valve oscillations, and
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valve jittering. All together, this reward allows the agent
to trade off between reaching the desired reference point
as fast as possible, avoiding steady-state errors, minimizing
overshoots, and reducing valve motion as much as possible.
Fig. 2 shows all three components of the cumulative reward
for the nominal OLS for 100 bar. Since the valves are only
moved once in the OLS, the contribution of ry,.. to the
total reward is low. As the overshoot in the gas-generator
mixture ratio is also small (small rgg), the total reward is
mainly composed of the set point error 7.

To train and use an RL agent, one needs to define the
observation and action space of the agent. The observation
space, i.e., the variables the agent receives from the envi-
ronment at each time step, should at least contain sufficient
information to unambiguously define the state of the system.
In our setup, the observation space

X = [pecret> €ccr €P1, €GGs Posvgo, Posygh, Posvge,

15)

wLox, WLH2]

contains nine variables, where € = Xx; — Xjr is the
absolute error for each controlled variable, Posygo,
Posygu, and Posygc are the positions of all control valves,
and w ox and wy g, are the rotational speeds of the turbop-
umps. The observation space is normalized with the refer-
ence steady-state values. All variables in our observation
state are measurable in real engines. Thus, our approach is
not limited to simulation environments, where one could
possibly use variables that are impossible to measure di-
rectly in real engines (e.g., the turbine efficiencies). The
agent’s action space U consists of all three gas-generator
valve positions

(16)

U = [Posvco, Posvcu, Posyacl.

At each time step, the RL agent receives observations from
the environment and sends control signals to the flow control
valves of the engine. The frequency of interaction between
the controller (RL-agent and PID) and the environment is
set to 25 Hz.

The development of an RL-based control system is
divided into a training and a evaluation phase. During the
training phase, the agent gains experience by interacting
with the environment. The agent uses this experience to
adapt its policy and thus find an optimal control strategy.
During the evaluation phase, the policy is fixed and the
agent’s performance is evaluated for different conditions.

In our case, during training, we vary the initial state
by randomly choosing different turbine efficiencies as de-
scribed above. Sufficient exploration noise guarantees that
the agent learns a suitable control strategy. The set-points
are given by a combustion chamber pressure of 80 and
100 bar, respectively. In the evaluation phase, the per-
formance of the policy is calculated for all 16 different
combinations of LOX and LH2 turbine efficiencies and both
set-points. The state-dependent control action is determinis-
tic and the exploration noise is set to zero. More information
on setting up RL agents for continuous control problems is
given by Riedmiller [45].
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Fig. 3. Manipulated valve positions by the PID controllers for the

100 bar nominal startup. VGO is used to control the mixture ratio of the
gas-generator, while VHG and VGC control the pressure of the main
combustion chamber and the global mixture ratio, respectively.
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Fig. 4. Manipulated valve positions by the RL agent for the 100 bar
nominal startup. The action clearly changes at# = 2.6 s, which is the
time when the firing of turbine starter stops.

V. RESULTS

In this section, we assess the performance of our RL con-
troller. For this, we use the approximation of the integrated
absolute error over one entire episode for each controlled
variable

an

(IAE>,~=/|e,~|dt ~ Y et

where ¢; are the discrete time steps. Furthermore, we
evaluate the average steady-state values of the controlled
variables from t = 3.5 s to t = 5.0 s and the value of the
cumulative reward.

Before we turn to the performance of closed-loop con-
trol, let us record the downsides of OLS. The first column
in Fig. 5 shows the resulting engine startup for the nomi-
nal OLS and degrading turbine efficiencies. For the latter,
the steady-state values deviate strongly from the reference
values. The minimum steady-state value of the main com-
bustion chamber pressure is 92 bar. The steady-state of
the global mixture ratio varies between 4.9 and 6.0. To
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Fig. 5. Comparison of the controlled variables for the 100 bar startup. Shaded area marks the range of the controlled variable for different degraded

efficiencies. At different turbine efficiencies, the standard open-loop sequence provides significantly different steady-state values for the chamber
pressure and the mixture ratios.

prevent fuel or oxidizer from running out during a mission
in the event of a persisting mixing ratio deviation, the loaded
propellants must be increased, which reduces the payload
capacity of the launch vehicle. A further negative effect is
that the temperature in the combustion chamber can rise
significantly due to a shift in the mixing ratio, which could
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reduce the engine’s service life. Additionally, the steady-
state value of the mixture ratio of the gas-generator changes
too. The temperature in the gas-generator is sensitive to the
mixture ratio, and an increased temperature can also damage
the turbines. These damaging conditions are especially
problematic for reusable engines, which must possess a long

2945



TABLE I
Controller Performance for Nominal Turbine Efficiencies

Target Algo. Reward Steady-State Values IAE
jZele cum.  pcc MRge MRpt pcc MRcc MRpr
(bar) =) (bar) (=) =) (bar) (=) )
100 OLS <79 1000 090 5.18 591 4.7 27
PID -6.5 989 090 517 632 4.0 19
RL 42 999 090 518 519 2.8 13
80 OLS 7.0 797 090 520 576 6.0 15
PID 520 799 090 520 433 3.8 9
RL 44 808 090 5.18 366 2.9 8

service life. The same implications apply to the 80 bar case
as shown in Fig. 8.

Those unfavorable effects can be counteracted with a
closed-loop control system. First, we tune a family of PID
controllers to achieve the startup. The process of controlling
the chamber pressure of the main combustion chamber, the
mixture ratio of the gas-generator, and the global mixture
ratio by manipulating VGO, VGH, and VGC is coupled.
For example, changing VGO does affect not only the
mixture ratio of the gas-generator but also the other two
controlled variables. Nevertheless, for rocket engine control
near steady-state conditions, the standard approach is to
use separate PID controllers and tune the control loops at
different speeds to avoid oscillations [7]. Hence, we also
use three separate controllers.

The first controller manipulates VGO to control the
mixture ratio of the gas-generator, the second controller ma-
nipulates VGH to control the chamber pressure of the main
combustion chamber, and the third controller manipulates
VGC to control the global mixture ratio. Starting far away
from the reference point can be problematic for a simple
PID controller because the integrator begins to accumulate
a significant error during the rise. Consequently, a large
overshoot may occur. Modern PID controllers use different
methods to address this problem of integrator-windup. We
use a simple feedback loop, where the difference between
the actual and the commanded actuator position is fed back
to the integrator, to avoid the effects of saturation. If there
is no saturation, our anti-windup scheme has no effect. The
ratio between the time constant for the anti-windup and the
integration time is 0.1 for all PID controllers.

For PID parameter tuning, we directly use the simula-
tion model coupled with a genetic algorithm [46] of the
Distributed Evolutionary Algorithms in Python (DEAP)
framework [47]. To guarantee a fair comparison, we use the
reward function to calculate the fitness value of a certain
parameter combination. Table IV presents the optimal PID
parameters, which maximize the reward function. The ge-
netic algorithm uses a population of 5000 valid individuals
and evolves the population for 20 generations. Fig. 3 shows
that the best PID controllers open the valves in a nonmono-
tonic way, which leads to a faster startup. Furthermore,
the PID controllers fulfill their main task: the feedback
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Fig. 7. Manipulated valve positions by the RL agent for the 80 bar
nominal startup. The action clearly changes att = 2.6 s, which is the
time when the firing of turbine starter stops.

loops lead to an adjustment of the valve positions at lower
turbine efficiencies and significantly reduce the deviations
from the reference values of the controlled variables. Due
to the structure of PID controllers, with their proportional,
integral, and derivative terms, the shape of the control input
is restricted and does not provide optimal control.

Fig. 5 shows that the optimized PID controllers lead
to certain overshoots of the main combustion chamber
pressure and the global mixture ratio. It is possible to
eliminate the overshoots by changing the PID parameters,
but this would significantly increase the settling time. For
our parameters, there is still an error in combustion chamber
pressure after 4 s even for nominal efficiencies and this
steady-state error is only decreasing slowly. In principle,
it is possible to reduce the steady-state error of the PID
controller faster by increasing the integral component. How-
ever, this has a negative effect on the overall dynamic
behavior with respect to the reward function used for the
comparison. Therefore, the PID controllers shown here
provide the optimal result for the reward function, leading
to the fairest possible comparison with the other control
approaches.
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TABLE II
Controller Performance for 16 Different Combinations of Degraded Turbine Efficiencies

Target Algo. Reward Steady-State Values Integral Absolute Error JAE
pcc (bar) cumulative (-) pcc (bar) MRgc () MRp1 (=) pcc (bar) MRga () MRpr (-)
mean sd  min max mean sd min max mean sd min max mean sd mean std mean std mean std
100 OLS -14.9 52 920 100.0 96.1 23 087 0.96 091 003 49 60 54 03 1841 151 58 1.0 45 18
PID -7.6 0.7 955 989 977 1.0 0.89 0.90 0.89 000 50 52 52 0.1 758 98 4.1 0.1 25 4
RL -5.5 09 96.0 100.7 988 14 089 0.90 0.90 0.02 51 53 52 0.0 636 91 29 0.1 29 6
80  OLS -15.4 58 71.1 797 755 24 086 096 091 0.03 48 62 55 04 815 149 7.0 09 36 21
PID -5.7 06 795 799 79.7 0.1 090 0.90 0.90 0.00 52 55 52 0.1 459 18 39 0.1 12 6
RL -4.4 0.8 79.6 821 803 0.6 089 0.90 0.90 0.00 52 54 52 0.0 366 30 33 0.1 10 5
OFor each turbine, four different efficiencies are considered ranging from 100% to 85% of the nominal value.
TABLE III TABLE IV
TD3 Hyperparameters PID Parameters
Parameter Value Valve  Controlled Variable = Parameter  Value
number of hidden units per layer  [400, 300] VGO MRGG (—) Ky 98.5
number of hidden layer 2 T; 36.3
activation function ReLU Ty 3.56 x 10~%
timi Ad
oprmizer N am VGH pec (Pa) K,  259%x10°7
number of samples per minibatch 256 T 122
learning rate N 0.001 T; 6:82 % 10-3
soft update coefficient (7) 0.005
train frequency 10 VGC MRp1 (—) K, 0.786
gradient steps 10 T; 1.06
discount rate (vy) 0.90 Tu 2.12 x 1072
warm-up steps 5000
total training steps 100 000
size of the replay buffer 25000 . .
. . satisfactory for the case of 100 and 80 bar and fixed mixture
target policy noise 0.01 K
target noise clip 0.02 ratios. .
. Now we examine the performance of our RL approach.
policy delay 2 . .
action noise type Ornstein-Uhlenbeck The comparison of Flgs. 3 and 4 shows that .at ﬁr.st glance,
action noise std () 0.05 the RL agent’s behavior shows strong similarities to the
rate of mean reversion (0) 025 PID controllers. The flow control valves are opened in a

The settling time is not the only reason for a large error
in the combustion chamber pressure in the case of lower tur-
bine efficiencies. For the lowest turbine efficiencies, a com-
bustion chamber pressure of 100 bar is physically no longer
possible while maintaining the other constraints (especially
the desired gas-generator mixture ratio). A specific disad-
vantage of PID controllers is that degenerating efficiencies
or other system parameters cannot be considered directly
as further input variables. Fig. 6 shows that for the 80 bar
startup, VGC oscillates a little. It is challenging to tune
a single family of PID controllers for different reference
combustion chamber pressures. For even lower combustion
chamber pressures (deep throttling), it becomes more and
more difficult to achieve a convincing performance for all
operating conditions. The prevention of oscillations leads
to an increased settling time for all reference values. All in
all, the performance of the PID controllers is not perfect but
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nonmonotonic way. Nevertheless, the agent can guarantee
an even faster startup, as presented in Fig. 5. The RL con-
troller can better control the combustion chamber pressure
and the global mixing ratio. The control of the gas-generator
mixture ratio is comparatively good. Furthermore, the RL
agent can directly take the firing of the turbine starter into
account. The action changes at r = 2.6 s, which is the time
when the firing of turbine starter stops. Similar to the PID
controllers, the RL agent can handle degrading turbine
efficiencies to a certain extent. It can detect deviating ef-
ficiencies because the relationship between valve positions
and controlled variables changes, and adjusts the startup.
A prerequisite for this is that the valve positions are also
included in the observation space, and that experiences with
different efficiencies were generated during the training.

Fig. 5 shows an overshoot in the combustion chamber
pressure as well as in the global mixing ratio with both
the PID controllers and the RL agent. This characteristic
behavior also occurs when an MPC approach is used [25].
Thus, the causes might be system-related.
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Fig. 8. Comparison of the controlled variables for the 80 bar startup. Shaded area marks the range of the controlled variable for different degraded

efficiencies. At different turbine efficiencies, the standard open-loop sequence provides significantly different steady-state values for the chamber
pressure and the mixture ratios.

Table I compares the rewards, steady-state values, and
IAEs of the studied approaches for nominal turbine effi-
ciencies and both main combustion chamber pressures of
100 and 80 bar. The open-loop sequences are satisfying for
the nominal startups. Nevertheless, both JAEs and rewards
show that improvement is possible. One can start up faster
if the valves are opened nonmonotonously. Why is this not
done for realistic startup sequences? As already mentioned,
it is common practice to determine the control sequences
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employing tests on test benches, which is expensive and
time-consuming. With nonreusable engines, the demands
on the control system are not so dramatic, and one can
accept good but not optimal sequences as long as a large
amount of development costs is saved. Another reason is
that, as a rule, disturbances influence the startup anyway
and cancel out the advantages of optimized sequences. The
advantages can only be realized by closing the control loop.
The tuned PID controllers are better than the open-loop
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Fig. 9. 80 bar Nominal startup sequence. The main combustion chamber pressure settles at 80 bar, while the gas-generator pressure reaches 45 bar.
The reference mixture ratios are given by 5.2 and 0.9. The engine reaches steady-state operating conditions after approximately 4 s. The cumulative
reward for the OLS is dominated by the set-point error .

sequences concerning the value of the reward. The RL agent
is even better. The RL agent and the PID controllers also
achieve decent steady-state values.

Table II compares the rewards, steady-state values, and
IAEs of the studied approaches for degrading turbine effi-
ciencies. We present the mean and standard deviation of the
measures instead of giving all values for the 16 different
combinations of turbine efficiencies. For the steady-state
values, the minimum and maximum values are also listed
in Table II. As already seen in Fig. 5, the OLS results
in large deviations for degrading turbine efficiencies. For
100 bar, the steady-state main combustion chamber pressure
ranges between 92 and 100 bar. Furthermore, degrading
turbine efficiencies strongly influence the overall mixture
ratio MRp;. Large deviations in MRp; (here from 4.9 to
6.0) poses two major problems. First, the fuel and oxi-
dizer tank volumes are designed for the nominal mixture
ratio. Deviations in MRpy result in a nonideal utilization of
the propellants, thus lowering the launcher’s performance.
Second, the mixture ratio in the main combustion chamber
is directly affected by the overall mixture ratio, potentially
resulting in more damaging conditions for the main combus-
tion chamber. The cumulative reward for the OLS increases
to a mean value of —14.9 with a large standard deviation
of 5.2.

The controller performances of both closed-loop con-
trollers highlight the benefits of closed-loop control for
degrading turbine efficiencies. The mean and standard
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deviations of the cumulative rewards are much smaller
for the PID controllers and the RL agent. The additional
reduction for the RL agent is mainly due to an even faster
startup. The mean steady-state value of pcc is given by
96.0 bar for the agent, which is a little bit closer to 100.0 bar
than the value of PID controllers and much closer than
the value of the open-loop sequence. Furthermore, the
maximum deviation is the smallest. The advantages of
closed-loop control and especially the RL approach are
also reflected in the mixture ratios, which are much closer
to their nominal values compared to the OLS. The JAEs
also show that the RL agent performs better than the PID
controllers.

VI. CONCLUSION

In this article, we presented an RL approach for the op-
timal control of the fully continuous phase of the startup of
a gas-generator cycle liquid rocket engine. Using a suitable
engine simulator, we employed the TD3 algorithm to learn
an optimal policy. The policy achieves the best performance
compared with carefully tuned open-loop sequences and
PID controllers for different reference states and varying
turbine efficiencies. Furthermore, the prediction of the con-
trol action takes only 0.7 ms, which allows a high interaction
frequency, and, in comparison to MPC, enables the real-time
use of RL algorithms for closed-loop control. The modest
computational requirements should be met by the current
generation of engine control units. A potential drawback of
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the RL approach is the lack of stability guarantees. Never-
theless, the control system can be tested using a high-fidelity
simulation model, and there is ongoing work on certifying
stability of RL policies [36].

The present article can be improved in many directions.
It is necessary to carefully examine the performance of
the controller when various disturbances occur. Disturbance
rejection and state estimation techniques will be the focus
of future work. Furthermore, even the most sophisticated
models usually have prediction errors due to not included
effects or model miss-specifications. Therefore, it is essen-
tial to ensure that controllers trained in a simulation envi-
ronment are robust enough to be used in real applications.
There are RL approaches that explicitly consider modeling
errors. Domain randomization [48] can produce agents that
generalize well to a wide range of environments. Another
issue with RL is implementing hard state constraints. Using
the example of liquid rocket engine control, one would like
to impose hard constraints to limit the maximum rotational
speed of the turbopumps and maximum temperatures to
prevent damage to the engine. It is possible to approxi-
mate hard state constraints by carefully tuning the reward
function, e.g., one can give the agent a sizeable negative
reward upon constraint violation and possibly terminate
the training episode. Besides, there has been recent work
on implementing hard constraints in RL using constrained
policy optimization [49].

We would like to conclude this publication with an
outlook on the potential advantages of this approach for
rocket engine control. Controllers trained with RL can de-
pend on many input variables, can be used for very different
operating conditions, and can include multiple objectives.
The thrust control of rocket engines is crucial for improving
the performance of the launch vehicle, but it is particularly
critical when using rocket engines for the soft landing of re-
turning rocket stages. Deep throttling domains of an engine,
i.e., 25%—-100% range of nominal thrust, are not supposed
to pose a problem for RL controllers. Regarding multiple
objectives, one can modify the reward function to optimize
both the system’s performance and damage mitigation [50].
The coupling of sophisticated health-monitoring systems,
possibly based on machine learning techniques, with suit-
able policies trained by RL, can increase the reliability of
launch systems further. Given a suitable simulation envi-
ronment, end-to-end RL may even enable the training of
integrated flight and engine control systems. Overall, it is
hoped that the current work will serve as a basis for future
studies regarding the application of RL in the field of rocket
engine control.
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APPENDIX A
IMPLEMENTATION AND TRAINING DETAILS

The agent is trained for 100 000 time steps, which
is equal to approximately 1.5 h of simulation time. The
agents’ hyperparameters are tuned with Optuna [51] and
are presented in Table III. For exploration, we use action
noise sampled from an Ornstein-Uhlenbeck process [52].
Table IV shows the parameters of all three PID controllers
and the corresponding controlled variable and control valve.

APPENDIX B
PLOTS FOR 80 BAR CASE

Fig. 9 shows the nominal OLS for a main combustion
chamber pressure of 80 bar. The manipulated valve posi-
tions by the PID and RL agent for 80 bar are shown in Figs. 6
and 7. Finally, Fig. 8 compares controller performances
for different degraded turbine efficiencies. The figure also
reveals that the performance of the RL agent might not
be optimal as can be seen by the slightly oscillating PI
mixture ratio. These oscillations probably have no physical
background, but are probably an artifact of a suboptimal
training process. The instability of the training process, its
sensitivity to hyperparameters, and general reproducibility
issues are still open problems that are heavily discussed in
the RL community [53].

REFERENCES

[1]  S. Colas, S. L. Gonidec, P. Saunois, M. Ganet, A. Remy, and V.
Leboeuf
A point of view about the control of a reusable engine cluster
In Proc. 8th Eur. Conf. Aeronaut. Space Sci., Madrid, Spain,
2019.

[2] L. Meland and F. Thompson
History of the titan liquid rocket engines
In Proc. 25th Joint Propulsion Conf.Sacramento, CA, USA:
American Institute of Aeronautics and Astronautics, 1989,
Art. no. 2389.

[3] M. Lausten, D. Rousar, and S. Buccella
Carbon deposition with LOX/RP-1 propellants
In Proc. 21st Joint Propulsion Conf. Monterey, CA, USA:
American Institute of Aeronautics and Astronautics, Jul. 1985,
Art. no. 1164.

[4] J. A.B. Bossard, W. M. Burkhardt, K. Y. Niiya, and F. Bram
Effect of propellant flowrate and purity on carbon deposition
in LO2/methane gas generators
The 1989 JANNAF Propulsion Meeting, vol. 1, 1989.

[5] R.J.Roelke
Miscellaneous losses
Turbine Design Appl., vol. 2, Jan. 1973.

[6] M. Hampson
Reusable rocket engine turbopump condition monitoring
In Proc. Space Syst. Technol., Tech. Rep. 841619, 1984.

[7]  C.F Lorenzo and J. L. Musgrave
Overview of rocket engine control
In Proc. AIP Conf., Albuquerque, NM, USA, 1992, pp. 446—
455.

[8] S.Pérez-Roca et al.

A survey of automatic control methods for liquid-propellant
rocket engines
Prog. Aerosp. Sci., vol. 107, pp. 63-84, May 2019.

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 57, NO.5 OCTOBER 2021



[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

WAXENEGGER-WILFING ET AL.: REINFORCEMENT LEARNING APPROACH FOR TRANSIENT CONTROL

J.-N. Chopinet et al.

Progress of the development of an all-electric control system
of a rocket engine

In Proc. 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conf.
Exhibit, Atlanta, GA, USA, Jul. 2012, Art. no. 3873.

A. Iannetti
Prometheus, a LOX/LCH4 reusable rocket engine
In Proc. 7th Eur. Conf. Aeronaut. Space Sci., Milano, Italy,
Jul. 2017, pp. 3-6.

H. Asakawa, M. Tanaka, T. Takaki, and K. Higashi
Component tests of a LOX/methane full-expander cycle rocket
engine: Electrically actuated valve
In Proc. 8th Eur. Conf. Aeronaut. Space Sci., Madrid, Spain,
2019.

K. Dresia et al.

Multidisciplinary design optimization of reusable launch vehi-
cles for different propellants and objectives

AIAA J. Spacecraft Rockets, Feb. 2021, p.
10.2514/1.A34944.

V. G. Lopez and F. L. Lewis
Dynamic multiobjective control for continuous-time systems
using reinforcement learning
IEEE Trans. Autom. Control, vol. 64, no. 7, pp. 2869-2874,
Jul. 2019.

B. Kiumarsi, K. G. Vamvoudakis, H. Modares, and F. L. Lewis
Optimal and autonomous control using reinforcement learning:
A survey
IEEE Trans. Neural Netw. Learn. Syst., vol.
pp. 2042-2062, Jun. 2018.

S. Gu, E. Holly, T. Lillicrap, and S. Levine
Deep reinforcement learning for robotic manipulation with
asynchronous off-policy updates
Int. Conf. Robot. Autom. (ICRA), 2017, pp. 3389-3396, doi:
10.1109/ICRA.2017.7989385.

Z. Yang, K. Merrick, L. Jin, and H. A. Abbass
Hierarchical deep reinforcement learning for continuous action
control
IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 11,
pp. 5174-5184, Nov. 2018.

M. Mahmud, M. S. Kaiser, A. Hussain, and S. Vassanelli
Applications of deep learning and reinforcement learning to
biological data
IEEE Trans. Neural Netw. Learn. Syst., vol.
pp. 2063-2079, Jun. 2018.

S. Heyer, D. Kroezen, and E.-J. Van Kampen
Online adaptive incremental reinforcement learning flight con-
trol for a CS-25 class aircraft
In Amer. Inst. Aeronaut. Astronaut. Scitech Forum, Orlando,
FL, USA, Jan. 2020, Art. no. 1844.

B. Gaudet, R. Linares, and R. Furfaro
Deep reinforcement learning for six degree-of-freedom plane-
tary landing
Adv. Space Res., vol. 65, no. 7, pp. 1723-1741, Apr. 2020.

S. Spielberg, R. Gopaluni, and P. Loewen
Deep reinforcement learning approaches for process control
In Proc. 6th Int. Symp. Adv. Control Ind. Process. Taipei,
Taiwan: IEEE, May 2017, pp. 201-206.

L. Cheng, Z. Wang, and F. Jiang
Real-time control for fuel-optimal moon landing based on an
interactive deep reinforcement learning algorithm
Astrodynamics, vol. 3, no. 4, pp. 375-386, Dec. 2019.

K. Hovell and S. Ulrich
On deep reinforcement learning for spacecraft guidance
In AIAA Scitech Forum. Orlando, FL, USA: Ameri-
can Institute of Aeronautics and Astronautics, Jan. 2020,
Art. no. 1600.

J. L. Musgrave and D. E. Paxson
A demonstration of an intelligent control system for a reusable
rocket engine
NASA Tech. Memorandum, Jun. 1992, Art. no. 105794.

13, doi:

29, no. 6,

29, no. 6,

[24]

[25]

[26]

(27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

(36]

[37]

[38]

[39]

[40]

E. Nemeth
Reusable rocket engine intelligent control system framework
design
phase 2, NASA Contractor Report 187213, Sep. 1991.

S. Pérez-Roca et al.

An MPC approach to transient control of liquid-propellant
rocket engines
IFAC-PapersOnlLine, vol. 52, no. 12, pp. 268-273, 2019.

S. Perez-Roca et al.

Derivation and analysis of a state-space model for transient
control of liquid-propellant rocket engines
In Proc. 9th Int. Conf. Mech. Aerosp. Eng.,Jul.2018, pp. 58-67.

R. S. Sutton and A. G. Barto
Reinforcement Learning: An Introduction, Ser. Adaptive Com-
putation and Machine Learning Series. Cambridge, MA, USA:
The MIT Press, 2018.

D. P. Bertsekas
Reinforcement learning and optimal control. Belmont, MA,
USA: Athena Scientific, 2019.

L. Busoniu, T. de Bruin, D. Toli¢, J. Kober, and I. Palunko
Reinforcement learning for control: Performance, stability, and
deep approximators
Annu. Rev. Control, vol. 46, pp. 8-28, 2018.

T. P. Lillicrap et al.

Continuous control with deep reinforcement learning
Jul. 2019, arXiv:1509.02971.

S. Fujimoto, H. van Hoof, and D. Meger
Addressing function approximation error in actor-critic meth-
ods
Oct. 2018, arXiv:1802.09477.

X. Wang, Y. Gu, Y. Cheng, A. Liu, and C. L. P. Chen
Approximate policy-based accelerated deep reinforcement
learning
IEEE Trans. Neural Netw. Learn. Syst., vol.
pp. 1820-1830, Jun. 2020.

T. Haarnoja, H. Tang, P. Abbeel, and S. Levine
Reinforcement learning with deep energy-based policies
in Proc. 34th Inter. Conf. Mach. Learn., vol. 70, 2017, pp.
1352-1361.

J. Schulman, S. Levine, P. Moritz, M. 1. Jordan, and P. Abbeel
Trust region policy optimization
in Proc. 34th Int. Conf. Mach. Learn., vol. 70, 2017, pp. 1352—
1361.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov
Proximal policy optimization algorithms
Aug. 2017, arXiv:1707.06347.

M. Jin and J. Lavaei
Stability-certified reinforcement learning: A control-theoretic
perspective
in [EEE Access, vol. 8, pp. 229086-229100, 2020, doi:
10.1109/ACCESS.2020.3045114.

J. Vila, J. Moral, V. Fernandez-Villacé, and J. Steelant
An overview of the ESPSS libraries: Latest developments and
future
In Proc. Space Propulsion Conf., Seville, Spain, 2018.

G. Waxenegger-Wilfing, K. Dresia, M. Oschwald, and K. Schilling
Hardware-in-the-loop tests of complex control software for
rocket propulsion systems
In Proc. Int. Astronautical Congr. IAC, Virtual Event, 2020.

A. Hill ef al.

Stable baselines
2018. [Online]. Available: https://github.com/hill-a/stable-
baselines

G. Waxenegger-Wilfing, K. Dresia, J. C. Deeken, and M. Os-
chwald
Heat transfer prediction for methane in regenerative cooling
channels with neural networks
J. Thermophysics Heat Transfer, vol. 34, no. 2, pp. 347-357,
Apr. 2020.

31, no. 6,

2951


https://dx.doi.org/10.2514/1.A34944
https://dx.doi.org/10.1109/ICRA.2017.7989385
https://dx.doi.org/10.1109/ACCESS.2020.3045114
https://github.com/hill-a/stable-baselines

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

2952

K. Dresia, G. Waxenegger-Wilfing, J. Riccius, J. Deeken, and M.
Oschwald
Numerically efficient fatigue life prediction of rocket combus-
tion chambers using artificial neural networks
In Proc. 8th Eur. Conf. Aeronaut. Space Sci., Madreid, Spain,
2019.

A. Iffly and M. Brixhe
Performance model of the vulcain ariane 5 main engine
In Proc. 35th Joint Propulsion Conf. Exhibit. Los Angeles,
CA, USA: American Institute of Aeronautics and Astronautics,
Jun. 1999.

R. Ryan and L. Gross
Effects of geometry and materials on low cycle fatigue life of
turbine blades in LOX/hydrogen rocket engines
In Proc. 22nd Joint Propulsion Conf. Salt Lake City, UT, USA:
American Institute of Aeronautics and Astronautics, 1986,
Art. no. 1443.

P. Pempie, T. Froehlich, and H. Vernin
LOX/methane and LOX/kerosene high thrust engine trade-off
In Proc. 37th Joint Propulsion Conf. Exhibit. Salt Lake City,
UT, USA: American Institute of Aeronautics and Astronautics,
Jul. 2001, Art. no. 3542.

M. Riedmiller
10 Steps and Some Tricks to Set up Neural Reinforcement
Controllers
In Neural Networks: Tricks of the Trade, G. Montavon, G. B.
Orr, and K.-R. Miiller, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2012, vol. 7700, pp. 735-757.

P. Cominos and N. Munro
PID controllers: Recent tuning methods and design to specifi-
cation
IEE Proc. - Control Theory Appl., vol. 149, no. 1, pp. 46-53,
Jan. 2002.

F.-A. Fortin, F.-M. De Rainville, M.-A. Gardner, M. Parizeau, and
C. Gagné
DEAP: Evolutionary algorithms made easy
J. Mach. Learn. Res., vol. 13, pp. 2171-2175, Jul. 2012.

J. Tobin, R. Fong, A.Ray, J. Schneider, W. Zaremba, and P. Abbeel
Domain randomization for transferring deep neural networks
from simulation to the real world
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst., Sep. 2017,
pp- 23-30.

J. Achiam, D. Held, A. Tamar, and P. Abbeel
Constrained policy optimization
in Proc. 34th Int. Conf. Mach. Learn., vol. 70, pp. 22-31, 2017.

A. Ray, X. Dai, M.-K. Wu, M. Carpino, and C. F. Lorenzo
Damage-mitigating control of a reusable rocket engine
J. Propulsion Power, vol. 10, no. 2, pp. 225-234, Mar. 1994.

T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama
Optuna: A next-generation hyperparameter optimization
framework
In Proc. 25th ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining, 2019, pp. 2623-2631.

G. E. Uhlenbeck and L. S. Ornstein
On the theory of the brownian motion
Phys. Rev., vol. 36, no. 5, pp. 823-841, Sep. 1930.

R. Islam, P. Henderson, M. Gomrokchi, and D. Precup
Reproducibility of benchmarked deep reinforcement learning
tasks for continuous control
2017, arXiv:1707.06347 arXiv:1708.04133.

Giinther Waxenegger-Wilfing received the
Ph.D. degree in theoretical physics from the
University of Vienna, Vienna, Austria, in 2015.

He is a Senior Research Scientist for intelli-
gent engine control with the German Aerospace
Center (DLR) Institute of Space Propulsion,
Hardthausen, Germany, and a Lecturer with the
University of Wiirzburg, Wiirzburg, Germany.
As part of the DLR project AMADEUS, he man-
ages the investigation of the use of artificial in-
telligence in space transportation. He previously
was the lead Quantitative Analyst with Nova Portfolio Vermogens Man-
agement, Innsbruck, Austria. His research interests include deep learning
for control and condition monitoring, optimal control, model-free as well
as model-based reinforcement learning, and applications in autonomous
launch vehicles and landers.

Kai Dresia received the master’s degree in
aerospace engineering from RWTH Aachen
University, Aachen, Germany. He is currently
working toward the Ph.D. degree at the Ger-
man Aerospace Center (DLR), Institute of Space
Propulsion, Hardthausen, Germany, in 2018.
His research interests include combining ma-
chine learning with physics-based modeling for
rocket engine control and condition monitoring.

Jan Deeken received the Ph.D. degree in
aerospace engineering from the University of
Stuttgart, Stuttgart, Germany, in 2014.

He is currently Head of the Rocket Engine
System Analysis Group, Department of Rocket
Propulsion, DLR Institute of Space Propulsion,
Lampoldshausen, Germany. He is also managing
the DLR LUMEN Project, which aims at de-
veloping and operating a LOX/LNG expander-
bleed engine testbed in the 25 kN thrust class.

Michael Oschwald received the Ph.D. degree
in physics from the University of Freiburg,
Freiburg, Germany, in 1987. He is a Profes-
sor of Space Propulsion with RWTH Aachen
University, Aachen, Germany, and Head of the
Department of Rocket Propulsion, Institute of
Space Propulsion at the German Aerospace Cen-
ter (DLR), Lampoldshausen, Germany. His re-
search interests include all aspects of rocket
engine design and operation with a specific fo-
cus on cryogenic propulsion. He has developed
numerical tools to predict the behavior of rocket engines and their compo-
nents.

IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 57, NO.5 OCTOBER 2021




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


