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Phased array radar systems are indispensable in many applica-
tions requiring robust sensing of the environment. To achieve sensitive
target detection and accurate direction-of-arrival (DOA) estimation,
a large number of receiving antenna elements are needed. The high
dimension of the element-level data inevitably leads to a large compu-
tational burden for digital signal processing. This problem can be over-
come by transforming the element-level data into a lower dimensional
beamspace. In this article, we present a novel parameter-controlled
design method to construct this transformation. If the dimension
reduction is not too drastic, it jointly achieves optimal detection
and DOA estimation performance. Otherwise, it meets predefined
performance criteria by exploiting an acceptable tradeoff between
detection and DOA estimation performance. We propose a general
design tool, which is not limited to a specific array configuration. It
comprises a precalculated set of plots, providing the radar designer
an overview of possible performance for a given scenario. We describe
a straightforward method to construct the corresponding transfor-
mation. Numerical studies highlight the superiority of the proposed
design method.
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I. INTRODUCTION

Phased array radar systems are nowadays ubiquitous
in a large number of applications requiring reliable and
continuous sensing of the environment. Recent new applica-
tions include fields such as human vital sign detection and
tracking [1], [2], autonomous driving [3], [4], and space
surveillance [5], [6]. The detection and localization of tar-
gets of interest are the key functionalities of the radar system
in each of these applications. In estimating the target posi-
tion, direction-of-arrival (DOA) estimation plays a crucial
role. Emerging systems, such as the German Experimental
Space Surveillance and Tracking Radar (GESTRA), whose
purpose is to detect and track space debris [6], [7], consist
of a large number of antenna elements to provide sensitive
target detection and accurate DOA estimation.

However, when the number of elements is very large,
data storage and real-time processing using element-level
data become very demanding due to the high data dimen-
sion. The problem is especially severe for modern multiple-
input multiple-output radar systems, which can consist of
thousands of elements [8], [9]. This difficulty can be circum-
vented by transforming the full dimension element space
(ESP) data into a reduced dimension beamspace (RDBS)
via a linear transformation. Designing this transformation
is of great practical importance because it directly affects
the detection sensitivity and DOA estimation accuracy of
the system.

Several beamspace transformation design methods have
been considered in the literature. The most straightforward
way is to cover a spatial sector of interest with steered sum
beams of the receive array [10]. This can be interpreted
as using a submatrix of the discrete Fourier transform as
the beamspace transformation. Maximizing the average
signal-to-noise ratio (SNR) inside a spatial sector of interest
leads to a solution, where the transformation matrix is
constructed using the eigenvectors of the signal correlation
matrix [11], [12]. While this so-called discrete spheroidal
sequence (DSS) method provides optimal detection per-
formance, it does not guarantee optimal DOA estimation
accuracy. On the other hand, the design method presented
in [13] aims to provide exactly that the transformation is
designed by requiring that it preserves the ESP Cramér–Rao
bound (CRB) for 1-D DOA estimation at the true target
locations.

The transformation design problem has also been con-
sidered in the context of nonlinear high-resolution estima-
tion methods such as MUSIC [14] and ESPRIT [15]. The
authors of [16]–[18] consider the beamspace implementa-
tion of these algorithms. More recently, beamspace MU-
SIC implementations have been used in through-the-wall
radar imaging [19] and automotive radar applications [20].
The design criterion for the transformation remains quite
subjective in these references, since it is hard to formulate
optimality for biased estimators [21].

In many applications, achieving optimal estimation ac-
curacy is not the only important criterion; interference
suppression also plays a key role. The authors of [22]–[25]
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consider designing the transformation so that a compromise
between in-sector estimation accuracy and out-of-sector
interference suppression can be achieved. As a drawback,
many of these methods rely on suboptimal numerical opti-
mization solutions to calculate the transformation matrix.

This article proposes two significant contributions re-
lated to the beamspace transformation design. The first is an
extension to [13], which focuses on an optimal beamspace
transformation. We propose a novel parameter-controlled
RDBS to obtain a compromise between detection and
DOA estimation performance when the RDBS dimension
is insufficient to achieve optimality. Our method differs
from [13] in two additional ways. We extend the optimal
CRB approach to 2-D DOA and amplitude estimation. The
inclusion of amplitude estimation is directly translated to
detection performance. We also use a spatial target proba-
bility distribution to focus the performance on specific areas
when a priori information about the targets is available.

The second contribution deals with the analysis of the
RDBS performance. Usually, this evaluation is made by
simulating each combination of RDBS dimension and spa-
tial area size. A simple and clear view of potential perfor-
mance is, therefore, not easy to atain. We introduce a new
method to easily evaluate the possible performance for a
given array, as a function of the resource ratio—the ratio be-
tween the RDBS dimension and spatial area coverage. Sim-
ilar methods, to the knowledge of the authors, do not exist.

These contributions provide the radar system designer
with valuable tools for the RDBS transformation matrix
construction. They allow us to achieve optimal performance
or an acceptable performance tradeoff for a specific use
case. In practice, the available hardware and computational
resources (e.g., number of Rx channels, time consumption,
and data storage) dictate the RDBS dimension.

We have presented the outline of the proposed design
method and preliminary results in a previous conference
publication [26]. We do not consider interference suppres-
sion or multiple target scenarios in this article. Neverthe-
less, our method can be used together with interference
suppression (such as [22]) and nonlinear high-resolution
estimation methods. However, we note that in these cases,
optimal performance is not necessarily preserved.

We start by introducing the theoretical background of
the beamspace target detection and DOA estimation prob-
lems in Section II. We also formulate the required properties
of the optimal beamspace transformation as the basis of our
method. Section III presents our novel parameter-controlled
method for dimension reduction. We then describe our new
generalized transformation design tool in Section IV-B.
Section V presents numerical simulation examples and
discusses practical design issues highlighting the benefits
of our design method. Finally, Section VI concludes this
article.

II. THEORETICAL BACKGROUND

In this section, we define the underlying signal model
of the RDBS and the related detection and estimation

performances. Additionally, we discuss the beamspace tar-
get detection and DOA estimation problems. In the follow-
ing text, we use lower- and uppercase boldface letters to
denote vectors and matrices, respectively.

A. Signal Model

Let us consider a planar spatially symmetric 2-D phased
array radar systems with N antenna elements. We limit our
analysis to a time snapshot (i.e., single pulse) case with a
single point target without interference. The jth antenna
element response can be modeled as

y j = a(α, φ)eikrT
j u + n j (1)

∀ j = 1, . . . , N . The two-way antenna element gain and
the target reflectivity affect the deterministic com-
plex amplitude a(α, φ) = αeiφ with positive α ∈ R

and φ ∈ [0, 2π ). The directional cosine (DOA) vec-
tor u = [u v]T ∈ {u′ ∈ R

2| ‖u′‖ ≤ 1} (called u-space from
here on), k is the wavenumber, and r j = [x j y j]T is the
position vector of the jth element. The noise sample n j

originates from a complex zero mean white Gaussian pro-
cess with variance σ 2. Rewriting the array response (1) in
vector form yields the N × 1 vector

y = m(ϑ) + n (2)

where m(ϑ) = a(α, φ)d(u) with the target parameter vector
ϑ = [α φ u v]T . Since the noise is assumed to be indepen-
dent and identically distributed across the elements, n ∈ C

N

with covariance Q = E{nnH } = σ 2IN , where E{·} stands
for the statistical expectation and (·)H for the Hermitian
conjugate. The array steering vector d ∈ C

N representing
the phase delays between the elements is

d(u) =
[
eikrT

1 u eikrT
2 u . . . eikrT

N u
]T

. (3)

In the remainder of this article, we will focus on optimal
ways to lower the dimensionality of the data received by the
array. This is achieved by transforming the element-level
data into an RDBS using a linear transformation matrix B.
Mathematically, this is expressed by

z = BH y = BH m(ϑ) + BH n = m̃(ϑ) + ñ (4)

where B = [b1 . . . bM ] ∈ C
N×M and M ≤ N . The covari-

ance of the transformed RDBS noise is R = E{ññH } =
E{BH n(BH n)H } = σ 2BH B. From here on, we use the term
beamformer when referring to the beamspace transforma-
tion matrix B.

In the considered radar application, we aim to detect
a target and estimate its parameters. The objective is to
detect the presence of a target with as low SNR as possible
(i.e., high detection sensitivity) and estimate the parame-
ters ϑ (containing both amplitude and DOA) as accurately
as possible (in terms of estimation variance). As we will
show in the next section, the amplitude estimation accuracy
essentially quantifies the detection performance. We now
turn to study the effect of the beamformer on these aspects.
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B. Target Detection and Parameter Estimation

In this article, we use the maximum likelihood (ML)
estimator. It is asymptotically (as N → ∞) unbiased with
minimum variance [27]. These profound properties allow
us to design a data dimension reduction method preserving
performance optimality.

Other nonlinear estimation methods, such as the Capon
method [28], [29] or MUSIC [14], can also be used for
DOA estimation. These methods can provide increased
performance when multiple targets are present due to their
improved resolution and missing sidelobes. However, these
advantages come at a cost. They require a good estimate for
the signal covariance matrix and perform poorly for corre-
lated targets. Additionally, the fact that these estimators are
biased further complicates the issue.

The ML estimator is obtained by maximizing the like-
lihood function

LB(ϑ; z) = exp
[−(z − m̃(ϑ))H R−1(z − m̃(ϑ))

]
πM |R| (5)

where | · | denotes the determinant of a matrix. This is
equivalent with the known matched filter (MF) solution
(see [30] and [31]) using the weight vector

w̃(u) = R−1d̃(u)√
d̃

H
(u)R−1d̃(u)

(6)

where d̃(ϑ) = BH d(ϑ). Thus, the ML estimate for u is
obtained as

uML = arg max
u′

|w̃H (u′)z|2. (7)

The solution of (7) can be obtained, e.g., by a numerical
2D grid search over the u-space. The weight vector depends
only on u because the amplitude term a is obtained in closed
form as a least squares solution (see [31]).

To declare a detection, the well-known Neyman–
Pearson likelihood ratio test [27] is usually performed. It
maximizes the probability of detection PD for a given false
alarm probability PFA and a corresponding detection thresh-
old T . The presence of a target is declared if |w̃H (u)z|2 > T .

C. Estimation Accuracy Analysis

A theoretical lower bound for the variance of any unbi-
ased estimator is dictated by the CRB. We, therefore, ana-
lyze the estimation accuracy of the proposed beamformer
by observing and comparing the corresponding CRB values.
The CRB is the inverse of the Fisher information matrix J,
which is defined as the negative expectation of the Hessian
of the log-likelihood function ln(LB). For the RDBS data,
we have

JB(ϑ) = −E

{
∂2

∂ϑ∂ϑT ln(LB(ϑ; z))

}
. (8)

Using the signal model (4) and noting that the beamformer
B is independent of ϑ, the RDBS Fisher information is

(see [10] and [32])

JB(ϑ) = 2R
{
m̃H

ϑ (ϑ)R−1m̃ϑ(ϑ)
}

= 2

σ 2
R

{
mH

ϑ (ϑ)PBmϑ(ϑ)
}

(9)

where R{·} denotes the real part operator,

mϑ(ϑ) =
[
mα (ϑ) mφ (ϑ) mu(ϑ) mv (ϑ)

]

�
[

∂m(ϑ)
∂α

∂m(ϑ)
∂φ

∂m(ϑ)
∂u

∂m(ϑ)
∂v

]

= eiφ
[
d(u) iαd (u) iαkx � d(u) iαky � d(u)

]
(10)

is the Jacobian of the target signal model m(ϑ), and
PB = B(BH B)−1BH . In (10), x and y denote vectors contain-
ing the x and y positions of the array elements (Cartesian
coordinates in the plane of the array) and � denotes the
Hadamard product. Similarly to (9), the ESP Fisher matrix
can easily be calculated using Q instead of R, which yields

JE (ϑ) = 2

σ 2
R

{
mH

ϑ (ϑ)mϑ(ϑ)
}
. (11)

The matrix PB has the form of a projection opera-
tor. When applied to an arbitrary N-dimensional vector, it
projects the vector onto the range B of B (i.e., the sub-
space spanned by the columns of B). Thus, we can make
an important observation from (9). If the column vectors
mγ = ∂m/∂γ (γ ∈ {α, φ, u, v}) are not contained in B, the
diagonal elements of JB are smaller than the corresponding
elements in JE . This means that the dimension reduction
leads to a loss of information, which, in turn, leads to
increased values for the CRB matrix elements. Another
important observation concerns the element of JB related
to estimating α. We have

JB,αα (ϑ) = 2

σ 2
R

{
mH

α (ϑ)PBmα (ϑ)
}

= 2

σ 2
dH (u)PBd(u). (12)

This quantity is directly related to the estimated SNR (more
precisely the SNR loss caused by the beamformer), which
is the key factor determining detection performance. The
optimum beamspace SNR of the MF is

χB(ϑ) = |w̃H (u)m̃(ϑ)|2 = 1

σ 2
mH (ϑ)PBm(ϑ). (13)

Thus, JB contains the necessary information about both the
detection and DOA estimation performance losses caused
by the beamformer.

D. Optimal Beamformer

The properties of the N × M beamformer matrix B, that
achieves ESP detection and DOA estimation performance
within a spatial sector of interest U in u-space are described
next.

Let CRBE (ϑ) and CRBB(ϑ) denote the ESP and RDBS
CRB matrices, respectively. We use the term design DOAs
to define a discrete set of DOAs ui that cover the area
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U (ui ∈ U ∀i = 1, . . . , L). The design DOAs are points
(possible target locations) in which we require CRBE to
be preserved after applying the beamformer.

REMARK The elements of CRBE (ϑ) represent a lower
bound for the estimation variance of any unbiased estimator
for the unknown parameters in ϑ. Thus, the term “optimal”
means equality of CRBB with CRBE .

We can now formulate the relationship between the
RDBS and ESP. We then deduce the needed properties of
the transformation matrix.

THEOREM 1 Let � = {ϑ1, . . . , ϑL } be a subdomain of the
entire parameter space, restricted to the L design DOAs in
U . Furthermore, we define B as the range of the N × M
matrix B. Then, if the property

mγ (ϑ) ∈ B ∀γ ∈ {α, φ, u, v} ∀ϑ ∈ � (14)

is fulfilled, the beamformer B achieves optimal (ESP) per-
formance.

PROOF From (14), we get PBmγ (ϑ) = mγ (ϑ). It directly
follows that

2

σ 2
R

{
mH

γ (ϑ)PBmγ ′(ϑ)
} = 2

σ 2
R

{
mH

γ (ϑ)mγ ′(ϑ)
}
. (15)

Therefore, using the result (15) above with (9)–(11), we get
∀ϑ ∈ � the desired equalities

JB(ϑ) = JE (ϑ) (16)

CRBB(ϑ) = CRBE (ϑ) (17)

and

χB(ϑ) = χE (ϑ) (18)

where χE (ϑ) is the ESP SNR. �
The simplest way to satisfy (14) is to construct B by

using the vectors mγ (ϑ) as its columns. Since we have L
design DOAs and four vectors mγ corresponding to each of
them, M = 4L.

The value of L depends on two factors: the size of U and
the spacing between the design DOAs. The beamwidth of
the array dictates a reasonable upper limit for the spacing
(since two vectors m spaced a beamwidth apart are linearly
independent). To get a nearly uniform performance inside
U , the spacing should be a fraction of the beamwidth (for
further discussion, see Section V-D).

REMARK Let

m̂ϑ(ϑi ) =
[
m̂α (ϑi ) m̂φ (ϑi ) m̂u(ϑi ) m̂v (ϑi )

]
(19)

denote the N × 4 matrix consisting of unit vectors
m̂γ (ϑi ) = mγ (ϑi )/‖mγ (ϑi )‖. Following (10) yields

m̂α (ϑi ) = eiφ d(ui)

‖d(ui )‖
m̂φ (ϑi ) = ieiφ d(ui )

‖d(ui)‖
m̂u(ϑi ) = ieiφ x � d(ui )

‖x � d(ui )‖

m̂v (ϑi ) = ieiφ y � d(ui)

‖y � d(ui)‖ . (20)

We have m̂α (ϑi ) = εm̂φ (ϑi ), where ε is a complex con-
stant. Moreover, the unit vectors do not depend on
the amplitude (α) of the signal. Thus, we can replace
m̂ϑ(ϑi ) = m̂ϑ([1 0 ui vi]) with m̂ϑ(ui ).

Consequently, we have only three linearly indepen-
dent vectors corresponding to each design DOA ui. Since
m̂φ = im̂α is omitted, we can construct B with M = 3L
columns. When 3L ≥ N , we note that B = IN is the optimal
beamformer.

III. PARAMETER-CONTROLLED BEAMFORMER

In practice, having 3L channels is too high for most
systems. We aim to reduce RDBS dimension as much as
possible while maintaining desired performance. A well-
known mathematical method called the singular value de-
composition (SVD) can be used to construct the optimal
transformation matrix with a lower dimension than 3L. The
ability to optimally reduce dimensions using this process
depends on the rank of the decomposed matrix.

Our objective is to find the matrix satisfying (14),
minimize its rank appropriately—considering the practical
limitations and performance criteria—and then perform the
SVD. The beamformer B will then be constructed from the
SVD. We define

�̂ = [m̂α (u1) m̂u(u1) m̂v (u1)

. . . m̂α (uL ) m̂u(uL ) m̂v (uL )] (21)

as a collection of unit vectors in the form of an N × 3L
matrix that covers all the design DOAs and satisfies (14).
Taking the SVD of (21) is analogous with the method
in [13]. We have extended it to accommodate the full 4-D
CRB matrix (including complex target amplitude and 2-D
DOA) instead of the 1-D DOA CRB. Next, we will propose
two novel techniques to lower the rank R
 of �̂ prior to
performing the SVD.

We also note that by spanning the unit vectors m̂γ (u)
∀γ ∈ {α, φ, u, v}, we will equally weight them in the SVD.
Since they are a function of u only, the beamformer con-
struction will not depend on the amplitude, i.e., the SNR
(see remark after Theorem 1).

A. Rank Reduction

A first possible step to decrease R
 is by accommodating
an a priori target distribution p(u) over U . We define the
N × 3L matrix

�̂
p =

[√
p(u1)m̂α (u1)

√
p(u1)m̂u(u1)

. . .
√

p(uL )m̂u(uL )
√

p(uL )m̂v (uL )
]
. (22)

The spatial target probability distribution p in (22) weights
the unit vectors so that targets with high (low) probability
will have high (low) impact on the SVD. If p is close to zero
in certain parts of U , the number of singular values that
are close to zero increases (because the number of linearly
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independent columns in �̂
p

decreases) and R
 will decrease
to Rp


 = rank(�̂
p
).

Since the left singular vectors of a matrix A are the
eigenvectors of AAH , we can write the N × N matrix

�̂
p
�̂

pH

=
L∑

i=1

[m̂α (ui )m̂
H
α (ui )

+ m̂u(ui )m̂
H
u (ui ) + m̂v (ui )m̂

H
v (ui )]p(ui ) (23)

and perform the eigenvalue decomposition (EVD) instead
of the SVD.

REMARK If JE (ϑ) is diagonal, the elements of the diagonal
CRBB(ϑ) matrix will be

CRBB,γ γ (ϑ) =
[

2

σ 2
R

{
mH

γ (ϑ)BBH mγ (ϑ)
}]−1

(24)

∀γ ∈ {α, φ, u, v} and ∀ϑ ∈ �. The diagonal elements de-
pend only on a single parameter (no mixed parameter
derivatives). The Fisher information matrix JE is diago-
nal if the array is spatially symmetric, i.e., fulfilling that
∀ j, l = 1, . . . , N and r j = [x j y j], there exists rl = 2rp − r j

for l �= j and array center point rp.

To further reduce the rank of (23), we introduce a control
parameter β. Let JE (ϑ) be diagonal ∀ϑ ∈ � and

�̂
p
β�̂

pH

β �
L∑

i=1

[(1 − β )m̂α (ui )m̂
H
α (ui )

+ β(m̂u(ui )m̂
H
u (ui ) + m̂v (ui )m̂

H
v (ui ))]p(ui )

(25)

with 0 ≤ β ≤ 1. We can see that β allows us to obtain
a tradeoff between DOA estimation and detection perfor-
mance. More specifically, increasing β increases the impact
of the vectors that relates to DOA estimation (m̂u, m̂v) on
the account of amplitude estimation (m̂α), and vice versa.

We justify our claim about the performance tradeoff
by observing two distinct cases, β = 0, 1. As seen from
(25), the first (β = 0) will discard any knowledge of m̂u

and m̂v from the following EVD. Therefore, assuming that
B contains all the eigenvectors of (25) that correspond to
nonzero eigenvalues, we get mH

α BBH mα = mH
α mα , while

mH
u BBH mu ≤ mH

u mu (and correspondingly for mv). Hence,
the CRB for the amplitude estimation is at minimum, while
the DOA estimation CRB is degraded. The same logic
applies for β = 1 with the opposite outcome. For increasing
values of β, the performance for detection (amplitude esti-
mation) degrades, while the DOA estimation performance
improves.

We point out that the analytical formulation presented
above relies on the assumption of uncorrelated noise (diago-
nal Q). It is not possible to obtain a similarly easy analytical
solution for a more general covariance matrix representing
correlated noise or interference.

B. Beamformer Construction

Finally, we execute the EVD as �̂
p
β�̂

pH

β = Ũβ�Ũ
H
β with

a decreasing order of eigenvalues and take the M first
columns of Ũβ as B. We denote Rβ


 = rank(�̂
p
β ). The num-

ber of nonzero eigenvalues determines whether M yields
optimal (M ≥ Rβ


) or suboptimal (M < Rβ

) performance.

In Fig. 1, we illustrate the differences between the DOA
estimation (β = 1) and detection (β = 0) beamformers. The
power of the beams bH

i d(u) is shown for a square area U of
size 4 × BWa, where BWa is the square approximation of
the area confined inside the 3-dB beamwidth BW (0.1 × 0.1
in (u, v)-coordinates) of the array sum beam power pattern.

We can regard β as a way to reduce Rβ

 according

to predetermined performance criteria. We also note that the
numerical rank calculation is not always straightforward, as
it involves setting heuristic thresholds (outside the scope of
this article). Hence, it is not possible to accurately determine
the needed number of channels M that ensures optimality
(ESP performance). Moreover, since the set of unit vectors
{mα (ui ), mu(ui ), mv (ui ) : i ∈ {1, . . . , 3L}} might not be
completely linearly independent, it is not possible to analyt-
ically determine the exact impact of β on the performance.

Therefore, in order to illustrate the impact of β and
estimate the needed number of channels to achieve the
desired performance (suboptimal or optimal), the next sec-
tion presents a new design tool to aid in the beamformer
construction.

IV. BEAMFORMER PERFORMANCE ANALYSIS

So far, we have presented the theory behind the pro-
posed Rx beamformer. As (25) suggests, a set of values
J = {β, M,U} must be carefully determined to construct
the beamformer. For that purpose, we propose a simple
design tool, which takes into account the practical scenario
of interest and a set of chosen performance metrics. It
enables the user to design their beamformer by exploiting
quantitative measures of potential performance.

In this article, we use target detection and DOA esti-
mation metrics assuming a single target inside the field of
view without any clutter or interference (space surveillance
is a good example of such a scenario). Other metrics, such
as target resolution or interference suppression, are not
considered. We also assume a flat SNR level inside the U
area.

A. Performance Metrics

First, we need to quantify the effect of the dimension
reduction on target detection and DOA estimation. To this
end, we analyze the following metrics.

1) Detection: The first metric evaluates the expectation
of detection performance over U using p(u). The expecta-
tion is normalized by the equivalent ESP performance. This
can be formulated by

κm = E {SNRL} (26)
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Fig. 1. Power patterns of selected four beams bi for the optimal DOA estimation (β = 1, top row) and detection (β = 0, bottom row) beamformers.
The similarity to monopulse difference beams is visible in detection beams 2 and 3. Beam 1 (omitted) resembles a conventional sum beam in both

cases.

where

SNRL = dH (u)PBd(u)

dH (u)d(u)
. (27)

The quantity κm can be interpreted in two equivalent ways.
First, it is the average ratio between the ESP and RDBS
CRBs for the amplitude (α) estimation. Second, it is the
average SNR loss (relative to ESP sum beam) of the RDBS
MF output inside U . Thus, it quantifies the detection perfor-
mance of the beamformer since the probability of detection
PD is inversely proportional to the SNR loss.

The distribution of (27) within U is also a crucial factor,
often disregarded. It is possible to have a high value for κm

with areas where the SNR loss is very high and no target can
be detected (i.e., “blind zones”). Clearly, such a scenario is
undesirable. We, therefore, calculate the relative standard
deviation (STD) of (27) (normalized by κm) as

κstd =

√
E

{
SNRL

2
} − E {SNRL}2

E {SNRL} (28)

to quantify the variation within U .
2) DOA Estimation: To evaluate the DOA estimation

performance, we consider the theoretical accuracy limit
dictated by the CRB. Specifically, we analyze the accuracy
by taking the square root of the determinant of the lower
right 2 × 2 submatrix of the 4 × 4 CRB matrix, containing
the terms related to estimating u. We denote the RDBS and
ESP determinants as

DB =
√

|CRBB(u)| and DE =
√

|CRBE (u)|. (29)

These can be interpreted as the 2-D ellipsoid areas defined
by the CRB matrices in (u, v)-coordinates. The ratio

ηm = E {DB}
E {DE } (30)

is used to compare the beamformer to the optimal ESP
case. It represents the average CRB metric loss in DOA
estimation.

It would be desirable to achieve a constant estimation
performance independent of u. To quantify the variation
inside U , we calculate the relative STD as

ηstd =

√
E

{
DB

2
} − E {DB}2

E {DB} . (31)

The chosen set of metrics is, therefore,
G = {κm, κstd, ηm, ηstd}.

B. Design Considerations

Equipped with the set of metrics G, the user can specify
acceptable thresholds for the metric values (performance
tradeoff criteria) to meet their needs. Our design tool enables
the user to analytically calculate the metrics in G for any
(symmetrical) array, for a wide range of U area sizes,
number of channels M, and β values. For any unbiased
estimator, the consequently chosen set J leads to the best
possible performance to be expected in terms of G.

We define the term resource ratio as

ζ = M

ρ
(32)

where ρ is the area size covered by U in units of [BWa].
Now, we claim that the chosen metrics will depend on M and
ρ only through ζ . This is due to the fact that ρ determines
Rβ


 and, thus, the required number of channels to achieve
a desired performance. The claim would be exact if we
replaced ρ with Rβ


 in (32). However, because the exact
rank is difficult to determine numerically, we choose to stay
with ρ and treat our claim as a good approximation.

The value of Rβ

 also depends on the chosen value for β.

It increases faster (with respect to ρ) for the DOA estimation
beamformer than for the detection beamformer. For β = 1,
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we have two linearly independent vectors for each design
DOA, whereas for β = 0, we only have one. To avoid any
problems, we always choose the geometrical boundary so
that Rβ


 monotonically increases with increasing ρ. The
exact shape (e.g., square or rectangle) has a minor effect
because Rβ


 changes differently depending on how the area
is increased.

To determine the optimal J , we propose evaluating the
metrics in G as a function of ζ and β. In practice, the
user has a limited set of interesting values for ζ (mostly
restricted by hardware capabilities) for which the metrics
can be calculated as a function of β. This enables the user
to choose J to meet the desired metric thresholds for G. We
demonstrate this process in more detail in the next section.

V. NUMERICAL RESULTS

In this section, we present numerical simulations to
support the statements and theory presented in this article.
The simulative study also serves as a walk-through on
constructing and using the proposed design tool. The last
part demonstrates the use of the design tool in a space
surveillance scenario, inspired by the novel GESTRA sys-
tem (see [6] and [7]).

A. Simulation Setup

We chose the following parameters for our simulations.

1) A circular phased array was used with N = 256
isotropic antenna elements spaced half-wavelength
apart.

2) A set of rectangular U area sizes in units of [BWa]
was chosen. The v dimension was fixed to 2 × BW,
while the u dimension linearly increased from 2 ×
BW to 5 × BW with a step size of 0.5, resulting in
4 ≤ ρ ≤ 10 [BWa].

3) Targets (design DOAs) of equal SNR were placed
inside U with a spacing of 1/10 × BW to calculate
the values in (26)–(31) and G.

4) A set of channel numbers M was chosen as
5 ≤ M ≤ 15.

5) A set of discrete values for β was chosen between
0 ≤ β ≤ 1 with a step size of 0.1.

6) A uniform target probability density function p(u)
was used.

We emphasize the generality of the following plots used
in our design tool. They are valid for every (symmetric)
array, regardless of the number of elements, exact geometry,
or SNR level. As previously stated, the geometrical shape
of U (e.g., square or rectangle) has a minor effect. Never-
theless, for a nonuniform target probability distribution p,
the following plots will have to be recalculated.

B. Validation and Analysis

In Fig. 2, we demonstrate the DOA estimation perfor-
mance DB inside U for M = 10 and ρ = 10 (i.e., ζ = 1) and
β = 0, 1. The plots illustrate the variation of DB (captured

Fig. 2. Distribution of the theoretical estimation performance DB over
the spatial sector of interest U for the detection (β = 0, top) and DOA

estimation (β = 1, middle and bottom) beamformers. The bottom result
is obtained using a Gaussian target distribution p centered at (0.15, 0),
while the other results are obtained with a uniform target distribution.

by ηstd) inside U , which is different for each beamformer
configuration.

The black dots in the figure represent the target locations
used to calculate DB (i.e., the design DOAs). The uppermost
plot shows the result for β = 0 (detection), while the center
plot is for β = 1 (DOA estimation). In both cases, the CRB
loss is monotonically increasing toward the edge of U . For
β = 1, the increase is smaller, resulting in a more uniform
performance and a smaller value for ηstd. In both of the
aforementioned cases, the target probability distribution p
is uniform.

The lowermost plot shows the result for β = 1 using a
Gaussian distribution p with a half-power beamwidth of
0.15 centered at (0.15, 0). The target is assumed to be
in the vicinity based on a priori information. The value
of DB in the vicinity of the expected target position is
about 2 dB lower than in the case of a uniform distribution.
The target probability p can also be used to account for
a nonuniform transmit power pattern. Alternatively, p can
utilize the information provided by a target detection from a
previous pulse to obtain better performance for the current
pulse.

Next, we provide a numerical validation of the previous
claim that the resource ratio ζ is the key factor determining
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Fig. 3. Theoretical detection and estimation performance comparison between the beamformers. Each of the metrics is approximately constant along
lines of constant resource ratio M/ρ.

the performance. In Fig. 3, each of the metrics inG is plotted
as a function of M and ρ. The plots correspond to the two
choices of β = 0, 1 as indicated in the plot titles. We clearly
see that equal performance is achieved along straight lines
with constant ζ to a high degree of accuracy (although we
only present limited choices of β, we verified the results

for all values of β). Equivalently, for an increasing ρ, the
number of channels M required to maintain the same metric
value increases.

The significance of the weighting factor β is also illus-
trated in the results of Fig. 3. The choice of β = 1 achieves
the best performance for the DOA metrics {ηm, ηstd} for any
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Fig. 4. Theoretical detection and estimation performance as a function of the control parameter β. These generalized plots enable the user to choose
a desired performance tradeoff for a given number of channels and area size (resource ratio ζ ). The scale on the left side and the corresponding blue

lines represent the mean metrics, while the scale on the right side and the corresponding red lines depict the STD metrics.

combination of M and ρ. The same applies for β = 0 and the
SNR metrics {κm, κstd}. For β ∈ [0, 1], the metrics in G are
affected differently and bounded by their values for the cases
of β = {0, 1}. As a general observation, we see that M � N
channels are sufficient to achieve ESP performance, even for
large area sizes of U (assuming the metrics concerning the
STD are at acceptable levels).

C. Design Tool Construction

Next, we implement the proposed design tool described
in Section IV-B. Possible resource availability cases were
categorized into ζ = {1, 2, 3, 4}, representing low to high
resource ratios, respectively. For each case, the metrics G
were evaluated as a function of β. To illustrate the signif-
icance relative to previous methods, we note that β = 0
corresponds to a 2-D version of the DSS method [12] and
β = 1 to a 2-D version of [13].

A new set of figures was created by mapping the data
from Fig. 3 in the following manner. For each metric and
β, the data along a constant contour line were mapped into
a figure corresponding to the line’s slope, determined by ζ .

Therefore, we have four plots corresponding to the chosen
values of ζ in Fig. 4.

We conclude that for a low resource ratio ζ = 1, the
detection (β = 0) and DOA estimation (β = 1) beamform-
ers perform differently, exhibiting a substantial gap between
the metric values. Moreover, the effect of β becomes clearly
visible. As β increases from 0 to 1, the DOA metrics are
monotonically improving: ηm drops from 4.5 dB down to
almost 2 dB, and ηstd from −1 to −4 dB. However, the de-
tection metrics are monotonically degrading: κm increases
from 1 to 2.5 dB, and κstd from −6 to −3 dB. This illustrates
the previously mentioned tradeoff, which can be controlled
by β.

Several more observations can be made. As the resource
ratio increases, all metrics improve. The case of ζ = 4 can
be considered as a practical performance limit (for any
array), as it almost converges to ESP values. In addition,
the impact of β reduces, and the metrics {ηm, κm} approxi-
mately reach a constant response as a function of β. When
the channel number increases (while ρ remains fixed), the
number of omitted eigenvectors corresponding to nonzero
eigenvalues decreases, making β redundant.
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For validation purposes, additional configurations were
simulated, comprising of different number of elements,
array, and U area geometries. The obtained results very
accurately matched the ones presented above, serving as an
additional verification that the key factor in the calculations
is the resource ratio ζ .

D. Beamformer Construction Procedure

We now summarize the required steps of the proposed
design tool of Section IV-B to construct the beamformer.
First, the set of values J is determined as follows.

1) Calculate the resource ratio ζ from (32), taking
into account the available number of channels and
required U area.

2) Set the needed thresholds for the metrics in G (i.e.,
quantify an acceptable performance tradeoff).

3) Refer to the matching plot for ζ in Fig. 4. Choose
the corresponding β value where the defined metric
thresholds are met. However, if such a value for
β does not exist, the only possible solution is to
consider a higher resource ratio.

We denote the outcome of these steps as J0 =
{β0, M0,U0}. Second, we outline how to construct the beam-
former as described in Section III (we note that p(u) = 1 in
this scenario).

1) Define a set of design DOAs ui covering the spatial
area of interestU0. The spacing should be sufficiently
small to ensure homogeneous coverage. The exact
spacing should be verified empirically based on the
metrics inG. In our simulations, a spacing of BW/10
produced satisfactory results: decreasing the spacing
further showed little to no change in the results.

2) Calculate (25) with the chosen setJ0 and perform the
eigendecomposition with descending eigenvalues.
Take the first M0 eigenvectors as B.

E. Use-Case Demonstration

To demonstrate a practical application of the proposed
design tool, we consider the following scenario. The system
is operated in a search mode, where the objective is to detect
the target and estimate its DOA within a rectangular shaped
area U0 of 2 × 4 [BW], meaning that ρ0 = 8. The available
number of channels, dictated by the available hardware
resources, is set to M0 = 8.

Using the same simulation setup, L = 1020 and
R
 = {107, 119} for β = {0, 1}, respectively. Clearly, con-
structing an optimal beamformer satisfying Theorem 1 is
impossible, since M � {3L, R
}. Thus, we turn to a subop-
timal solution using the procedure described in Section III-
A. First, we calculate ζ0 = M0/ρ0 = 8/8 = 1. Second, we
set the thresholds for the metrics inG with common-practice
values (in [dB]): ηm ≤ 3, κm ≤ 3, ηstd ≤ −3, and κstd ≤ −3.
Finally, we use the upper-left plot in Fig. 4 to find the match-
ing β value: By intersecting a vertical line (representing a
fixed value of β) with the metric curves, we see that β = 0.5
meets these criteria.

Our design tool makes it very easy to understand the
performance limitations. All possible values for the metrics
in G for a given ζ are clearly visible in Fig. 4. The benefit of
using our design method is highlighted: We are able to meet
the desired performance (with limited resources) by tuning
β. Otherwise, this would only be possible by increasing
the number of channels, which may not be feasible due to
practical limitations.

F. Monte Carlo Simulations

The preceding numerical results represent the theoreti-
cal values (e.g., CRB) obtained using the various analytical
formulations given throughout this article. In this section,
we validate that these ideal theoretical results are close to
practically achievable performance with a realistic system,
where a numerical estimator for ϑ is used.

To achieve this, we carried out empirical numerical
simulations based on the ML estimator with the underlying
signal model, as described in (4). To avoid any undesirable
numerical errors, we used a sequential brute force opti-
mization on a grid with decreasing spacing to locate the
ML maximum according to (7). For each combination of
the setup parameters and design DOAs, the simulation was
repeated NMC = 100 times with a different white Gaussian
noise realization to allow sufficient statistical accuracy.

An example of the obtained empirical results is de-
picted in Fig. 5 for β = 0. We first calculated the em-
pirical covariance of the DOA estimations over the MC
iterations, denoted as COV B(u). Similarly to (29) and (30),
we calculated DC = √|COV B(u)| and the mismatch as
τm = E{DC}/E{DB}. This result is shown on the left-hand
side of Fig. 5.

Since the ML estimator is asymptotically unbiased, the
right-hand side Fig. 5 aims to validate the bias of the MC
estimations (should ideally tend to zero). The mean bias
over U was calculated and normalized by DB

1/4 for proper
scaling (denoted as νb).

For high resource ratios, we have a very low covariance
mismatch (below 0.5 dB) and bias level (below −18 dB),
implying an excellent agreement with theoretical calcula-
tions. However, for low resource ratios and inadequate target
SNR, we observed a considerable mismatch.

Often overlooked, this so-called ambiguity problem may
have an undesirable effect: When the number of channels is
not high enough to uniformly cover the entire area U (low
resource ratio ζ < 1), multiple equally high peaks emerge
in the ML function. These peaks can be explained by the
normalization factor in (6), which is (apart from a constant
factor) the square root of the SNR loss in (27). A low re-
source ratio causes the SNR loss to vary significantly inside
U , which, in turn, causes amplification of the sidelobes of
the target response.

If this phenomenon is not taken into account during
the detection stage, the estimation algorithm can choose
the sidelobes peak as the maximum, leading to unreliable
detection and estimation results. This behavior causes the
empirical estimation to have an increased covariance and

2510 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 57, NO. 4 AUGUST 2021



Fig. 5. Comparison between theoretical and empirical results. On the left-hand side, the ratio between the empirical covariance and the CRB is
shown. The discrepancy for low resource ratios in the bottom right corner can be explained by the estimation bias caused by the ambiguous estimation

results, which is depicted on the right-hand side.

a significant bias. This is depicted in the results shown in
Fig. 5. For low resource ratios (bottom right corners), the
bias νb increases from −20 to −10 dB relative to the mean
(plot on the right), and the estimated covariance mismatch
τm reaches up to 3 dB relative to the theoretical one (plot on
the left).

These values suggest that we are unable to obtain per-
formance comparable to the CRB for very low resource
ratios with the chosen target SNR of −9 dB (at element
level) used in our MC simulations. We point out this poten-
tially unwanted outcome, but further investigation of this
ambiguity problem is outside the scope of this article.

VI. CONCLUSION

In this article, we have presented an elaborated formula-
tion to the phased array Rx data dimension reduction trans-
formation process. First, we proposed a method to construct
a beamformer simultaneously achieving optimal target de-
tection and 2-D DOA estimation performance. When the
number of channels is too low to achieve optimality, we
introduced a new parameter-controlled design method to
obtain a performance tradeoff between target detection and
DOA estimation.

Thereafter, we generalized our findings into a novel
design tool, which allows the user to evaluate potential
beamformer performance for a given practical use case
and then construct one to meet desired criteria. Finally,
we performed numerical studies to provide validation, a
walk-through demonstration of the design process, and an
overview of important practical considerations.

The analysis presented in this article can be further
extended in several ways. One example is to consider the
optimal transformation design for nonlinear high-resolution
estimation methods (e.g., MUSIC, Capon, or ESPRIT).
Another is to investigate new performance metrics, such as
target resolution and interference suppression in the design
criteria.

Analyzing the impact of additional factors on the design
tool may also be considered. These include more compli-
cated noise and interference models, channel calibration

errors, nonsymmetrical arrays, nonsymmetrical coverage
areas, and nonuniform target probability densities.
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