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Policy rollout is a method for the online computation of future
costs in approximate dynamic programming and has been utilized for
various problems, including sensor management. In previous work, it
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crete sets. In this article, we present methods for action selection from
continuous sets and analyze their tradeoffs. The methods are evaluated
on the problem of sensor path planning, with the intent of minimizing
the time to localize an emitter using bearing measurements.
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I. INTRODUCTION

Sensor management is the problem of controlling re-
configurable sensors for optimized performance. An ex-
ample for sensor management is the problem of sensor
path planning for emitter localization. Using a direction
finding sensor, the localization performance is dependent
on the sensor-to-target geometry. The sensor path planning
problem is then to optimize the path of the sensor, based on
the received measurements. Because the path planning algo-
rithm does not yet know the position of the emitter, this can
be seen as a problem of decision under uncertainty. Almost
all sensor management problems deal with decisions under
uncertainty, due to missing knowledge before the sensing
process.

A framework to model decisions under uncertainty is
stochastic dynamic programming. Problems can be mod-
eled as Markov decision processes (MDPs) if the state is
observable and only its transitions are stochastic. If the state
is not fully observable, the problem can be modeled as a
partially observable Markov decision process (POMDP).
Due to this property, POMDPs are a topic of wide interest
in the sensor management literature. Exact solutions for
MDPs and POMDPs are only viable in small-dimensional
problems. Therefore, commonly approximate solution tech-
niques are used.

One method to approximately solve MDPs and
POMDPs is the policy rollout method [1]. This method
examines the different actions available to the controller
and simulates the future outcomes of choosing this ac-
tion. The simulations are performed using realizations
of random variables and a base policy, which is an al-
ready existing, often heuristic, policy for the system.
The performance of this algorithm is typically better
than the performance of the base policy. In previous
works, this algorithm has been predominantly applied to
discrete action sets, where the algorithm could exhaus-
tively evaluate the set. In this article, we analyze meth-
ods to extend the policy rollout algorithm to continuous
sets.

As an application, we evaluate these methods on a sensor
management problem, which falls into the domain of sensor
path planning. We discuss a system, where a directional
antenna is mounted on an unmanned aerial vehicle (UAV)
and bearing measurements can be derived by rotating the
UAV around its vertical axis [2]–[5]. Existing solutions for
this sensor management problem [2], [5] do not take into
account the probabilistic outcome of future measurements.
This uncertainty can easily be integrated into the policy
rollout algorithm. A schematic visualization of this problem
can be seen in Fig. 1. An important aspect of the con-
sidered sensor management problem is that measurement
generation and platform movement are mutually exclusive.
Therefore, there exists a tradeoff in using time for generating
measurements and in moving to another location. The goal
of the system is to localize a stationary ground-based emitter
as fast as possible.
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Fig. 1. A UAV with a directional antenna rotates to create a bearing
(red) toward an emitter. Between measurements, it moves toward a new

measurement position (blue).

A. Policy Rollout

A POMDP formalizes the problem of decision under
uncertainty: At time step k, the state of the system is denoted
as xk ∈ X , where X is called the state space. A controller
can act on this state via actions ak , which are part of the
action space A. An action ak leads to a transition between
the states, which is described via a transition function
xk+1 = f (xk, ak ). Knowledge over the state is only obtained
by a measurement function zk = h(xk, vk ), where zk is a
measurement belonging to the measurement spaceZ , and vk

is the realization of a random variable representing the noise
of the sensor measurements. Additionally, a real-valued
cost function c(xk, ak ) is defined, which quantifies the costs
of an action in a state. Commonly, the measurements are
summarized into a belief bk = p(xk ), which is a probability
distribution over the state space. If the belief is a sufficient
statistic of the state, i.e., summarizes all available informa-
tion, this problem can be considered as an MDP on the space
of possible beliefs, which is called the belief space B.

Given a POMDP formulation, a policy π : B → A is a
mapping from belief state to the action space. The problem
is then to find the optimal policy π∗, which minimizes the
expected cost:

π∗ = argmin
π

V π (b0). (1)

The function V π : B → R is called the value function of π ,
and the value V π (bk ) is the expected total cost of following
policy π in belief state bk:

V π (bk ) = E

[T (bi )∑
i≥k

c(xi, π (bi ))

]
. (2)

This sum is to be interpreted as summing up all i ≥ k
until the termination criterion T (bi ) is true. We introduce
this notation, as the total number of future steps varies for
different realizations of the unknown true states xi and future
measurements zi.

Given the value function V ∗ of the optimal policy π∗, an
optimal action selection would be to select the action that

minimizes the immediate cost and the future cost

π∗(bk ) = argmin
a∈A

E
[
c(xk, a) + V ∗(bk+1)

]
. (3)

The expected value represents the total expected cost of the
action and is, therefore, called the action value

Q∗(bk, a) = E
[
c(xk, a) + V ∗(bk+1)

]
. (4)

This framework for sequential decision processes is com-
monly used in the literature on dynamic programming [6],
[7].

The policy rollout algorithm is an online computation
method, which approximates the future cost. Its idea is to
replace the optimal value function V ∗ by the cost function
V πB of a base policy πB

πR(bk ) = argmin
a∈A

E
[
c(xk, a) + V πB (bk+1)

]
(5)

= argmin
a∈A

QπB (bk, a). (6)

Here, QπB represents the action value when following the
base policy. Computation of this value is also called eval-
uation of action a. The policy rollout algorithm can be
considered as a single step of policy iteration [6, p. 110].
The resulting policy is at least equal and typically better than
the base policy. This property is called rollout improvement
property.

In the present literature on policy rollout, the search for
the optimal action, i.e., the argmin in (5), is commonly
performed by evaluation of each action. For each action, the
expected value in (5) is computed, e.g., via a fixed number
of Monte Carlo (MC) samples. This not only requires a
discretization in a continuous action space, but also wastes
computation time on evaluating suboptimal actions. In this
article, we discuss the problem of searching for the mini-
mum in (5), which consists of two subproblems: selecting
which actions to evaluate and evaluating the expected value.
This allows us to apply the rollout procedure in a continuous
action space. Some of the methods also improve the action
search in the classical setting with discrete actions.

Since it is a generic method, the policy rollout algorithm
has been applied to a variety of problems. Early works
consider the problem of playing Backgammon by Tesauro
and Galperin [8], combinatorial optimization by Bertsekas
et al. [9], and stochastic scheduling by Bertsekas and Cas-
tañón [1].

It has been used in several works in sensor manage-
ment [10]–[23], for example, for the activation of nodes in
a sensor network [12]–[15] and sensor to target associa-
tion [17], [18]. Other problem settings encompass vehicle
routing [24]–[28], inventory routing [29], revenue manage-
ment [30], and scheduling [31].

B. Computation of the Action Value

A main component of the rollout algorithm is the eval-
uation of the expected value in (5). In some problem do-
mains, an analytical solution can be performed [25]–[29],
typically via dynamic programming on the discrete state
space. However, in sensor management, an exact evaluation
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is only possible in very specific cases [22], as the state space
is commonly continuous.

Often the expected value is computed via MC sampling,
which is almost exclusively the case in sensor management
applications. One problem with MC methods to estimate
an expected value is the variance of the estimate, which
is why techniques for variance reduction exist [32]. One
technique to reduce the variance of MC estimates is the
use of common random numbers (CRNs), in which the
evaluations of different actions use the same realizations
of random variables. In the rollout literature, this is also
known as sampling of the Q-factor differences [33]. CRNs
have been used in several works on vehicle routing [27],
[28]; however, they have not been explicitly reported in
the sensor management literature in the context of policy
rollout. The works in [13]–[16] can be considered as using
a form of CRNs, as they initialize their MC rollouts using the
same particles from a particle filter, which leads to the same
initial underlying state in the rollouts for different actions.

A different method is the evaluation of the expected
value via a set of representative fixed values for the random
variables, also called scenarios [1]. One example for this
approach is the work reported in [17]. Here, samples of
the uncertainty over the state space and the future measure-
ments are deterministically created using a method similar
to the unscented transform. The expected value is then
computed using those samples. However, this only works
for Gaussian uncertainties. In [34], a generic method to
suboptimally discretize arbitrary probability densities [35]
was used to create a set of representative samples. As a
special case of deterministic samples, the expected values
of the random variables can be taken [23].

In this article, we compare the effectiveness of random
samples, CRNs, and the usage of deterministic samples.
While random samples are often used, CRNs are non-
standard in sensor management, and the evaluation with
deterministic samples is only used in a small number of
works.

C. Search for the Optimal Action

Next to the computation of the expected value, another
main component in evaluating (5) is the procedure to com-
pute the argmin, i.e., to search for the action with minimal
cost. In the vast majority of the literature, this was performed
by evaluation of every action in a finite action set. When the
action values were determined via MC sampling, commonly
an equal number of samples was used for each action.

If the action space contains a large number of discrete
actions, evaluating each action might not be feasible. An
option to speed up the search is then to prune this space
prior to the evaluation, which has been performed in [18],
[19].

When each action can be evaluated and sampling is used
to estimate the action values, the search can be improved by
nonuniformly allocating the samples between the different
possible actions. The idea is that it is more critical to
estimate the value of actions that are candidates of being the

optimal action, instead of improving the estimate of clearly
inferior actions. As this uses the results of previous action
evaluations to improve the allocation of future samples, it
can be described as adaptive action evaluation. Tesauro
and Galperin proposed to stop the evaluation of an action
once it becomes unlikely that it is the optimal one [8].
Optimization of the sample allocation has been performed
by Sun et al. [36], which uses the optimal computing budget
allocation (OCBA) [37] algorithm. OCBA computes the
sample mean and standard deviation of encountered action
rewards. Then, it uses those statistics to determine how often
each action should be evaluated.

A method related to the online policy rollout method is
classification-based policy iteration, which uses policy roll-
outs offline during training of a policy [38]. Here, a multiple
multiarmed bandit method has been used to allocate the
resources between multiple decision problems of the type
of (5).

Those approaches require a discrete action space and
allocate a number of samples to each action. An alternative
is to perform the action search directly on the continuous
action space. This has been performed for Monte Carlo tree
search (MCTS), which is a method related to policy rollout.
MCTS uses rollouts to steer the exploration in a search
tree. For this algorithm, bandit algorithms for continuous
action sets [39] have been used to perform continuous action
selection with a discrete state space [40].

Except from the MCTS approach above, to the authors’
knowledge, a continuous action set has not been considered
before in the context of policy rollout. In this article, we
propose and evaluate several methods to search for the
optimal action in a continuous action space, both by using
a discretization, as well as a direct search on the continuous
action space.

D. Structure of This Article

The remainder of this article is structured as follows. In
Section II, we formally describe the problem we want to
solve. In Section III, we describe the main components of
our policy-rollout-based control algorithm, excluding the
action evaluation and action selection step. Those steps are
described in Sections IV and V. In Section VI, we describe
how we evaluate the different optimization methods and
present the results in Section VII. Section VIII evaluates
how an improved action selection correlates with improved
performance of the actual rollout algorithm. The results are
discussed in Section IX. A discussion of the robustness
of this approach and possible generalizations is done in
Section X. Finally, Section XI concludes this article.

II. PROBLEM DESCRIPTION

A. State Space and Transition

The state at the time step k is a four-dimensional vector,
consisting of the stationary target position xt = (xt , yt ), and
the current position of the platform xp

k = (xp
k , yp

k ):

xk = (xt , xp
k )T = (xt , yt , xp

k , yp
k )T ∈ R

4. (7)
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At each time step k, the measurement is generated based on
the true bearing and additive Gaussian distributed measure-
ment noise

zk = atan2(yt − yp
k , xt − xp

k ) + N (0, σ 2) (8)

with known standard deviation σ . Taking this measurement
takes an amount of time, denoted tM .

After each measurement, a control algorithm chooses
an action ak ∈ R

2 to move the platform to a position, where
the next measurement is performed. This leads to a distance
cost in time of

tD(xp
k , ak ) = ‖xp

k − ak‖2

vp
(9)

where vp is the speed of the platform. We assume here that
the effect of acceleration is negligible and that the platform
takes the direct path; however, this is not necessarily re-
quired. One could model the distance cost as being different
in different directions to account for the influence of wind.
It would also be possible to take into account some obstacle
avoidance mechanism. However, to exclude those obstacles,
this would necessitate a change of the action space.

Given the preceding definitions, the transition function
of the state is the following:

xk+1 = f (xk, ak ) = (xt , ak )T (10)

with an associated cost in time of

c(xp
k , ak ) = tD(xp

k , ak ) + tM . (11)

This cost is received each time the platform moves and takes
a measurement, thereby incentivizing it to localize the target
as fast as possible.

B. Belief State

The state is not directly available to the control algo-
rithm, but only indirectly observed via the received mea-
surements. The measurements can be integrated into a
belief, i.e., a probability distribution of the target position

bt
k (xt ) = p(xt | bt

0, a0, z1, a1, . . ., ak−1, zk ). (12)

bt
0 denotes any prior knowledge about the target position

or assumptions like a uniform prior distribution. The full
knowledge of the state is the belief at time k, which includes
the fully observable platform position

bk = (bt
k, xp

k ). (13)

C. Optimization Objective

The objective of the control algorithm is to minimize
the time until the target localization is sufficiently accurate.
This requirement on the localization accuracy is formalized
by the termination criterion T

T (bk ) = 1μ(bk )≤μT (bk ). (14)

Here, μ(bk ) is the expected root-mean-squared error
(RMSE) of the current estimate, μT is a threshold on the
localization error, and 1 is the indicator function.

Then, the objective is to find a policy, which minimizes
the expected cost in time

argmin
π

E

[T (bk )∑
k≥0

c(xk, π (bk ))

]
(15)

where the sum goes over all k ≥ 0, until T (bk ) is true. The
expectation goes over all future measurements zk≥1, as well
as the unknown, but stationary, target position xt .

III. STOCHASTIC CONTROL ALGORITHM

The control algorithm is based on the policy rollout
framework described in the introduction. Its basic compo-
nents are identical to the algorithm in [34]. In this section,
we describe in detail the used base policy, the localizer, as
well as the way the estimates of the Q-values are computed.

A. Localizer

In a similar way to the localization methods in [2]
and [41], we use a discrete grid-based Bayes filter to rep-
resent the probability distribution over the target position.
Each grid cell represents the probability density of the
target being at the corresponding position. This is more
computationally demanding than, e.g., a representation in
form of a Gaussian distribution, but allows us to capture the
nonlinearity in the estimation process.

We denote the extension of the grid by xB, xB, yB, yB,
which represent the minimum and maximum coordinate of
interest in the x and y axes. The grid is discretized into 100
cells on the longer axis and a proportionally smaller integer
number on the other axis, which is chosen to make the grid
cells closest to a square. If a prior distribution of the target’s
position is available (as in the scenario used later), the grid
is initialized using this prior.

With successive measurements, the area of potential
target positions shrinks as parts of the region become more
and more unlikely. To focus the computation of the posterior
on the regions of interest, we assume that the target is not
outside ±4σ of each measurement. Based on all received
measurements, we compute a convex hull, which encom-
passes the points that are inside ±4σ of all encountered
measurements. The belief grid is then resized to the minimal
rectangle containing this convex hull. If, due to this step,
the grid resolution in the larger dimension becomes smaller
than 40 cells, the resolution in both dimensions is doubled.
As this article is focused on the control algorithm instead
of localization methods, we did not implement an outlier
detection step in the localization and instead discarded and
resampled outliers > 3σ .

A point estimate x̃k of the target position is derived from
the center of the cell with maximum likelihood. Based on
this point estimate and the grid estimate of the posterior,
we computed the expected RMSE μ(bk ). Additionally, the
covariance P̃k is computed, which approximates the density
of the grid.
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Fig. 2. Base policy for the policy rollout. (a) The next measurement
point is chosen perpendicular to the major axis of the uncertainty ellipse.
(b) The distance r is proportional to the ratio of the standard deviations.

Note that σ1/σ2 ≥ 1 by definition.

B. Base Policy

The base policy selects greedily the next measurement
position with approximately the lowest expected root-mean-
squared error. For this, it follows the intuition that, if the
belief about the target position were Gaussian, the next
measurement should be perpendicular to the major axis of
the corresponding uncertainty ellipse.

Fig. 2(a) visualizes this idea. Here, the Gaussian approx-
imation (x̃k, P̃k) of the belief is shown as ellipse. Assuming
that one would only take a single measurement without
considering movement costs, it should be perpendicular
to the major axis. Then, the next measurement position is
determined by the distance r to the target position estimate
x̃k . There are two possible measurement positions with
distance r, which are denoted by M1 and M2 in the figure.

The optimal distance r between the measurement posi-
tion and the target position estimate is dependent on the ratio
of its axes. The greater the major axis is in relation to the
minor axis, the further away a measurement should be taken
to increase the chance of an approximate cross-bearing
measurement. On the other hand, the measurement contains
less information about the target position when taken from
further away, as the likelihood of the measurement spreads
over a larger region.

We computed the optimal distance r offline by setting
the minor axis of a Gaussian shaped belief to a standard
deviation of σ2 = 1 and varying the major axis. For a given
length of the major axis, we computed the expected pos-
terior RMSE for each distance r and selected the distance
with the lowest RMSE. The expected posterior RMSE was
determined by computing the posterior distribution for all
possible measurements based on the grid cells and the
measurement noise. For efficiency reasons, the possible
measurements were binned into 1◦ bins. Fig. 2(b) shows
the resulting optimal distance r, dependent on the standard
deviation of the major axis. Values higher than precomputed
are linearly interpolated from the last values.

At runtime, the belief bk of the target position is repre-
sented as a density on the belief grid. This density is approx-
imated by a Gaussian distribution, centered on the estimated
position x̃k . Based on the covariance P̃k of the Gaussian ap-
proximation, the base policy computes the range r between

the next measurement position and the estimated target
position. For this, the standard deviations of the principal
components are computed. Then, based on their ratio, a
piecewise linear interpolation of the precomputed values is
performed

r = σ2 · PLI

[
σ1

σ2

]
. (16)

As can be seen in Fig. 2(a), there are two possible candidate
measurement positions M1 and M2 with range r. The base
policy selects the one that is nearer to the platform, which
is M2 in the figure. Then, it moves to this position (red line
in the figure) and generates the next measurement there.

C. Rollout

Given the base policy, the policy rollout approximation
of the action value is the sum of the myopic cost c(xp

k , ak )
and the expected value of V πB (bk+1). We approximate this
expectation by drawing samples of the state and the mea-
surements during the rollout. The rollout is executed until
the termination criterion T is true, which indicates that the
target is sufficiently localized. Then, the action value is

QπB (bk, a) = c(xp
k , a) +

Na−1∑
j=0

wa j ·
T (ba ji )∑

i>k

c(xa ji, πB(ba ji ))

(17)
where Na is the number of rollouts performed for action a
and wa j is the weight of the jth rollout. The rollout state

xa ji = (x̂t
a j, xp

a ji )
T = (x̂t

a j, ŷt
a j, xp

a ji, yp
a ji )

T (18)

consists of the sampled target position and the predicted
platform position. x̂t

a j, ŷt
a j is the target position sample for

rollout j, evaluating action a. We use the hat to denote that
an element is sampled and specify the sampling method in
Section IV. The predicted platform position xp

a ji, yp
a ji varies

during the rollout and is therefore also indexed by the future
time step i. The belief ba ji is updated on measurements
drawn according to

za ji = atan2(ŷt
a j − yp

a ji, x̂t
a j − xp

a ji ) + v̂a ji (19)

where v̂a ji represents the realization of the normal dis-
tributed noise in (8). With

Cj (bk, a) =
T (ba ji )∑

i>k

c(xa ji, πB(ba ji )) (20)

we denote the result of the jth rollout for action a and bk

and its computation is called the jth rollout. This is a single
sample of the expected future cost.

D. Action Search

The remaining steps of this algorithm are as follows:
first, the selection of the samples to evaluate the rollout
result of an action (20); second, to define how the search
for the minimum proceeds, i.e., which actions a are to be
evaluated, and with how many rollouts Na. Methods for this
are described in the following two sections.
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TABLE I
Combinations of the Considered Methods

An overview of the different combinations can be found
in Table I. The three columns denote three sampling meth-
ods to evaluate the expected value: plain Monte Carlo
(PMC), CRNs, and deterministic samples. Those methods
are explained in the next section. The ways the search
proceeds are listed in the rows. Those methods are explained
in Section V. A combination of search method and sampling
gives a specific implementation of the rollout. Combinations
that are principally possible are denoted with a +. Those
which are evaluated in this article are denoted with a

⊕
.

IV. COMPUTATION OF THE EXPECTED VALUE

We use a sampling-based method to compute the action
value QπB (b, a). This is performed by executing multiple
rollouts, where the result Cj of each rollout is determined
by the chosen samples, i.e., the jth sample path, which
consists of x̂t

a j, v̂a j(k+1), v̂a j(k+2), . . . For the creation of the
sample paths, we compare three different approaches: PMC,
CRNs, and a deterministic sampling approach. The weights
for each rollout result are identically assigned wa j = 1/Na

to average the rollout results, except in some cases of the
deterministic sampling method.

A. Plain Monte Carlo

The PMC approach is to create each sample path by
using independent random numbers, i.e., x̂t

a j and v̂a ji are
drawn independently for each action a, rollout j, and future
step i.

B. Common Random Numbers

CRNs [32, p. 120] can be used to compare alternatives.
With this method, the same random number sequences
are used for each action, i.e., different actions are evalu-
ated using the same sample paths. This induces a corre-
lation between the rollouts, which reduces the variance of
the relative error in the action value estimates. Note that
the absolute error is not reduced; however, only the relative
error is important to make the right decision. Here, we
implemented CRNs, such that

x̂t
a j = x̂t

a′ j (21)

for the same rollout number j and different actions a and a′.
Note that x̂t

a j is still randomly sampled. Similarly, we chose
the measurement noise to be identical for different actions,
but the same rollout number and future time step

v̂a ji = v̂a′ ji. (22)

We refer to both CRNs and PMC as MC approaches.

C. Deterministic Samples

Additionally, we evaluate a deterministic sampling ap-
proach, previously used in [34]. Here, the uncertainty of
the state is represented using a deterministic set of samples
x̂t

a j , which are computed with a density approximation
algorithm [35] from the belief grid. For each rollout j, a
different sample is used; therefore, Na samples are required.
These samples are used for each action; therefore, (21) also
describes this approach. As with CRNs, this introduces a
correlation between the rollouts for different actions, but
with the same rollout number j.

The method works by splitting prior samples of the
density into two new samples each, both containing half of
their parent’s weight. Therefore, the weights of the samples
are only uniformly wa j = 1/Na when Na is a power of two.
In the evaluation below, we only use powers of two.

The measurements are approximated without measure-
ment noise, i.e.,

v̂a ji = 0. (23)

Also, discretizing the measurements would impose a greater
computational demand, as measurement errors are assumed
to be independent and identically distributed, and there-
fore, the number of required discretizations would increase
exponentially with the number of measurement steps. We,
therefore, assume that the main source of uncertainty lies
in the position of the target.

V. SEARCH FOR THE OPTIMAL ACTION

In this section, methods are described to search for the
optimal action a∗ ∈ A, which minimizes (17)

a∗ = argmin
a∈A

QπB (bk, a). (24)

For a given action a, QπB (bk, a) can be evaluated by per-
forming a rollout based on a sample path, as described
above. However, it is not necessarily required that each
action a is evaluated using the same number of rollouts. In
addition, with a continuous action space, it is not possible
to evaluate each action.

To compare the methods, it is useful to consider their
performance based on the total amount of rollouts they
require. We denote the total number of rollouts as com-
putational budget N , with

N =
∑

a∈AE

Na (25)

where AE ⊆ A is the finite set of evaluated actions.
None of the methods described below are novel; how-

ever, with the exception of the uniform allocation method,
their use in the policy rollout algorithm is novel.

A. Uniform Allocation

The most straightforward method to search for the op-
timal action is to estimate each action value using the same
number of samples and select the one whose estimate is best.
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In a continuous action space, this requires a discretization
of the action set. We denote the discretized and finite action
set by A. Then, the selected action is chosen by comparing
the estimated value for each candidate action

πR(b) = argmin
a∈A

QπB (b, a). (26)

We use the same action discretization approach as pre-
viously in [34]. The assumption is that the optimal action
is close to the target estimate, and therefore, the considered
region is centered on the belief grid. Additionally, we add
the width and height of the belief grid to each border and
crop by the scenario area xS, xS, yS, yS , resulting in the
action space

xA = max
(
xS, xB − (xB − xB)

)
xA = min

(
xS, xB + (xB − xB)

)
yA = max

(
yS, yB − (yB − yB)

)
yA = min

(
yS, yB + (yB − yB)

)
. (27)

As described in Section III-A, xB, xB, yB, and yB denote the
extension of the grid representation of the belief. This action
space is then discretized equally in both dimensions, leading
to an action grid.

The computation of the minimum is then performed by
evaluating each action, by either PMC, CRNs, or using the
deterministic samples.

B. Multi-armed Bandits

Bandit algorithms follow the intuition of a gambler play-
ing at a slot machine with multiple arms, where each arm has
a different reward distribution. At each round, the gambler
can pull one of the arms, which leads to a sample from
the reward distribution. In its most common formulation,
the goal is to maximize the cumulative reward over time,
leading to a tradeoff in using the arm with the currently
highest reward expectation (exploitation) or trying other
arms (exploration). A typical algorithm for this problem
is the UCB algorithm [42].

In recent years, another problem formulation has gained
interest, the so-called best-arm-selection problem or pure
exploration [43]–[47]. In this case, the exploration stops
after a certain number of rounds and the gambler commits
to a single arm. This single arm is the only one of interest;
any rewards previously obtained do not count. Therefore,
there is no exploration–exploitation tradeoff, but instead the
goal is to explore the arms optimally to select the best one.

There is a clear connection between the best-arm-
selection problem and the problem of searching for the
optimal action in a sampling-based policy rollout algorithm.
In both cases, there are multiple candidate actions, and the
value of each action is only available by repeatedly perform-
ing a rollout or repeatedly pulling an arm. Each additional
rollout performed gives a better estimate of the value of
an action. Different to the classical bandit formulation in
the best-arm-selection formulation, as well as in the policy
rollout case, it is not important how much cost or reward is

gained during the evaluation of the actions. Only the cost
of the selected action is important.

Compared to the uniform allocation described in the pre-
vious section, with these methods, different actions a1, a2

might get evaluated with a different number of samples
Na1 �= Na2 . Similar to the uniform allocation, a finite action
set is required, for which we used the same grid discretiza-
tion A.

We implemented the successive halving method [47],
which focuses its evaluations over time on the most promis-
ing actions. The basic idea is that the whole computational
budget N is split into

Nr = �log2|A| (28)

rounds. For each round, the same amount of samples Ns is
used for each action

Ns =
⌊

N

|A|Nr

⌋
. (29)

Note that due to the rounding to integers, in some cases, the
budget is not exhaustively used. After each round, half of the
actions, whose mean reward over all previous evaluations is
worst, are removed, and the computational budget is focused
on the remaining actions. We use an implementation with
PMC sampling, as well as one with CRNs to compare the
actions in each round. There is no straightforward use of the
deterministic sampling approach with sequential halving.
This is because the approach we used splits and, therefore,
modifies the existing and evaluated samples, instead of sim-
ply adding new ones. In an adaptive approach, this means
that samples, which are already used for the estimation of
the action value, need to be thrown away later together with
the corresponding rollout results, and replaced by two other
samples. Therefore, the deterministic sampling approach
would waste a lot of the computational budget and would,
therefore, not be well suited for adaptive action evaluation.

C. Quadrant Search

Quadrant search is the method of restricting the search
iteratively into the most promising quadrant [48]. At the start
of the algorithm, actions are evaluated on a 3×3 action grid.
Then, for each quadrant, the mean of the action values at the
four corners is computed. Based on these values, the search
focuses on the quadrant with the lowest mean action value.
In this quadrant, additional five samples are evaluated, in
the center and the middle of each border. Therefore, the
quadrant now contains a smaller 3×3 grid. Then, a quadrant
from this smaller 3×3 grid is chosen. This step is repeated
for a fixed number of iterations or until convergence.

Fig. 3 visualizes this progress. In the first step, actions
are evaluated at the positions A-I via rollouts. Then, the
quadrant averages were compared, and it was determined
that

1

4

∑
a∈{B,C,E,F}

QπB (bk, a) (30)

was less than the corresponding averages for the other
quadrant. Therefore, in the second step, the action values at
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Fig. 3. Visualization of the quadrant search method.

Fig. 4. Scenario used for evaluation.

J-N were evaluated. The next step would select a quadrant
of (B, C, E, F), for example, (L, M, N, F), and repeat the
subdivision.

We implemented this method in a variant with CRNs, as
well as a variant based on deterministic samples. The initial
area on which the 3×3 grid is placed is based on the same
limits as the grid of the uniform allocation and sequential
halving approaches (27).

D. Gradient-Based Methods

Gradient descent is a classic method for optimization
problems. If a function is continuous, following the gradient
leads to at least a local minimum. Fig. 5 shows the true Q-
values, computed using a sufficient number of samples (see
Section VI), which appear sufficiently continuous under a
visual inspection and typically have two local minima.

If the gradient computation is not deterministic (e.g.,
because it is computed based on a random sample), the
technique is called stochastic gradient descent (SGD). In
this case, the method follows the sample of the gradient

al+1 = al − ηl+1∇Q̂πB (b, al ) (31)

where ∇Q̂πB is a sample of the true gradient ∇QπB , deter-
mined via execution of the rollout, l is the iteration, and ηl+1

is the—commonly decaying—step size. As the execution of
the rollout is not differentiable, we use a finite-difference

Fig. 5. Estimation of the Q-value using a sufficiently high number of
samples. The heat map shows the grid-based belief representation, while
the contours represent the Q-values. The ellipse shown is the Gaussian

approximation (x̃, P̃) of the belief. (a) Belief 0. (b) Belief 16.

approximation to the gradient, using two two-sided differ-
ences. Those four evaluation points use CRNs to reduce the
variance of the gradient estimate. However, the samples of
the gradient at different iterations are not correlated. This
algorithm is derived from stochastic approximation theory,
especially the Kiefer–Wolfowitz algorithm [49], [50] and is
commonly used to optimize machine learning models [51].

We also evaluate a version based on deterministic sam-
ples. As the evaluation of the action value is then a determin-
istic problem, standard optimization methods can be used,
for example, BFGS, which is an effective quasi-Newton
method [52]. We used the implementation from JSAT [53],
version 0.0.9.

VI. EXPERIMENTAL METHODOLOGY

We evaluated the different action search methods based
on how well they can find the minimum of the action value
QπB . For this, it was required to determine the true minimum,
which is not a priori obvious. Therefore, a set of belief
states was sampled, for which a close approximation to
the minimum was computed offline. Then, the optimization
methods were tested on this set of beliefs.

To create the belief set, we ran the planner from [34]
20 times with different random seeds and saved at each
decision point the belief state. We used Scenario 2 from the
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TABLE II
Parameters of the Scenario

prior work, which can be seen in Fig. 4. Here, the target
position is drawn for each run from a Gaussian distributed
prior, which is known to the localizer. The parameters
correspond to the ones in the prior work and are summarized
in Table II. After exclusion of the beliefs where the target
had been localized and only including the initial belief state
once, this led to a set B of 25 distinct belief states.

For an approximation of the true optimal action value,
the action space was discretized on the whole scenario area
with a 150×150 action grid, i.e., with 2 m distance between
the actions. For each action a and belief b, we estimated the
value of QπB (b, a), using sufficient random samples such
that the standard error of the mean was below 0.1. This
was around 2000–20 000 samples, depending on the action
and belief. The results of these computations can be seen
in Fig. 5 for two exemplary beliefs. With qopt

b , we denote
the minimal Q-value found in this step for belief b. While
this is only an approximation, under a visual inspection, the
function QπB (b, a) appeared very continuous on the 150×
150 action grid, and therefore, it is not expected that the true
optimum is significantly different.

It can be seen that the function QπB (b, a) has typically
two minima, which are approximately symmetric to the
major axis of the Gaussian approximation (x̃, P̃) of the
belief. This is similar to the points M1 and M2 in the base
policy [see Fig. 2(a)]. However, the optimal action was
sometimes nearer to the target estimate x̃ than the action
chosen by the base policy. In addition, the optimal action
was not always placed on a direct extension of the minor
axis.

We then executed the control algorithm on each belief,
using the combinations as indicated by Table I for action
selection. The deterministic methods were executed once,
and the MC methods were executed 100 times. For each
selected action during evaluation run r and belief b, we
computed the approximately true Q-value qbr of the selected
action by linear interpolation of the 150×150 action grid.

Therefore, for each method, we can compute the mean
difference between the Q-value of the selected action to the
optimum qopt

b of the corresponding belief

1

‖B‖
1

Ne

∑
b∈B

Ne−1∑
r=0

qbr − qopt
b (32)

where Ne is the number of evaluations of the method, which
was either 1 or 100, and qbr is the Q-value for belief b and run
r. This mean distance to the optimum can also be considered
as the optimization performance of a method, taking the
intuition that the action search is a stochastic optimization
problem to find the action with minimal QπB (b, a).

Fig. 6. Results of the uniform allocation and sequential halving.

VII. RESULTS

For improved clarity, the presentation of the results is
separated into three sections, where the first discusses the
uniform allocation and sequential halving, and the other
two the quadrant and gradient methods. The methods are
split up in this way, as the first set of methods considers
each action independently; therefore, these methods are
also feasible for arbitrary action spaces. The second set of
methods assume that the action value function is continuous,
i.e., that evaluating an action also gives information about
nearby actions.

The results are shown as the optimization performance
(32) dependent on the required number of rollouts. A
method is considered Pareto optimal, if no other method
achieves a better optimization performance with less or an
equal number of rollouts.

A. Uniform Allocation and Sequential Halving

Fig. 6 shows the results of uniform allocation and se-
quential halving. The uniform allocation uses a 10×10 and
20×20 action grid, and the number of samples is varied
over powers of two. That is, the first data point of each line
corresponds to a single sample and either 100 (=10 · 10 · 1)
or 400 (=20 · 20 · 1) rollouts. The following data points
correspond to 2, 4, 8, . . . samples.

The sequential halving algorithm is evaluated on the
same action grids with a computational budget N , i.e., the
total number of rollouts, of 700, 1400, and 2100 for the
10×10 grid and 3600, 7200, and 10 800 for the 20×20 grid.
These are chosen as multiples of 100 · �log2(100) and 400 ·
�log2(400). Due to the rounding, the actually used number
of rollouts are 689, 1391, 2093, and 3589, 7191, 10 793.

For the uniform allocation, it can be seen that using
CRNs is strictly better than PMC samples. It can also be
seen that the approach with deterministic samples achieves
better results than using CRNs. However, while the MC ap-
proaches improve monotonically for increasing number of
samples, the same is not true for the deterministic approach.
Sometimes, it has a worse result for a higher number of used
samples. This is likely because the deterministic samples
are a suboptimal approximation method for the density. It
should be noted that because of the deterministic nature of
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Fig. 7. Results of the quadrant search.

the algorithm, it naturally also misses the averaging effect
that multiple runs have on the MC algorithms.

It can also be seen that for a small computational bud-
get N , it is better to have a smaller action space, where
the actions are evaluated more often, than a bigger action
space with potentially better actions, but which cannot be
evaluated that often. However, for higher budgets, the bigger
action space shows better results.

The sequential halving algorithm shows consistently
better results than uniform allocation, as it can focus on the
most promising actions. Here, each evaluated configuration
is Pareto optimal. Uniform allocation with 64 deterministic
samples on the 20×20 grid shows approximately the same
optimization performance as sequential halving with CRNs
and a budget of 10 800. However, it required more than twice
the number of rollouts (25 600 versus 10 793).

These optimization methods are fundamentally limited,
in that they will not be able to select an action not on their
action set. The optimum is computed over an action grid
with a very high resolution (see Section VI). This optimum
does not necessarily have to be on the 10×10 or 20×20
action grid; therefore, these methods likely would not reach
zero even with a high amount of rollouts.

Finally, the base policy itself would score 2.98 on this
chart, which shows that the rollout improvement property
cannot be achieved when the estimation of the action values
is too inaccurate.

B. Quadrant Search

Fig. 7 shows the results of the quadrant search. For a
given number of iterations, we vary the number of samples,
again being powers of two. For example, the first point
with a single sample and three iterations corresponds to
9 + 3 × 5 rollouts. The algorithm is at the risk of selecting
the wrong quadrant, as the optimum is not guaranteed to
be in the quadrant whose corners have on average the best
values. Because the algorithm makes a hard decision on the
quadrant, it would not be able to recover from such a choice.
Therefore, even with perfect evaluation of the actions, the
algorithm would not necessarily converge to zero. However,
this method works surprisingly well, and achieves a good
performance for a low number of rollouts.

Fig. 8. Results of the gradient-based methods.

Similar as in the case of uniform allocation, we can see
that the approach with deterministic samples is better than
the one with CRNs.

C. Gradient-Based Methods

Fig. 8 shows the results of the gradient-based methods.
For the SGD, the number of iterations Nl is varied, with
a fixed number of samples to estimate the gradient. As an
example, SGD with one sample and 25 iterations would
require a total number of 100 rollouts, as it uses two two-
sided finite differences.

We used a finite-difference size of ±20 and an exponen-
tial decay of ηl with

ηl = 20 · exp

(
−4

l

Nl − 1

)
. (33)

With iteration l = 0, 1, . . . Nl − 1, the above step size
schedule interpolates between η0 = 20 and ηNl−1 = 20 ·
exp(−4) ≈ 0.366. We did not perform an explicit hyper-
parameter optimization of the step size. The algorithm was
initialized with the action selected by the base policy, which
seems to be a reasonable choice in the policy rollout case.

For BFGS, the same initialization and finite difference
size was used, and the gradient was computed using the
deterministic samples. We terminated the algorithm once a
limit of evaluations of QπB (b, a) (including those to estimate
the gradient) was reached and varied this limit. The total
number of rollouts then consists of this limit multiplied by
the number of samples used to estimate the Q-value.

The SGD method shows very good results, being Pareto
optimal to BFGS, except in a single case where the BFGS
method is better. It also shows a monotonic improvement
of the optimization performance with increasing number of
iterations. For a high number of rollouts, it achieves a lower
error as the previous methods. However, a convergence to
the optimum is not guaranteed as those methods can become
stuck in local optima.

Interestingly, BFGS shows almost no improvement
when a higher number of rollouts is used. A likely explana-
tion is that the estimate of the Q-values with deterministic
samples is not as smooth as the true Q-value function. An
example of computing the Q-values of the initial belief
with two deterministic samples can be seen in Fig. 9. One
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Fig. 9. Comparison of the approximately true Q-values of the initial
belief and its estimate via two deterministic samples. (a) True value of
QπB (b0, a) for different a. (b) Approximation with two deterministic

samples.

should note that the same holds true for estimating the
Q-value with a small number of MC samples. However,
the SGD performs a new sampling in each iteration, there-
fore approximating gradient descent on the true value.

D. Comparison

Each of the considered methods in this section has
several degrees of freedom in their parameters. The choice
of search method, sampling method, number of samples,
and other method specific parameters gives a specific rollout
implementation. The number of rollouts we can execute
in practice will be limited by computational power of the
platform. Therefore, when we use this algorithm in an actual
system, we likely will have a computational budget of pos-
sible rollouts and want to select the algorithm components,
such that we can make the best use of this computational
budget. Fig. 10 shows a subset of the results in a single
figure, for direct comparison. This figure gives the opti-
mization performance we can achieve with a given number
of rollouts and lets us compare the rollout implementations

Fig. 10. Selected subset of the plots in Figs. 6–8.

Fig. 11. Correlation between the optimizer performance and the rollout
algorithm performance.

with a common measure. A method is Pareto optimal if
no other method achieves a smaller mean distance to the
optimum with lesser rollouts. It can be seen that the SGD
approaches are almost everywhere Pareto optimal to the
other approaches.

VIII. CORRELATION WITH ROLLOUT PERFORMANCE

In the previous section, we evaluated the different meth-
ods to search for the optimal action on a sampled set
of beliefs, where, for each belief, we had computed the
approximately optimal action value. This gave us a way
to quantify the optimization performance of a method, i.e.,
how close it comes to selecting the optimal action.

However, it is not self-evident whether this performance
measure correlates with the performance of the resulting
control algorithm. While one could expect that such a
correlation exists, the base policy is only an approximation
of future behavior. Therefore, nonminimum actions might
be actually optimal. The rollout improvement property only
guarantees that when the true minimizing action is chosen,
the resulting control algorithm is at least as good as the base
policy.

To evaluate how much the optimization performance
correlates with the performance of the control algorithm,
we evaluated the scenario with each action search config-
uration for 20 000 MC runs. Fig. 11 shows the correlation
between the optimization performance and the performance
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Fig. 12. Rollout performance for different number of rollouts, for a
selected subset. Star denotes the method used in [34]. The error bars

denote the 95% confidence interval.

of the resulting control algorithm, given as mean time until
localization. It can be clearly seen that a correlation exists
(Pearson: r = 0.775). The gradient-based algorithms show
several outliers from this correlation, where the time until
localization is worse than expected. The worse performance
of the gradient-based methods is due to the initial belief.
Here, the base policy selects an action far from the opti-
mal action. As this is used for the initialization for those
methods, the optimal solution cannot be reached when the
number of iterations is small. The grid-based methods and
the quadrant-based method do not have this problem, as they
do not require an initialization. We previously considered
the initial belief as an independent belief. However, as it
appears at the start of every simulation, it appears more
frequently than the other beliefs. When correcting for this
fact by weighting belief zero by the factor 20, the number
of runs used to sample the beliefs, the correlation increases
to r = 0.965.

Fig. 12 shows the actual performance of the same meth-
ods as shown in Fig. 10. It can be seen that the optimization
method in [34], denoted by a star, is not on the Pareto front.
When compared to Fig. 10, it can be seen that the SGD
algorithms need a higher than expected number of samples
to achieve reasonable performance, and the quadrant search
algorithm dominates for a small computational budget time.
This can be explained due to the initial belief, as described
before. However, for a high computational budget, the best
results are achieved by the SGD and sequential halving, as
one would expect from Fig. 10. Interestingly, the uniform
allocation via deterministic samples achieves comparable
results on the actual performance when using enough sam-
ples, even though it has a lower optimizing performance in
Fig. 10.

To compare these results with classic sensor manage-
ment methods, we simulated the performance of a myopic
entropy-based planner, similar to the one used in [2] for
the same problem. This planner evaluates at each step the
possible next positions by computing the expected entropy
of the posterior. It does this by updating the current tar-
get estimate with a hypothetical noise-free measurement
based on the mean of the target position estimate. Then,

Fig. 13. Exemplary paths for sequential halving (using CRNs with a
20 × 20 grid and a budget of 7200) and uniform allocation, on the same

grid using one PMC sample per evaluation.

the position with minimal entropy is chosen as the next
measurement position. We chose a 60×60 action grid for the
possible measurement positions. For the given scenario, this
planner results in a time until localization of 67.07 ± 0.17 s.
While some of the configurations are worse than this, e.g.,
SGD with a minimal number of steps, in most cases, the
rollout-based planner shows a clear improvement.

Fig. 13 shows two exemplary paths found by the meth-
ods. This figure should give an intuition about how the
resulting paths look like. The exact shape is dependent
on the target position (which is here close to the expected
value), the measurements, and the random components of
the planner.

IX. DISCUSSION

In this section, we discuss which conclusions we can
take from our results. First, we note that the usage of CRNs
should be preferred to PMC when comparing action values.

A deterministic approximation to the uncertainty in the
target estimate improves the performance of some methods,
however, not necessarily. A likely explanation is that it im-
proves the results in cases where the search is almost global
(uniform allocation or quadrant search); however, it leads
to worse results in cases where the search is local (BFGS),
as it might produce local minima. Different from the MC
methods, it did not produce a monotonic improvement in
optimization performance and performance of the resulting
control algorithm.

For the given problem, there were two sources of
uncertainty: uncertainty in the current state estimate and
uncertainty in the future measurements. The deterministic
samples only considered the first source of uncertainty and
used the expected value for the second one. The implicit
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assumption is that it is more important to capture the uncer-
tainty in the current state estimation than the uncertainty in
the future measurements. This seems to work for the given
problem; however, it does not necessarily need to generalize
to other problems where the future measurements might
have a higher influence.

Sequential halving is an effective method to search
for the optimal action with discrete or discretized action
sets. This is likely to extend to other methods of adaptive
action evaluation. As it uses MC samples of the state and
measurements, it does not need to make any assumptions
about the uncertainty. An additional advantage is that given
the action set, the only hyperparameter to be determined is
the computational budget. A disadvantage is that it requires
at least a computational budget of N = |A|�log2|A|.

Quadrant search works well and is worth considering
when the computational budget is low. As it focuses on a
single quadrant after evaluating only nine actions, it has
the possibility to focus the search on the wrong quadrant;
however, this seems not to be an issue for the considered
problem.

SGD shows the strongest results when considering its
optimization performance on the belief set. For a small
computational budget, the resulting control algorithm is
less effective than expected. However, with a high computa-
tional budget, the control also shows a strong performance,
and its strong optimization performance makes it worth
considering. In this work, we only evaluated a single step
size schedule. This parameter has likely a significant and po-
tentially problem dependent influence on the performance.
Therefore, a higher performance might be possible, how-
ever, at the cost of more intensive hyperparameter tuning.

While we did not consider any additional constraints on
the action space, this is an important consideration. It is easy
to incorporate constraints into uniform allocation and se-
quential halving, as actions could simply be excluded from
the action set. The gradient-based approaches could either
use a regular reprojection into the action space if they move
to a forbidden action or a method as L-BFGS-B [54] which
allows for constraints could be used. The quadrant search
could use the allowed action space to place its initial 3×3
action grid if the constraints are rectangular; however, it is
not clear whether this would work for arbitrary constraints.

X. ROBUSTNESS AND GENERALIZATION

In this section, we perform a robustness analysis of the
discussion in the last section. We vary parameters in the
scenario and planner and determine whether our findings
still hold.

In a first analysis, we analyze the algorithm performance
for several choices of the action grid size. Fig. 14 shows the
time until localization for different grid sizes Ng and 20 000
MC runs. The computational budget is set to a fixed number
of 16 samples per action for the uniform method. The
sequential halving method receives an equivalent budget of
16 · Ng · Ng. The performance strongly improves until a grid
size of 10. After this, we see diminishing returns for higher

Fig. 14. Variation of the action grid size. A fixed budget of 16 samples
per grid cell is chosen. The x-axis gives the number Ng of an Ng × Ng

grid. The error bars denote the 95% confidence interval.

Fig. 15. Variation of the required time for a measurement. The SGD
and quadrant search use a small computational budget with 40 and 24
rollouts. The sequential halving has budget of 3600 and a 20×20 grid.

The error bars denote the 95% confidence interval.

grid sizes. For small grid sizes, we also see alternating
behavior for even and odd sizes, as they contain different
actions. For all action grid sizes, we can see that CRNs
are preferable to PMC sampling. We can also see that for
the same budget, sequential halving shows better results.
Finally, we can also see that the deterministic sampling
shows a nonmonotonic behavior. This is similar as observed
previously, e.g., in Fig. 12.

Fig. 15 shows the time until localization for different
required times for a single measurement with 20 000 MC
runs. Different measurement times lead to different trade-
offs between taking a measurement and moving to another
measurement position.

We compare the SGD method with four steps and one
sample per gradient computation (40 rollouts in total), the
quadrant search with deterministic sampling, three itera-
tions, and one sample per action (24 rollouts in total) and the
sequential halving method with a sampling budget of 3600.
For comparison, we also added the myopic entropy-based
method. The figure shows that the advantage of quadrant
search to SGD for small number of rollouts is robust over
different scenario instantiations. We can also see that for
a small number of rollouts, the entropy method performs
approximately as well as the rollout method with SGD for
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Fig. 16. Scenario with a uniform prior.

Fig. 17. Rollout performance for a different number of rollouts for the
scenario with a uniform prior. The error bars denote the 95%

confidence interval.

action selection. However, the better performing quadrant
search and the sequential halving with a higher budget
outperform the entropy-based method for all variations of
the measurement time.

Finally, we evaluate the methods on a different scenario
than in the main part of the article. Fig. 16 shows the
geometry of this scenario. The targets now appear uniformly
in space on a ring around the platform, with a distance of
30–300 m. In this scenario, the platform makes an initial
measurement directly at the beginning from its starting posi-
tion, after which the initial estimate is determined. Contrary
to the previous localizer, the estimate is made using the
expected value of the estimated probability density, instead
of the maximal likelihood. The remaining parameters are
kept at the same values.

Fig. 17 shows the results of 20 000 MC runs on this
scenario. It shows the same methods as in Fig. 10. As in the
previous scenario, we evaluated an entropy-based planner
as comparison, resulting in an average localization time of
98.22 ± 0.2 s. While there are differences in the absolutes
of the numbers, both figures show the same behaviors: The
rollout-based approaches are in most cases better than the
myopic entropy-based planner. The quadrant search is the
best for a low number of rollouts. The methods based on
deterministic samples show a nonmonotonic improvement.

Sequential halving is the best method for selecting from a
finite set. We also see a fast improvement with additional
samples in the stochastic gradient. This effect is even more
pronounced in this scenario.

In this article, the altitude of the UAV was not consid-
ered. The algorithms would extend straightforwardly to a
3-D case, where the sensor platform is able to change its
altitude. As long as the target remains stationary and on
the surface, the main adaption would be a search through a
3-D action space, instead of a 2-D. The methods considered
in this article would still be feasible, with the quadrant
search then becoming an octant search. However, due to
the higher dimension of the action space, we would expect
that methods that intelligently evaluate the actions (i.e.,
sequential halving, octant search, and SGD) become more
useful with more dimensions than a uniform allocation.

Generalization to a moving emitter would also be fea-
sible; however, it would lead to additional challenges not
considered in this article. The first is the addition of a
prediction model, which would expand the uncertainty in
the target localization over time due to the target movement.
The second would be the drawing of the samples. For a
stationary emitter, only a single position is sufficient; for a
moving emitter, its path needs to be sampled. Especially,
this sampling of the path needs to correspond to the true
probabilities of target movement to approximate the ex-
pected future cost properly. An assumption that the target
moves uniformly in its possible movement space is likely
not correct. Finally, the termination criterion of the rollout
needs to be changed. In the presented algorithm, the rollout
terminates once the emitter is localized. However, even if
a moving emitter is localized, it will move away from this
localization again. In this case, a rolling horizon approach
would be more useful.

XI. CONCLUSION

In this article, we have proposed and evaluated methods
for the action selection step in a policy rollout algorithm,
which have not been used for this purpose before. We
compared the methods based on their ability to reach the
minimal Q-value in comparison to the required number
of rollouts, as well as by the performance of the resulting
control algorithm. Our evaluation problem was to control
a UAV, equipped with a bearing only sensor, which should
localize an emitter as fast as possible.

With this work, we made the following contributions.

1) We have shown the application of policy rollout in a
problem with a continuous action space. Prior work
was mostly focused on discrete action spaces.

2) We evaluated multiple methods to find the optimal
action in a rollout. Prior work commonly chose MC
sampling with a fixed and equal number of rollouts
for each action. We have shown that with successive
halving also for a discrete action space, methods that
are more effective exist. To the authors’ knowledge,
this is the first time SGD was considered in the policy
rollout context.
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3) We have shown that the optimization performance
of the action selection algorithm correlates with the
actual performance of the policy rollout. This seems
to be intuitively clear; however, this enforces our
belief that optimizing this algorithmic component is
important.

4) Finally, we have described different variants with
improved results of the UAV control algorithm pre-
viously presented in [34].

Due to space constraints, this analysis of optimization
methods is only partial and some interesting methods have
been omitted. It would be interesting for future work to
evaluate other best-arm methods from the bandit litera-
ture, generalizations of bandits into continuous spaces [39],
simulation optimization methods [37], or response surface
modeling [55]. The strong optimizing performance of SGD
also indicates that a further exploration of this method in the
context of policy rollout would be worthwhile. Research in
SGD led to several improved variants, mostly in the context
of training machine learning models. It would be interesting
to consider methods, such as Adam [56] or AdaGrad [57],
in the context of policy rollout.
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