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In practice, additional knowledge about the target to be tracked,
other than its fundamental dynamics, can often be modeled as a
set of soft constraints and utilized in a filtering process to improve
the tracking performance. This paper develops a general approach
to the modeling of soft inequality constraints, and investigates par-
ticle filtering (PF) with soft state constraints for target tracking.
We develop two PF algorithms with soft inequality constraints, i.e.,
a sequential-importance-resampling particle filter and an auxiliary
sampling mechanism. The latter probabilistically selects the candi-
date particles from the soft inequality constraints of the state variables
so that they are more likely to comply with the soft constraints. The
performances of the proposed algorithms are evaluated using Monte
Carlo simulations in a target tracking scenario.
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I. INTRODUCTION

State estimation plays the central role in target tracking.
The objective of state estimation is to draw statistical infer-
ence about the target status (e.g., position and velocity) by
incorporating the sensor data, the dynamic model of the tar-
get, and possibly some additional external knowledge about
the problem [1]. In the Bayesian framework, state estima-
tion can be achieved by calculating or approximating the
posterior probability density function (pdf) of the system’s
state vector after each new observation is acquired. Most
of the classical approaches to Bayesian state estimation are
based on the Kalman filter (KF) that is known to be op-
timal for linear systems with Gaussian noise [2]. To deal
with nonlinear problems, the extended KF and some more
sophisticated algorithms, such as unscented KF and Gaus-
sian mixture filter, have been developed in the literature
[2], [3]. These algorithms are usually based on various lin-
earization and/or Gaussian approximation techniques. The
particle filtering (PF) approach, on the other hand, uses a
set of samples (particles) with associated weights to directly
estimate the posterior distribution of the state vector. Hence,
it is capable of dealing with highly nonlinear/non-Gaussian
problems. General discussions about particle filters can be
found in [4]–[6].

In many applications, external knowledge other than the
state-space model can be utilized to provide additional in-
formation about the system of interest. Such context-based
information, once being exploited appropriately through
information fusion, may substantially improve statistical
inference for the status of the system [7]. Take the road-
constrained ground target tracking as an example: the target
vehicle’s position is constrained by the physical road net-
work and its speed may also be restricted by the traffic rules
[8], [9]. Hence, any relevant target vehicle information will
reduce the degree of uncertainty about the vehicle being
tracked. Recent development in maritime navigation [10],
[11] has also demonstrated the benefits of using constraint-
based filtering in terms of improving estimation accuracy,
where the coastal map was converted into position con-
straints of the target ship. Another interesting work, by
Sviestins and Pirard [12], tried to modify the target dy-
namics by embedding a simple guidance law that respects
spatial constraints. In addition, state estimation using state
constraints can be found in process control applications
to large chemical plants as there are usually physical re-
strictions on certain quantities in chemical processes [13],
[14]. An overview on state estimation with equality and/or
inequality constraints can be found in [15]. Some recent ad-
vances for nonlinear/non-Gaussian systems with inequality
state constraints can be found in [16]–[18].

In most of the studies in the existing literature (e.g.,
[15]–[18]), however, the filtering algorithms are designed
for dealing with hard and deterministic constraints, i.e., the
conditions that the state variables are required to satisfy; not
much attention has been paid to the uncertainty of external
knowledge when they are transformed into state constraints
for estimation purposes. In practice, external knowledge in

3492 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 55, NO. 6 DECEMBER 2019

https://orcid.org/0000-0003-2829-9369
https://orcid.org/0000-0002-9494-6512
https://orcid.org/0000-0003-3356-2889


some applications can naturally be subject to a great degree
of uncertainty. Returning to the example of road-network-
based tracking, a vehicle may be found being out of the
road boundary due to inaccuracies of the roadmap or be-
ing temporarily beyond the permitted speed limit. Another
example is aircraft approaching and landing. The rules of
air near a terminal area of an airport provide general guide-
lines for aircraft flight patterns, but it cannot physically
restrict aircraft within certain spatial volumes [19]–[21].
In these cases, simply using hard constraints may result in
biased tracking. As Simon pointed out in [15]: “it can be ar-
gued that estimators for most practical engineering systems
should be implemented with soft constraints rather than
hard constraints.” Clearly, there is a real need to develop
new methods for state estimation with soft constraints to
deal with this kind of problem.

In the literature, a soft constraint means that it is likely
to be true; there however exists possibility that the system
may violate such a state constraint sometimes. The pio-
neering work in [22] adopted a soft-constraint setting to
enforce a slowly varying feature of a state when perform-
ing the health estimation of a turbofan engine. In a static
parameter estimation problem [23], soft-constraints were
used to impose a prior distribution of the parameters to
be estimated. In addition, Papi et al. [10] considered occa-
sional constraint violation in target tracking problems, but
the soft-constraint was simply defined by a prefixed prob-
ability regardless of the actual state. Formal formulation
of soft inequality constraints of states, however, has rarely
been seen in the literature, other than a few early cases on
equality constraints (e.g., [2], [24]) and a recent study by
Palmer et al. [25]. In [25], Kalman filtering with soft in-
equality constraints for linear systems with Gaussian noise
was investigated, where the uncertainty of knowledge was
modeled as a number of soft linear constraints characterized
with Gaussian noise.

This paper investigates Bayesian filtering with soft state
constraints, aiming to extend the filtering method for linear
systems with Gaussian noise and soft linear constraints in
[25] to general nonlinear/non-Gaussian systems. Our con-
tribution to the literature is twofold. First, rather than to
use ad hoc methods to deal with soft inequality constraints,
we propose a general formulation for soft inequality con-
straints of states that boils down soft inequality constraints
to an additional pseudo measurement. Second, for gen-
eral nonlinear/non-Gaussian systems with soft inequality
constraints, we develop two PF algorithms in which the
additional pseudo measurement characterizing the soft in-
equality constraints of states can nicely be incorporated
into the filtering process via a modified likelihood func-
tion. More specifically, following the development of the
soft-constrained PF (scPF), which is a natural extension of
PF with soft state constraints incorporated into the modi-
fied likelihood function, we propose a novel auxiliary PF
(termed soft-constrained APF (scAPF)) to improve the ef-
fectiveness of filtering. In the scAPF, we follow the original
auxiliary particle filter (APF) [26] and the APF algorithm

with hard inequality constraints [18], and investigate how
to select particles such that those with higher likelihood
of complying with the state constraints are more likely to
propagate to the next time step.

The rest of this paper is organized as follows. In
Section II, the problem of soft-constrained Bayesian state
estimation is considered, with a proposed general for-
mulation of soft inequality constraints. The importance-
sampling-based particle filter with soft constraints, scPF
algorithm, is developed in Section III. Section IV further
improves state estimation by developing the scAPF algo-
rithm. Numerical simulation study is carried out in Sec-
tion V, which is followed by the final conclusions and dis-
cussion section.

II. PROBLEM FORMULATION

In this section, the problem of state estimation with soft
inequality constraints is formulated within the Bayesian
framework.

A. Statement of the Problem

Consider a dynamic system that is described by the
following discrete-time state-space model:

xk+1 = fk(xk) + wk (1)

zk = hk(xk) + vk (2)

where xk ∈ R
nx is the system state vector at time in-

stant k, zk ∈ R
nz the measurement vector, wk the pro-

cess noise vector, and vk the measurement noise vector.
fk : R

nx → R
nx and hk : R

nx → R
nz are possibly nonlin-

ear vector-valued system functions and observation func-
tions, respectively. The process and measurement noise vec-
tors are assumed to be absolutely continuous random vec-
tors with zero mean. They are mutually independent and
follow pdfs wk ∼ pw(wk) and vk ∼ pv(vk), respectively.
Let x0:k = {x0, x1, . . . , xk} and z1:k = {z1, z2, . . . , zk} de-
note the sets of all states and all measurements up to time
instant k, respectively.

Clearly, the distribution of the state vector xk condi-
tioned on xk−1 can be derived from (1) and it is denoted by
p(xk|xk−1). Likewise, the distribution of measurement zk

conditioned on xk , p(zk|xk), can be obtained from (2); it is
usually termed a likelihood function. The objective of state
estimation is to recursively infer for the state vector xk ,
given the available information. In Bayesian sate estima-
tion, this amounts to construct the posterior pdf p(x0:k|z1:k)
given the observation sequence z1:k (see [4] and [5]).

B. Modeling of Soft Inequality Constraints

The states of a system usually represent some phys-
ical quantities of interest. In practice, the state vector
may be restricted to a certain feasible region. Mathemat-
ically, such constraints can usually be represented by a
set of nonlinear inequality equations, gk(xk) ≤ 0, where
gk = [g1,k, . . . , gnc,k]T : R

nx → R
nc is a vector of possibly

nonlinear functions of xk . Although there are many studies
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investigating filtering with hard constraints (e.g., [13], [15],
[16], and [18]), the hard constraints provide no mechanism
to tolerate any uncertainty in the external knowledge on the
feasible region within which the state vector is supposed to
evolve.

Inspired by [25], in this paper, we formulate soft in-
equality constraints by introducing a random vector for
uncertainty, �k ∈ R

nc , such that

gk(xk) − �k ≤ 0 (3)

where �k = [γ1,k, . . . , γnc,k]T is an unknown vector of non-
negative random variables that follows a pdf pγ (�k), where
pγ (.) can be dependent on time but we suppress the time
index to keep the notation simple. We assume that the time-
varying random vector �k is independent of state vector xk ,
as well as �j for j �= k.

Clearly the random vector �k for uncertainty relaxes the
requirement of the state vector fulfilling the constraints. In
this way, the state constraints (3) become nondeterministic
because the random vector �k follows some certain proba-
bilistic law. We also point out that the state constraints (3)
include the soft constraints in [25] as a special case; the
latter considers a set of linear inequality constraints.

Let � denote the space for the unknown random vector
�k . At time instant k, we define

Ck := {�k ∈ � | gk(xk) − �k ≤ 0} . (4)

The conditional probability of such an event can be written
explicitly as

Pr{Ck|xk} = Pr{gk(xk) − �k ≤ 0}
=
∫

gk(xk)−�k≤0
pγ (�k) d�k.

(5)

To keep the notation simple, we suppress the subscript k

from �k in the rest of this paper.
We note that for hard constraints without involv-

ing uncertainty, i.e., � ≡ 0, the above equation can be
simplified as

Pr{Ck|xk} =
{

1, if g(xk) ≤ 0;
0, otherwise

(6)

which was examined in [18].
In the case that the elements γj (j = 1, . . . , nc) are inde-

pendent of each other and each follows a pdf γj ∼ pγj
(γj ),

we have pγ (�) = ∏nc

j=1 pγj
(γj ). In practice, the distribu-

tions of the individual random variables for uncertainty,
pγi

(γi), i = 1, . . . , nc, can be specified from a wide range
of distributions, such as the truncated Gaussian, exponen-
tial, truncated logistic, and gamma distributions. For ex-
ample, we can consider the scenario that each γi follows a
zero-mean Gaussian distribution truncated at zero, denoted
as T N (γ ; 0, σ 2)

p(γ ) =
{

2(
√

2πσ )−1 exp[−γ 2/(2σ 2)] if γ ≥ 0

0 if γ < 0
.

Alternatively, the logistic distribution truncated at zero
can be used to replace the above truncated Gaussian
distribution.

Another simple choice is exponential distributions, i.e.,
γ ∼ E(γ ; μ) with mean μ

p(γ ) =
{

μ−1 exp(−γ /μ) if γ ≥ 0

0 if γ < 0
.

Gamma distributions are extensions of the above exponen-
tial distributions; they are more flexible to fit more compli-
cated practical problems.

In practice, the parameters of the pdf pγ (�), e.g., σ and
μ in the above equations, need to be specified prior to state
estimation. We also point out that from a computational
perspective, the exponential and truncated logistic distri-
butions are less computationally expensive. Hence, where
appropriate they can be used to fit soft-constraints in appli-
cations that need real-time solutions.

Before we conclude this section, we offer some fur-
ther comments on the modeling of soft state constraints. In
the literature, when the soft constraints of states are equal-
ity constraints, a commonly used approach is to add small
nonzero measurement noise to the perfect constraint equa-
tions. This leads to a set of pseudo-measurements that can
thus be incorporated into the likelihood function for Kalman
filtering (see [15]). When the soft constraints of states
are nonlinear, non-Gaussian, and inequality constraints, as
specified in (3), the general formulation developed in this
section boils down the problem into a pseudo-measurement
in (5). As we will discuss in the following sections, this
pseudo-measurement that characterizes the soft inequality
constraints can be incorporated into the likelihood func-
tion for PF. This provides a unified approach to dealing
with soft constraints by modifying the corresponding like-
lihood function, no matter whether it is equality/inequality,
linear/nonlinear, Gaussian/non-Gaussian noise-based con-
straints. Clearly, similar tricks could be used with many
other measurements. We also point out that this approach is
closely linked to the imprecise likelihood approach in [27],
where the observation equations have some parameters that
are only partially known.

III. IMPORTANCE SAMPLING WITH SOFT
CONSTRAINTS

In this section, we take into account the additional in-
formation about the state vector, which is modeled as a
set of soft constraints and develop the scPF algorithm to
estimate the state vector. More specifically, we will draw
Bayesian inference about x0:k , given the information pro-
vided by the observations z1:k and the soft-constraint infor-
mation C1:k � {C1, . . . , Ck} up to the present time k, using
sequential importance-resampling (SIR).

For system (1), (2) with soft constraints (3), the joint
posterior distribution of the state sequence x0:k can be
derived using the following Bayesian recursion (see,
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e.g., [4]):

p(x0:k|z1:k, C1:k) = p(x0:k, z1:k, C1:k)

p(z1:k, C1:k)

= 1

c
p(zk|xk) Pr{Ck|xk} p(xk|xk−1)

× p(x0:k−1|z1:k−1, C1:k−1)

(7)

where c is a normalization scalar defined as

c = p(zk, Ck|z1:k−1, C1:k−1). (8)

We note that the recursion in (7) consists of four el-
ements: the likelihood function p(zk|xk), state transition
distribution p(xk|xk−1), the posterior distribution at the
previous time step p(x0:k−1|z1:k−1, C1:k−1), and the soft-
constraint-related probability p(Ck|xk). The first three el-
ements are analogous to their counterparts in the standard
PF problems [28]. The fourth element Pr{Ck|xk}, however,
is related to the soft constraints; it will provide additional
information for statistical inference [10].

In general, for a nonlinear/non-Gaussian system, there
is no analytically tractable solution to the posterior pdf in
(7); therefore, a numerical approach such as the Monte
Carlo method based on importance sampling is often
adopted. Specifically, suppose that a set of N particles
{xi

0:k}Ni=1 are drawn independently from a proposal dis-
tribution π(x0:k|z1:k, C1:k). Then, the posterior distribution
p(x0:k|z1:k, C1:k) can be approximated as

p(x0:k|z1:k, C1:k) ≈
N∑

i=1

wi
kδ(x0:k − xi

0:k) (9)

where δ(·) denotes the Dirac delta function and the impor-
tance weights wi

k , i = 1, . . . , N are calculated as

wi
k ∝ p(xi

0:k|z1:k, C1:k)

π(xi
0:k|z1:k, C1:k)

, i = 1, . . . , N (10)

followed by the normalization such that
∑N

i=1 wi
k = 1.

Usually the proposal density is chosen so that it can be
written in a sequential manner as follows:

π(x0:k|z1:k, C1:k)

= π(xk|x0:k−1, z1:k, C1:k)π(x0:k−1|z1:k−1, C1:k−1).
(11)

Substituting the proposal distribution (11) and the recur-
sion (7) into the importance weights (10) yields the weight
updating equation

wi
k ∝ wi

k−1

p(zk|xi
k)p(Ck|xi

k)p(xi
k|xi

k−1)

π(xi
k|xi

0:k−1, z1:k, C1:k)
. (12)

In many applications, such as target tracking, it is usu-
ally the case that only the marginal posterior distribution
p(xk|z1:k, C1:k) is of interest, and hence the previous state
trajectories x0:k−1 can be discarded. In this case, the pro-
posal distribution can be chosen to have a simplified form
of π(xk|xk−1, zk, Ck). Moreover, using the most common
choice for proposal distribution, i.e., the state transition dis-
tribution π(xk|xk−1, zk, Ck) = p(xk|xk−1), the weights can

be updated as

wi
k ∝ wi

k−1p(zk|xi
k)Pr{Ck|xi

k} (13)

where Pr{Ck|xk} comes from the pseudo-measurement that
is related to the soft constraints. This piece of information
contributes to the likelihood function for statistical infer-
ence in a similar way as the current observation zk . We
therefore treat p(zk|xk)p(Ck|xk) as a generalized likelihood
function.

Given Pr{Ck|xk} defined in (5), we have

Pr{Ck|xi
k} = Pr{gk(xi

k) − � ≤ 0}
=
∫

gk(xi
k)−�≤0

pγ (�) d�.
(14)

When the individual random variables γj are independent
of each other and each follows pγj

(γj ), we obtain

Pr{Ck|xi
k}

=
∫

· · ·
∫

gj,k(xi
k)−γj ≤0

nc∏
j=1

pγj
(γj ) dγ1 · · · dγnc

=
nc∏

j=1

∫
gj,k(xi

k)−γj ≤0
pγj

(γj ) dγj =
nc∏

j=1

φj,k(xi
k)

where

φj,k(xk) =
∫

gj,k(xk)−γj ≤0
pγj

(γj ) dγj . (15)

Note that, in this case, the constraint information about the
state vector can be evaluated by calculating the product of a
series of cumulative distribution functions (cdfs), depend-
ing on the number of soft constraints.

We consider two important special cases for the soft
constraint formulation. First, suppose that each of the ran-
dom variables for uncertainty follows a zero-mean Gaussian
distribution truncated at 0, T N (γ ; 0, σ 2). In this case, we
have

Pr{Ck|xi
k} = 2

nc∏
j=1

[
1 − 	̃

(
gj,k(xi

k); 0, σ 2
j

)]

where 	̃(u) = 	(u) if u ≥ 0 and 0 otherwise. 	(·) is the
cdf of the Gaussian distribution defined as

	(y; μ, 
) =
∫ y

−∞
N (x; μ, 
) dx.

Another important special case is the exponential dis-
tribution γj ∼ E(γj ; μj ) (j = 1, . . . , nc). In this case, we
have

Pr{Ck|xi
k} =

nc∏
j=1

exp
(−gj,k(xi

k)/μj

)

= exp

⎛
⎝−

nc∑
j=1

gj,k(xi
k)/μj

⎞
⎠ .

Clearly the exponential distribution has a much lower
computational cost than the truncated normal distribution.
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Algorithm 1: Soft-Constrained PF Algorithm.

Require: weighted samples: {xi
k−1, w

i
k−1}Ni=1

1: for i = 1 : N do
2: Draw a new particle xi

k ∼ p(xk|xi
k−1)

3: Update weight wi
k according to (13)

4: end for
5: Weight normalization such that

∑N
i wi

k = 1
6: Resampling

Ensure: new samples: {xi
k, w

i
k = 1

N
}Ni=1

From the above discussion, a recursive estimation al-
gorithm can be constructed by: 1) generating new particles
{xi

k}Ni=1 at k using the sample set {xi
k−1}Ni=1 and the proposal

distribution π(xk|xk−1, zk, Ck); and 2) updating weights us-
ing (13) after a new measurement zk is obtained and the
soft-constraint information Ck is exploited.

One important issue in PF is the degeneracy problem,
since on average, the variance of the importance weights
can only increase over time [28]. A useful measure on the
degree of degeneracy is the effective sample size (ESS) [29]

Ness = 1∑N
i=1(wi

k)2
(16)

which takes a value between 1 and N . To alleviate the
degeneracy problem, a resampling procedure can be per-
formed after the importance sampling to remove the parti-
cles with low weights and duplicate particles with higher
weights [4].

The implementation of the SIR algorithm with soft state
constraints, i.e., scPF, is provided in Algorithm 1.

IV. IMPROVED APF

The scPF described in Algorithm 1 provides a tool for
drawing inference for nonlinear/non-Gaussian systems with
soft constraints. When constructing the proposal distribu-
tion in the scPF, however, we incorporate a simple solution,
i.e., using the state transition distribution p(xk|xk−1) as the
proposal distribution, without considering the fact that the
generated particles may lie outside of the soft-constrained
area. When there are a substantial number of the generated
particles lying outside the constraint region, the correspond-
ing weights of these particles, as given by (12), are usually
very low. This may in turn lead to a low PF efficiency as
reflected by a deteriorated ESS.

Inspired by the APF and the recently developed APF
algorithm with hard constraints in [18], we now extend
the scPF algorithm and investigate a particle filter with an
auxiliary structure to alleviate this problem and improve the
efficiency of importance sampling.

A. Review of the APF

The standard APF intends to incorporate the knowl-
edge of the newly obtained observation before the sam-
pling stage so that the generated particles are more likely
to be compatible with the latest observation [30], [31].

For this end, we first draw an auxiliary particle index
from a designed distribution that weights each particle ac-
cording to its compatibility to the new observation. For
the ith particle, a suitable measure of compatibility is
the approximation p̂(zk|xi

k−1) of the predictive likelihood
p(zk|xi

k−1) = ∫
p(zk|xk)p(xk|xi

k−1) dxk; the latter is usually
difficult to calculate in practice [31]. In many applications,
p̂(zk|xi

k−1) is chosen as p(zk|λi
k), where λi

k is the centre of
p(xk|xi

k−1) (see, e.g., [4]). More specifically, we have

p(xk|z1:k) ∝
N∑

i=1

wi
k−1p(zk|xk)p(xk|xi

k−1)

=
N∑

i=1

p(zk|xk)

p̂(zk|xi
k−1)

p(xk|xi
k−1)

πi
k(xk)︸ ︷︷ ︸

wi
k(xk)

wi
k−1p̂(zk|xi

k−1)︸ ︷︷ ︸
αi

k

π i
k(xk)

(17)

where πi
k(xk) is a proposal distribution corresponding to

index i. The APF is implemented by the following steps.
1) Draw an index I i

k = j , j ∈ {1, . . . , N}, with the
probability proportional to α

j

k ;
2) Draw a particle xi

k from the proposal distribution

π
Ii
k

k (xk);

3) Calculate the unnormalized weight as wi
k = w

Ii
k

k (xi
k).

B. Soft-Constraint-Based APF

In this section, we develop a soft-constraint-based APF
algorithm. Following the discussion in the previous sec-
tion, to improve the propagation of particles, we construct
an approximate predictive likelihood that not only takes
into consideration the information contained in the new
observation, but also accounts for the compliance with
the soft-constraints. Specifically, we choose p̂(zk|xi

k−1) to
be p(zk|λi

k)p(λi
k|xi

k−1), i = 1, . . . , N , where λi
k denotes

the mode of the soft-constrained transition distribution
Pr{Ck|xk}p(xk|xi

k−1), i.e.,

λi
k = arg max

xk

Pr{Ck|xk}p(xk|xi
k−1). (18)

The mode λi
k characterizes the most probable location

of the predicted state vector xk given the particle xi
k−1,

i = 1, . . . , N , in conjunction with the soft-constraint in-
formation. Therefore, for each particle i, p(zk|λi

k) reflects
the new-observation-based likelihood, whereas p(λi

k|xi
k−1)

measures the compliance of this particle with the soft con-
straints. This is illustrated by Fig. 1, where the state tran-
sition distribution at time k is assumed to be p(xk|xi

k−1) =
N (xk; 1, 1) (represented by the dotted line). The state
soft-constraint is chosen as g(xk) − γ ≤ 0, where g(xk) =
3 − xk and the uncertainty variable γ ∼ T N (γ ; 0, 1). The
soft constraint is therefore characterized by Pr(Ck|xk) =
2[1 − 	̃(3 − xk; 0, 1)] (the broken line). The state transi-
tion distribution multiplied by the constraint-related proba-
bility, i.e., Pr{Ck|xk}p(xk|xi

k−1), is depicted by the solid line
with its mode indicated by a circle.
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Fig. 1. Illustration of the mode location of the state transition
distribution under soft constraints.

To enable the sampling with the proposed predictive
likelihood, the mode λi

k needs to be calculated efficiently.
We note that the mode defined in (18) is equivalent to

λi
k = arg min

xk

− log
[
p(xk|xi

k−1)
]− log [Pr{Ck|xk}] (19)

where Ck defined in (4).
We follow [18] and solve the above optimiza-

tion problem for each particle i. Specifically, we
suppose that p(xk|xi

k−1) is log-concave and we ex-
pand it about its mean x̄i

k = fk−1(xi
k−1) to the sec-

ond order, i.e., − log
[
p(xk|xi

k−1)
] ≈ (xk − x̄i

k)T Di
k−1 +

(xk − x̄i
k)T V i

k−1(xk − x̄i
k)/2 + constant, where Di

k−1 and
V i

k−1 denote the first- and second-order derivatives of
− log[p(xk|xi

k−1)] evaluated at x̄i
k . For the case where the

process noise follows a Gaussian distribution pw(wk) =
N (wk; 0, Qk) with covariance matrix Qk , x̄i

k is the mean
as well as the mode. Hence, we have − log

[
p(xk|xi

k−1)
] =

(xk − x̄i
k)T Qk−1(xk − x̄i

k)/2 + constant.
Consequently, when the uncertainty variables are inde-

pendent of each other, finding the mode for each particle i

in (19) can be reformulated as an unconstrained nonlinear
optimization

min
xk

J i
k = (xk − x̄i

k)T V i
k−1(xk − x̄i

k)/2

+ (xk − x̄i
k)T Di

k−1 −
nc∑

j=1

log φj,k(xk)
(20)

where φj,k(xk) is given by (15).
It can be observed that the first two terms on the right-

hand side in (20) is a quadratic function that characterizes
the deviation of a solution from the unconstrained centre of
p(xk|xi

k−1), i.e., x̄i
k , whereas the second term is designed to

drive the solution moving toward the constraint area.
We consider an important scenario where gj,k(x̄i

k) ≤ 0
(j = 1, . . . , nc) for a given particle xi

k−1. Since x̄i
k lies

within the constraint area, we obtain log φj,k(xk) = 0 at
xk = x̄i

k . Consequently, we obtain λi
k = x̄i

k − [V i
k−1]−1Di

k−1
from (20). In particular, if the process noise follows the
Gaussian distribution pw(wk) = N (wk; 0, Qk), we have
λi

k = x̄i
k .

In general, the optimization problem (20) is nonlinear
and hence its exact global minimum is difficult to find.

Fig. 2. Illustration of the new proposal distribution for a soft inequality
constraint.

However, as argued in [18], the purpose of obtaining the
constrained mode λi

k through the optimization is to replace
the unconstrained center x̄i

k with an improved representa-
tion of the transition distribution that is subject to the soft
constraints. The obtained mode will be used to select parti-
cles and to construct a proposal distribution. Consequently,
there is no need to find the exact solution for each opti-
mization problem; the approximation errors can statistically
be corrected by using the corresponding weights (see (24)
later) in the importance sampling stage. In the Appendix,
we outline a fast algorithm for solving the optimization
problem (20) with a very low computational cost.

In the rest of this section we discuss how to construct the
proposal distributions from which particles will be drawn.

First, after an approximate mode λi
k is obtained, in-

dexes I i
k , i = 1, . . . , N , with a probability proportional to

wi
k−1p(zk|λi

k)p(λi
k|xi

k−1) can be drawn in the resampling
stage.

Next, for each given I i
k , we choose the proposal dis-

tribution π(xk|z1:k, C1:k) to be the transition distribution

p(xk|xI i
k

k−1) translated in a way such that it has its mode

at λ
Ii
k

k , where the index I i is obtained from the resampling

stage. We denote this proposal distribution by π(xk|λIi
k

k ).
Specifically, we choose

π(xk|λIi
k

k ) = p
(

xk − λ
Ii
k

k + x̄
I i
k

k |xI i
k

k−1

)
. (21)

As shown in (21), shifting the probability mass toward
the constraint region results in the proposal density (21)
closer to the optimal one with a heavier tail of the density,
leading to an increase in the probability of drawing particles
in the constraint region.

We then draw a particle from the above proposal dis-
tribution for each given I i

k . In doing so, the particle drawn
from this proposal distribution has a much high probability
to comply with the constraints because the computation of

λ
Ii
k

k has taken into account the soft constraints.
To illustrate this sampling process, we return to the pre-

vious example where the state soft-constraint is defined as
g(xk) − γ ≤ 0 with g(xk) = 3 − xk and γ ∼ T N (γ ; 0, 1),
and the state transition distribution at time k is p(xk|xi

k−1) =
N (xk; 1, 1). Fig. 2 displays two distributions, i.e., the tran-
sition distribution p(xk|xi

k−1) and π(xk|λi
k) in (21). It can be

seen from Fig. 2 that, if the transition distribution p(xk |xi
k−1)
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(represented by the dotted line with the mode of 1) is used
as the proposal distribution, then it has a very low probabil-
ity of complying with the constraint g(xk) = 3 − xk ≤ 0.
The new proposal distribution in (21), π(xk|λi

k) (the solid
line), has the model of around 2.29. As a result, the chance
that the particles drawn from this new proposal distribution
comply with the soft-constraint is substantially increased,
as illustrated in Fig. 2.

Finally, we note that, comparing to the direct sampling

from the transition distribution p(xk|xI i
k

k−1), the importance
weights need to be adjusted by a factor

ρi
k =

p
(

xk|xI i
k

k−1

)

π
(

xk|λIi
k

k

) . (22)

We summarize the overall filtering process as follows.
First, with the particles {xi

k−1; wi
k−1}Ni=1, we can rewrite the

posterior pdf to be

p(xk|z1:k, C1:k)

∝
N∑

i=1

wi
k−1p(zk|xk)p(Ck|xk)p(xk|xi

k−1)

=
N∑

i=1

p(zk|xk)p(Ck|xk)p(xk|xi
k−1)

p(zk|λi
k)p(λi

k|xi
k−1)πi

k(xk)︸ ︷︷ ︸
w̃i

k(xk)

× wi
k−1p(zk|λi

k)p(λi
k|xi

k−1)︸ ︷︷ ︸
αi

k

π i
k(xk). (23)

At the resampling stage, the particles from time k − 1 are
selected with the probabilities proportional to αi

k for prop-
agation. This results in a set of indexes I i

k (i = 1, . . . , N).
Next, each new particle xi

k at time k is drawn from the pro-

posal distribution πi
k(xk) = π(xk|λIi

k

k ). Correspondingly, the
weight w̃i

k(xi
k) is updated as

w̃i
k(xi

k) =
p(zk|xi

k) p(Ck|xi
k) p

(
xi

k|xI i
k

k−1

)

p
(

zk|λIi
k

k

)
p
(
λ

Ii
k

k |xI i
k

k−1

)
π
(

xi
k|λIi

k

k

) (24)

subject to the normalization. Note that, from (23), the
weights, as defined in (24), ensure that the obtained par-
ticles constitute a representative sample of the true poste-
rior distribution. The essentials of the scAPF at time k are
outlined in Algorithm 2.

V. NUMERICAL SIMULATION

A. Simulation Scenario

In this section, the proposed soft-constrained particle
filters are evaluated and compared using an airborne tar-
get tracking example. The scenario employs an unmanned
aerial vehicle equipped with a gimballed camera to track a
ground vehicle maneuvering on a road section (see Fig. 3).
The camera can be considered as a bearing-only sensor,
which provides the azimuth angle (ζ ) and elevation angle

Fig. 3. Airborne target tracking scenario.

Algorithm 2: Soft-Constrained APF Algorithm.

Require: weighted samples: {xi
k−1, w

i
k−1}Ni=1

1: for i = 1 : N do
2: if gj,k(x̄i

k) ≤ 0, ∀j ∈ {1, . . . , nc} then
3: Set λi

k = x̄i
k = fk−1(xi

k−1)
4: else
5: Calculate mode λi

k by solving (20)
6: end if
7: Calculate auxiliary weight αi

k defined in (23)
8: end for

Ensure: Samples with auxiliary weights:
{xi

k−1, α
i
k}Ni=1

9: for i = 1 : N do
10: Draw an index I i

k = j , j ∈ {1, . . . , N},
according to probability proportional to α

j

k

11: Draw a new particle xi
k from π(xk|λIi

k

k ) in (21)
12: Update weight w̃i

k according to (24)
13: end for
14: Weight normalization such that wi

k = w̃i
k∑N

i=1 w̃i
k

Ensure: new samples: {xi
k, w

i
k}Ni=1

(η) to the target with respect to the sensor platform [32].
Without loss of generality, this paper assumes a flat ground
and a known sensor position at the altitude zs = 100 m
above the origin of the local coordinate. Thus, the observa-
tion model can be simplified as

zk = h(xk) =
[

ζk

ηk

]
=

⎡
⎢⎣

arctan2(yk, xk)

arctan2

(
zs,

√
x2

k + y2
k

)
⎤
⎥⎦+ vk

(25)
where xk = [ xk yk ẋk ẏk ]T is the target’s state vector con-
sisting of the vehicle position and velocity components in
the x and y directions, and the sensor noise vk is mod-
eled as a two-dimensional Gaussian zero-mean vector with
covariance R = diag{2 × 10−4 rad2, 2 × 10−4 rad2}.

We assume that the target vehicle travels on the road
section as displayed in Fig. 3. The dynamics of the target
vehicle is described by a nearly constant-velocity model
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that is widely used in the literature [33]

xk+1 =

⎡
⎢⎢⎢⎣

1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

⎤
⎥⎥⎥⎦ xk + wk (26)

where T = 0.2 s is the sampling interval, and wk is a Gaus-
sian process noise with zero mean and covariance matrix
Q defined as

Q =

⎡
⎢⎢⎢⎢⎣

T 3

3 q1 0 T 2

2 q1 0

0 T 3

3 q2 0 T 2

2 q2

T 2

2 q1 0 T q1 0

0 T 2

2 q2 0 T q2

⎤
⎥⎥⎥⎥⎦ . (27)

The process noise intensity q1 and q2 are chosen as q1 =
q2 = 0.8 m2/s3.

In addition to the dynamic model, other information
about the vehicle’s behavior is also exploited in the tracking
process. First, the vehicle position is constrained by the road
boundary defined by the following two polynomial curves:

g1,k = yk − (b3x
3
k + b2x

2
k + b1xk + b0 + bw) (28)

g2,k = (b3x
3
k + b2x

2
k + b1xk + b0 − bw) − yk (29)

where b3 = 5 × 105, b2 = −0.004, b1 = −0.2, and b0 =
125 are coefficients of the polynomials and bw = 2.5 is
the distance from the central line to the road boundary. It
also assumes that the speed limit for this road section is
V̄ = 12.5 m/s so that the speed constraint can be defined
as g3,k = (ẋ2

k + ẏ2
k )

1
2 − V̄ . The uncertainties about the road

boundaries and the possibility of violating the speed limit
are characterized by the random variables that follow an
exponential distribution γ ∼ E(γ ; μ), where μ is the mean
of the distribution. Consequently, the soft state constraints
can be formulated as⎡

⎢⎣
g1,k(xk)

g2,k(xk)

g3,k(xk)

⎤
⎥⎦−

⎡
⎢⎣

γ1

γ2

γ3

⎤
⎥⎦ ≤ 0 (30)

where we choose γ1 ∼ E(γ1; 0.25), γ2 ∼ E(γ2; 0.25), and
γ3 ∼ E(γ3; 1).

The example target trajectory is depicted in Fig. 4,
where the vehicle initial position is (90, 109). It can be
seen that the vehicle first travels close to the lower bound-
ary and then moves to the other side of the road. During
the transition, the vehicle temporarily drives outside of the
nominal boundary. The vehicle speed profile against the
speed limit is also illustrated in Fig. 5.

For this target tracking scenario, simulation experiments
were carried out on a PC with 3.4 GHz CPU. For each sim-
ulation experiment, 100 Monte Carlo runs were performed
where different realizations of the measurement noises were
generated based on the example trajectory. In the state
estimation, the initial prior distribution was chosen as a
Gaussian distribution with mean x̂0 = [85, 119, −14, −2]T

Fig. 4. Example target trajectory.

Fig. 5. Target vehicle speed profile.

and covariance matrix P0 = diag{10, 10, 2.5, 2.5}. The per-
formances of the proposed filters are evaluated using the
following criteria: 1) estimation accuracy as measured by
mean square error (MSE) of the position-related states; 2)
the ratio of the ESS to the total number of particles N in
percentage term (PESS) as a measure of particle quality;
and 3) the mean computation time (CT) for one time step
in the simulation experiment. The values of MSE, PESS,
and CT averaged over the 100 MC runs are reported in this
paper, together with the corresponding standard deviation
(SD) of the position MSE.

B. Impact of Different Optimization Strategies

The scAPF developed in this paper involves solving
a number of optimization problems. To make this algo-
rithm computationally feasible in practice, a fast algorithm
is proposed in the Appendix, which produces suboptimal
solutions. This fast algorithm is based on the quasi-Newton
method, with 1-iteration and 2-iterations, respectively, to
approximate the exact solution; the latter is obtained using
the MATLAB fminunc function in the following exper-
iments. The approximations will then be rectified statisti-
cally by using the weight update function (24) in the scAPF.
The first part of our simulation experiments aims to investi-
gate the estimation performances when using the different
optimization strategies.

The simulation results of the scAPF algorithm with dif-
ferent optimization methods based on N = 500 particles
are displayed in Table I.
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TABLE I
Performance of scAPF With Different Optimization Strategies Over

100 MC Runs

TABLE II
Performance of Different PF Strategies Averaged Over 100 MC

Runs

Table I shows that, overall, the scAPF with the pro-
posed fast algorithm and the scAPF with the standard op-
timization technique, i.e., MATLAB fminunc, have similar
performances in terms of average MSE, SD, and PESS.
The main drawback of using MATLAB fminunc is the high
computational load, which may be problematic for some
real-time applications. In the following simulation experi-
ments, the scAPF with the quasi-Newton method using only
1-iteration is used for comparison purposes.

C. Performances of Different Particles Filters in the
Presence of Soft State Constraints

As shown in the literature (e.g., [9], [11], [34]), ap-
propriately incorporating extra knowledge about the target
may significantly improve the tracking performance. To
demonstrate the benefits of accounting for soft-constraints
in the filtering process, several different particle filters are
implemented and compared in this section. First, the SIR
algorithm and the standard APF are implemented where
only sensor information is used for tracking. Next, the pro-
posed soft-constrained PFs are tested, including both the
scPF and scAPF. In addition, a recently proposed hard-
constrained PF, i.e. Constrained Auxiliary PF Algorithm
(CAPFA) [18], is tested in this tracking scenario. This hard-
constrained PF is able to exploit the constraint information
but cannot deal with any uncertainty about noncompliance
with the constraints.

The simulation experiment results with different parti-
cle numbers are summarized in Table II.

It can be seen from Table II that there are several factors
influencing the filtering performances. A general trend that

can be observed is that a larger number of particles usually
results in a better estimation performance at the expense of
a higher CT. Other major factors include the exploitation
of constraint information and the effectiveness of filtering
algorithms.

When the constraint information is not taken into ac-
count, the standard SIR delivers much worse estimation
accuracy even if a large sample size N = 1000 is used,
whereas the APF shows some improvements due to the
more effective resampling mechanism in this case. In con-
trast, both soft-constrained filters (scPF and scAPF) demon-
strate a significantly improved performance in terms of
MSE and the associated SD. If the hard-constraint infor-
mation is embedded into the filtering process, the resulting
filter CAPFA can produce smaller MSEs comparing to their
unconstrained counterparts (i.e., SIR and APF). However,
because the hard-constrained PF only exploits the particles
within the road boundary and within the speed limit, its
robustness may be problematic when the sample size N is
small and the initial guess is poor. Moreover, if the target
exhibits any temporary violation of those constraints, the
performance of the hard-constrained PF will be degraded
comparing to the results from the soft-constrained PFs.

Next, we focus on the two proposed soft-constrained
PFs. The simulation results show that the scAPF algorithm
outperforms the scPF algorithm in terms of MSE and PESS.
This is not surprising. The particles generated by the pro-
posal distribution p(xk|xk−1) in the scPF scheme may stay
far away from the constraint area, which in turn may have
less weights due to the soft-constraints. The scAPF, on the
other hand, is designed to improve this situation by pre-
selecting particles that are more compliant with the con-
straints. At the expense of a manageable computational
load, the resulting PESS is much higher than those for the
scPF, suggesting that the particles can better represent the
posterior distribution [35]. This is not only important for a
point estimate represented by the mean or mode of the pos-
terior distribution, but also provides a better foundation for
calculating a region in which the target likely lies. There-
fore, depending on application scenarios, one may choose
to use the scPF with a less computational load or the scAPF
with a better particle quality and more robust performance.

Finally, we closely look into the proposed soft-
constrained PF algorithms in comparison with the soft
pseudo-measurement (SPM) PF in [10]. The pioneering
work in [10] developed a particle filter following an SIR
structure but also adopting a modified likelihood function
to incorporate soft-constraints, such that

Pr{Ck|xk} =
{

1, if g(xk) ≤ 0;

α, otherwise
(31)

where 0 ≤ α ≤ 1 is a constant to be chosen based on the
frequency at which the constraint has been violated. If α

is set to 0, the above constraints become hard constraints,
whereas if α = 1 it reduces to the ordinary SIR PF without
constraints. The MC simulation results with different α

settings are given in Table III. It can be seen that the best
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TABLE III
Comparison With SPM Particle Filters Over 100 MC Runs

MSE performance of the SPM PF is greatly dependent
on the appropriate value of α in the MC simulation runs.
Overall, however, because α is set to be a constant value
rather than a state-dependent likelihood function as defined
in (5), usually the soft constraints (31) cannot accurately
reflect the nature of the constraints, and consequently its
numerical performance is not ideal.

VI. CONCLUSION

This paper investigates PF for nonlinear/non-Gaussian
systems with soft inequality constraints. We have extended
the existing formulation in the literature in twofold: 1) the
constraint formulation gk(xk) is generalized from linear to
nonlinear, and 2) the probabilistic measure for uncertainties
is extended from Gaussian to non-Gaussian.

With the proposal distribution chosen as the state tran-
sition distribution, we have proposed the scPF algorithm to
deal with soft constraints. In addition, to further improve
the performance and circumvent the difficulty of a relatively
low ESS, we have developed a novel scAPF algorithm. The
proposed scAPF fully exploits the advantages of the tradi-
tional APF that probabilistically selects particles for prop-
agation by using the likelihood information. Specifically,
the scAPF utilizes the soft-constraint information to define
the auxiliary variable for particle propagation in the resam-
pling stage and develops a new proposal distribution in the
importance sampling stage so that the generated samples
are more likely to comply with the soft-constraints.

A Monte Carlo simulation study is carried out to evalu-
ate the performances of the scPF and scAPF algorithms. The
numerical results show that the proposed fast optimization
method spends only a fraction of time used by the standard
“fminunc” method in MATLAB with little price of per-
formance degradation. The simulation study also shows the
advantages of incorporating soft state constraints in particle
sampling: the accuracy as measured by MSE is consider-
ably improved in comparison with the standard APF for
which the soft-constraint information is not utilized. The
proposed scPF and scAPF also outperform the particle fil-
ters with hard constraints in terms of accuracy as measured
by MSE.

The developed algorithms in this paper can be applied to
a wide range of areas where the systems under investigation
are nonlinear and/or non-Gaussian, and the state vectors are
subject to soft constraints. Examples may include ground
vehicle tracking, air traffic monitoring, maritime naviga-
tion, and the other areas beyond target tracking such as
networked systems [36] and source term estimation [37].
Finally, we point out that, for those applications where a
continuous-time dynamic system is discretized, the infor-
mation provided by soft state constraints can be applied
in a higher sampling rate than the sensor measurements,
and hence having a potential to further increase the filtering
performance.

APPENDIX
A FAST ALGORITHM FOR OPTIMIZATION PROBLEMS

In this appendix, we investigate a fast algorithm for the
optimization problems in Section IV-B based on the quasi-
Newton method, which only takes one or two iterations.

Suppose that the starting point of the ith optimization
problem (20) at time step k is chosen as x(0) = x̄i

k , where su-
perscript i for particle index and the subscript k for time step
are suppressed for the sake of simplicity. The quasi-Newton
method uses the iteration x(m+1) = x(m) + τ(m)d(m) to ap-
proach the optimal solution, where the subscript m denotes
the number of iteration, τ(m) is the step length, and d(m) is the
searching direction. The step length τ(m) can be determined
by an inexact line search satisfying the Wolfe condition. The
search direction is defined as d(m) = H−1(x)∇J (x)|x=x(m) ,
where ∇J and H are the gradient and Hessian matrix
of the cost function, respectively, both evaluated at x(m).
By recalling the cost function (20), the gradient can be
derived as

∇J (x(m)) = V i
k−1(x(m) − x̄i

k) + Di
k−1 + ∇Gk(x(m)) (32)

where

∇Gk(x) = −
nc∑

j=1

∇φj (x(m))

φj (x(m))

=
nc∑

j=1

pγj
(gj,k(x(m)))

φj (x(m))
∇gj,k(x(m)).

(33)

As the Hessian matrix is usually complicated and the cost
for calculating its inverse can be expensive, the quasi-
Newton method is adopted to approximate Hessian inverse
using BFGS algorithm. Specifically we

1) Set s(m) = x(m+1) − x(m) and y(m) = ∇J(m+1) −
∇J(m);

2) Update Hessian inverse H−1
(m+1) = (I − s(m)yT

(m)

yT
(m)s(m)

)H−1
(m)

(I − y(m)sT
(m)

yT
(m)s(m)

) + s(m)sT
(m)

yT
(m)s(m)

.

Since this optimization problem is embedded in the PF
framework, solving the optimization problem does not need
to be accurate but fast. Thus, only one or two iterations will
be used depending on the settings of the original Bayesian
estimation problem.
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For the special case where truncated Gaussian distribu-
tions T N (γj ; 0, σ 2

j ) are used, the gradient in (33) can be
rewritten as

∇Gk(x(m)) =
nc∑

j=1

T N (gj,k(x(m)); 0, σ 2
j )∇gj,k(x(m))

2
∏nc

j=1[1 − 	̃(gj,k(x(m)); 0, σ 2
j )]

. (34)

Note that when the probability of satisfying j th constraint
φj,k(x(m)) is close to zero, the inequality relations of Mill’s
ratio for normal distributions [38] can be used to find an
approximation of (34) in order to avoid any numerical
issue.

On the other hand, if the exponential distribution
E(γj ; μj ) is used in (33), a much simpler expression can be
derived, such that ∇Gk(x(m)) = ∑nc

j=1 μ−1
j ∇gj,k(x(m)).
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