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This work studies the divisible nonlinear load distribution problem
on heterogeneous single-level tree networks with a collective commu-
nication model. The goal is to find a feasible distribution that mini-
mizes the parallel processing time. The classical model of nonlinear
computational loads omits many processing steps, and yields only an
approximate solution to distribute fractional loads. This work con-
siders a new model of nonlinear computational loads that includes
all of processing steps of the load. This model can simplify recursive
equation for the size of fractional loads and yield a practical solution
to distribute fractional loads. This work proposes two new methods
which incorporates a new nonlinear computational model to distribute
a divisible nonlinear load on heterogeneous single-level tree networks.
Closed-form expressions for the parallel processing time and speed-
up for single-level tree networks are derived. This work demonstrates
that the asymptotic speed-up of the proposed algorithm is m + 1 where
m is the number of child processors in a single-level tree network. We
show that our algorithm improved the previous method in terms of
speed-up.
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I. INTRODUCTION

The divisible load theory (DLT) was proposed by Cheng
and Robertazzi [19] in 1988. A divisible load can be arbi-
trarily partitioned and can be independently processed on
any processor in the network. The goal is to determine the
optimal fractions of the load to be assigned to the proces-
sors for minimizing the total processing time. The divisible
load can be applied in many practical applications such
as linear algebra [31], image processing [52], multimedia
applications [50], database searching, large-scale data file
processing [42], data-intensive applications [43], numerical
computing [59], biomedicine and bioinformatics [53], and
Internet packet scheduling [35].

Numerous interconnection topologies with scheduling
policies have been studied, such that bus [35], [67], linear
array [14], tree [3], [6], [7], [15], [18], [49], hypercube [9],
[12], [16], [51], mesh [10]–[12], [14], [22], [32], [46], [48],
partitionable networks [45], [47], arbitrary networks [68],
[69], clusters [25], [63], grids [65], and networks of work-
stations [4], [52]. The scheduling policies include multiple
loads [23], limited memory [26], [61], simultaneous dis-
tribution [36], [55], simultaneous start [41], detailed pa-
rameterizations and solution time optimization [1], combi-
natorial schedule optimization [28], and multi-installment
processing. Suresh et al. [56] designed a scheduling strat-
egy for heterogeneous computing resources with shared
data banks in a compute cloud system. Wang and Rober-
tazzi [66] proposed a scheduling model for single level tree
networks with various distribution policies in which the
communication time from the root to each node is non-
linear in the size of the load. Kyong and Robertazzi [44]
applied the DLT to the problem of signature search time
evaluation in flat file databases.

The single-level tree network is a popular topology
for the master-worker style computations. A master-worker
computation can be easily implemented and deployed on
computing platforms ranging from small commodity clus-
ters to computational grids [5], [30]. This work considers
heterogeneous single-level tree networks with the collective
communication model. In the collective broadcast model,
the root processor has separate ports and can distribute the
load fractions simultaneously [33]. The multi-installment
processing can minimize the parallel processing time, in
which at least one processor receives at least two frac-
tional loads. Numerous multi-installment divisible load al-
gorithms for chains, stars, and trees can be found else-
where [6], [7], [21], [24], [67].

A. Related Work

Much research has dealt with real-time modeling and
simulation of complex systems which include nuclear mod-
eling, aircraft/spacecraft simulation, biological system, bio-
physical modeling, genome search, etc. In these areas,
many algorithms require nonlinear computational complex-
ity, that is, the computational time of the given load is
nonlinear in the size of load. For example, the Hough trans-
form [27], the 2-D hidden Markov mode (HMM) [54], the
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learning vector quantization neural network [40], and the
block tri-diagonalization of real symmetric matrices [2],
which have second-order computational time complexity.

The classical Hough transform can be used to identify
lines within an image, but later the Hough transform has
been extended to use for the detection of regular curves such
as lines, circles, ellipses, etc. Guil et al. [34] showed the
parallelization of the Hough transform for multiprocessors
with shared and distributed memory. Carlson et al. [13] con-
sidered how well a Hough transform detector with binary
integration improves the performance of a typical surveil-
lance radar. Using the Hough transform, Zhang et al. [70]
proposed an imaging method for moving targets with ro-
tating parts. The separable 2-D HMM was proposed by
Othman and Aboulnasr [54] for the problem of face recog-
nition. This model allows the state transition to be separated
into vertical and horizontal state transitions. This separation
of state transitions brings the complexity of the hidden layer
of the proposed model from the order of O(L3k) to the or-
der of O(L2k), where L is the number of the states in the
model and k is the total number of observation blocks in the
image. Vakanski et al. [62] proposed a method for trajec-
tory learning and generation using a robot PbD approach.
The idea is to relate the transitions between different types
of movements that were used for encoding the relevant
features of the trajectories. By constructing an HMM pre-
dicting the probability of residing in each motion primitive,
Field et al. [29] presented an approach for learning robust
models of humanoid robot trajectories from demonstration.
The learning vector quantization neural network was devel-
oped by Khalifa et al. [40] for pattern recognition. Inggs
and Robinson [39] investigated the classification of ship
targets using low-resolution down-range radar profiles to-
gether with preprocessing and neural networks. The block
tri-diagonalization was proposed by Bai and Ward [2] for
computing eigensystems. This method is a critical prepro-
cessing step for the block tridiagonal divide-and-conquer
algorithm and is useful for many algorithms desiring the
efficiencies of block structure in matrices.

The nonlinear cost function was first used in the research
works [20], [38]. Drozdowski and Wolniewicz [20] consid-
ered distributed systems which have both the hierarchical
memory model and a piecewise linear dependence of the
processing time on the size of the assigned load. Hung and
Robertazzi [38] proposed a distribution algorithm in which
the computational loads require nonlinear processing time
depending on the size of load fractions. Hung and Rober-
tazzii [37] considered a scheduling model for a tree network
where the computation time for each node is nonlinear in
the size of the assigned load. Suresh et al. [57] presented
a distribution algorithm for nonlinear computational loads
in a single level tree network with the collective commu-
nication model. Suresh et al. [60] developed a distribution
algorithm for distributing the second-order nonlinear load
in a master-slave paradigm with nonblocking mode of com-
munication. In other words, the master processor distributes
the load fractions one-by-one to the slave processors. The
model of nonlinear load in [57] and [60] has the following

problems. It omits many processing steps for the load, and
yields only an approximate solution to distribute fractional
loads. Therefore, Chen and Chu [17] proposed a novel com-
putational model of nonlinear loads that includes complete
steps for processing them. This model solves the prob-
lem of the classical model; whose performance degrades
by separating the load. They also proposed two algorithms
to distribute a nonlinear divisible load on a homogeneous
linear network.

B. Contribution

This work uses a novel computational model of nonlin-
ear loads that is proposed by Chen and Chu [17]. This model
can simplify recursive equation for the size of fractional
loads and yield a practical solution to distribute fractional
loads. An algorithm S (Single-installment) is presented
to distribute a nonlinear load on single-level trees. The
closed-form expressions for the parallel processing time
and speed-up for single-level tree networks are derived (see
Theorems 3, 4, 6, and 9). This paper shows that the asymp-
totic speed-up of the proposed algorithm is m + 1 where
m is the number of child processors in a homogeneous
single-level tree network. The performance of algorithm S

improves the previous method in [57] since the performance
of previous method degrades by separating the load. This
work also proposes an algorithm M (Multi-installment) that
uses multi-installment processing to reduce the initial dis-
tribution time and to improve upon the algorithm S. The
affine cost model is also considered. In this model, the
communication time and the computation time of a load L

are θcm + LG and θcp + LA, respectively, where θcm is the
communication start-up cost, θcp is the computation start-
up cost, G is the time to transmit a unit of load, and A is
the time to process a processing step. The communication
start-up cost θcm is due to protocol processing delays, un-
availability of certain internal and external communication
resources, queuing delays at intermediate sites, etc., [58],
[64]. The computation start-up cost θcp is due to delay in lay-
ered protocol, extracting the data, processor initialization,
etc., [58], [64]. When the computation and communication
start-up costs are considered, this work finds two ranges for
searching an optimal number of installments and an optimal
number of child processors.

C. Organization

The rest of this paper is organized as follows:
Section II presents the model of a divisible nonlinear load
distribution in static interconnection networks. Section III
reviews the classic method for nonlinear divisible loads
distribution. Section IV describes and analyzes the algo-
rithm for distributing divisible nonlinear loads on single-
level trees. Section V describes and analyzes the algorithm
that uses multi-installment to distribute divisible nonlinear
loads on single-level trees. Section VI compares the per-
formance of the classical method with that of the proposed
methods. Section VII draws conclusions.

CHEN AND CHU: DIVISIBLE NONLINEAR LOAD DISTRIBUTION ON HETEROGENEOUS SINGLE-LEVEL TREES 1665



Fig. 1. Single-level tree network.

II. MODEL

This work considers a heterogeneous single-level tree
network. A single-level tree is composed of m + 1 pro-
cessors P0, P1, . . . , Pm, that are connected by a static in-
terconnection network. The processor P0 has m neigh-
bors P1, . . . , Pm that are linked by communication links
(l1, l2, . . . , lm), as shown in Fig. 1. The root processor P0 is
assumed to be the initial processor that transmits fractional
loads to other processors for processing. All of the links
have different communication speeds and bandwidths. All
of the processors have different processing capacities. The
root processor P0 has separate ports to communicate with all
neighbors. Therefore, the root processor can simultaneously
send messages to all of its neighbors. A processor sends a
fractional load to a neighbor and then can proceed with
other computational and communicative activities without
waiting for the completion of the sending of the fractional
load. Thus, it can perform computation and communication
simultaneously. However, a neighbor begins processing its
fractional load only after it receives the entire fractional
load from its predecessor. The time to return the results
is assumed to be negligible if it is so short in comparison
with the load distributing and processing steps. It can be
observed in the DLT papers [17], [46], [57], [60]. In this
assumption, the schedule for a load is the shortest when
all processors finish computing at the same time. Table I
presents the notation and terminology that are used herein.

In this work, a divisible nonlinear load is considered as
a matrix type computation. A matrix can be partitioned into
a list of submatrices (or subsets). The model and algorithm
design are also based on the matrix type computation. The
nonlinear computational load is explained in Definition 1.

DEFINITION 1 An entire load can represent a nonempty data
setS that comprises L elements. A γ th-order computational
load with a data set S requires to process a γ -dimension
data set Sγ . A fraction of load with a subset Si requires to
process a γ -dimension data set Si × Sγ−1.

A partition of a nonempty set S is a list S0,S1, . . . ,Sm

of subsets of S such that each element of S appears in one
and only one subset in the list. Let F

(X1,X2, . . . ,Xγ

)
be

the number of processing steps (instructions) for a general
γ th-order computational load X1 × X2 × · · · × Xγ where
Xj is a subset of S for 1 ≤ j ≤ γ . A processing step can be
defined as a basic operation in a specific algorithm. Each
processing step takes the same time under the same com-
puting capability. The data set can be arbitrarily partitioned

TABLE I
Notations and Terminology

P The set of child processors in a multicomputer
system.

m The number of child processors in a multicomputer
system.

L The total load to be processed.
Gi The time to transmit a unit of load along the link li .
Ai The time to process a processing step on the

processor Pi .
βi The computation-to-communication ratio for the

processor Pi . βi = Ai/Gi

θcp The computation start-up costs in terms of delay
time.

θcm The communication start-up cost in terms of delay
time.

γ Integer constant depends on the nature of the
algorithm used for processing the load. For
example, this value is 2 for second-order nonlinear
system.

αi Fraction of the processing load assigned to
processor Pi , i = 0, 1, . . . , m.

αi,j j th fraction of the processing load assigned to
processor Pi in the second step, i = 0, 1, . . . , m.

S The data set of the entire load, where |S| = L.
S0,S1, . . . ,Sm A partition of the data set S where the fraction of

each load is denoted by α0, α1, α2, . . . , αm and P0

sends Si to Pi , i = 0, 1, . . . , m in the first step.
ρ The number of installments in the proposed

algorithm M.
n∗

i The minimum number of communications required
to transfer the entire data set to Pi .

T A

m+1, T A

m+1,ρ The parallel processing time of L units of load by
using the load distribution algorithm A in a system
of m + 1 processors. For algorithm with
multi-installment, we use T A

m+1,ρ

SpeedupA

m+1 The ratio of the sequential processing time to the
parallel processing time in a system of m + 1
processors, namely SpeedupA

m+1 = T1/T A

m+1.
CN

i CN
i = N (N − 1) × · · · × (N − i + 1) /i! which

is the number of combinations of i components
selected from a set of N components.

and the computation times for each fraction of data set are
nonlinear in the size of the data sets. For example, a second-
order complexity load that comprises L elements require L2

steps; then F (S,S) = L2 (steps). For a subset S1 with size
of αL elements, the number of processing steps is

F (S1,S1) = (αL)2 = α2L2 = α2F (S,S) .

If a fraction α is partitioned into α1 and α2, then the number
of processing steps can be rewritten as follows:

F (S1,S1) = (αL)2 = α2L2 = (α1 + α2)2 L2

= (
α2

1 + α1α2 + α2α1 + α2
2

)
L2

= F
(S1,1,S1,1

) + F
(S1,1,S1,2

)

+ F
(S1,2,S1,1

) + F
(S1,2,S1,2

)

where S1 is partitioned into S1,1 and S1,2, which correspond
to a fraction α1 and a fraction α2, respectively.

The set S can be partitioned into a list S0,S1, . . . ,Sm

of subsets with the corresponding fractions α0, α1, . . . , αm.
The number of processing steps for the data set S can be
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partitioned as

F (S,S) =
m∑

i=0

F (Si ,S)

=
m∑

i=0

F (Si ,Si) + F (Si ,S \ Si)

where F (Sk,Sk) = α2
kL

2 and F (Sk,S \ Sk) = αk(1 − αk)
L2 for 0 ≤ k < m.

Careful consideration of the above equation reveals
that the first term is a summation of the processing steps
for the two-dimension data set Si × Si , while the sec-
ond term is the number of processing steps for the two-
dimension data set Si × (S \ Si). This work requests that
each processor Pk can obtain a data set Sk as the first com-
munication process. Then, Pk can compute the data set
Sk × Sk . While Pk is computing the data set Sk × Sk , it
receives the remaining data set S \ Sk . Finally, Pk com-
putes the data setSk × (S \ Sk). In conclusion, Pk computes
F (Sk,S) = F (Sk,Sk) + F (Sk,S \ Sk) processing steps
for the data set Sk × S = (Sk × Sk) ∪ (Sk × (S \ Sk)).
Example 1 shows an application of a nonlinear compu-
tational load.

EXAMPLE 1 The discrete cosine transform (DCT) is often
used in signal and image processing. An image can repre-
sent an a × b matrix S. Thus, the transform of S is given
by

D(u, v) = C(u)C(v)√
ab

b−1∑

y=0

a−1∑

x=0

S(x, y)

cos

(
(2x + 1)uπ

2a

)
cos

(
(2y + 1)vπ

2b

)

for u = 0, 1, . . . , a − 1 and v = 0, 1, . . . , b − 1 where
C(i) = 1/

√
2 for i = 0 and C(i) = 1 for i �= 0. A pro-

cessing step of DCT is a basic operation

C(u)C(v)√
ab

S(x, y) cos

(
(2x + 1)uπ

2a

)
cos

(
(2y + 1)vπ

2b

)
.

The matrix S can be partitioned into a list of submatrices
S0,S1, . . . ,Sm. Let Rk be the coordinates of Sk within S.
Let R be the coordinates of S. After processor Pk receives
the submatrix Sk , it computes

D(u, v) = C(u)C(v)√
ab

∑

(x,y)∈Rk

S(x, y)

cos

(
(2x + 1)uπ

2a

)
cos

(
(2y + 1)vπ

2b

)

for all (u, v) ∈ Rk . After Pk receives the data S \ Sk , it
performs

D(u, v) = D(u, v) + C(u)C(v)√
ab

∑

(x,y)∈R\Rk

S(x, y)

cos

(
(2x + 1)uπ

2a

)
cos

(
(2y + 1)vπ

2b

)

Fig. 2. Load distribution diagram of a classical method.

for all (u, v) ∈ Rk .
A γ th-order computational data set Sγ can be

partitioned into a list of subsets S0 × Sγ−1,S1 ×
Sγ−1, . . . ,Sm × Sγ−1. Each processor Pk deals with the γ -
dimension data set Sk × Sγ−1 for 0 ≤ k ≤ m. Each data set
Sk × Sγ−1 can be partitioned into 2γ−1 subsets {Sk × X1 ×
X2 × · · · × Xγ−1} where Xj = Sk or Xj = S \ Sk for 1 ≤
j ≤ γ − 1. Each processor Pk obtains the data set Sk at the
first communication process, then computes the subset Sγ

k .
While Pk is computing, it iteratively receives the data set
S \ Sk and computes the data set Sk × Sγ−1 − Sγ

k .
Let Fk

(
s1s2 . . . sγ

) = F
(X1,X2, . . . ,Xγ

)
be a part of

the number of processing steps for the subset Sk where
Xj = Sk if sj = 1 or Xj = S \ Sk if sj = 0 for 1 ≤
j ≤ γ . For the convenience of specification of the algo-
rithms, the binary number s1s2 . . . sγ can be converted into
a decimal number. For example, Fk (14) = Fk (1110) =
F (Sk,Sk,Sk,S \ Sk). Each processor Pk computes

F

⎛

⎝Sk,

γ−1
︷ ︸︸ ︷
S, . . . ,S

⎞

⎠ =
2γ −1∑

j=2γ−1

Fk (j )

processing steps for the data set Sk × Sγ−1.

The following property is used in the analysis.

PROPOSITION 1 Suppose that x1 is the largest real root
to the equation f (x) = ∑n

i=1 aix
i = 0(an �= 0). If an > 0,

then f (x) > 0 for x ∈ (x1, ∞). If an < 0, then f (x) < 0
for x ∈ (x1, ∞).

III. CLASSICAL METHOD

The classical divisible load distribution method [57]
on a single-level tree network of m + 1 processors divides
the entire load into m + 1 fractions. The processor P0 is
assumed to be the initial processor that begins the compu-
tation and communication. In the first step, P0 computes a
fractional load and simultaneously transmits another frac-
tional load to each child. In the second step, processors
P1, P2, . . . , Pm compute a fractional load. Fig. 2 presents
the load distribution diagram of a classical method. The
classical method assumes that the number of processing
steps for a fractional load with size αiL in the processor
Pi is only Fi (2γ − 1) = (αiL)γ [37], [38], [57], [60]. The
remaining processing steps are the postprocessing steps.
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However, as number of fractional loads increases, the post-
processing step increases. Therefore, it performs poorly.
Hung and Robertazzii [37] and Suresh et al. [57] show
that their asymptotic speed-up for a second-order computa-
tional load is (m + 1)2. That is because the postprocessing
steps are not taken into account. For example, we assume
that the transmitting time is neglected and the time to pro-
cess a processing step is one. We have m + 1 units of load
that distribute to m + 1 processors. Then, each processor
has a unit of load. In this case, the papers [37], [57] show
that the parallel processing time is one and the speed-up
is (m + 1)2. However, the number of the postprocessing
steps is (m + 1)2 − (m + 1). The parallel processing time
should be 1 + (m + 1)2 − (m + 1) and the speed-up should
be (m + 1)2

1 + (m + 1)2 − (m + 1) . In fact, the optimal solution is that each
processor evenly computes the same size of loads and all
processors finish computing at the same time. Therefore,
each processor computes m + 1 processing steps evenly
and finishes at the same time which is optimal and the
speed-up is m + 1. In other words, the maximal speed-up
of m + 1 processors for any distribution method is at most
m + 1. Additionally, the classical model suffers from fol-
lowing problems: 1) it omits many of the processing steps
for the load; 2) it keeps high-order functions for which it is
difficult to find a general solution for the size of fractional
loads and yield only an approximate solution to distribute
fractional loads. In this work, the number of processing
steps of the novel method for a fractional load with size
αiL is

∑2γ −1
j=2γ−1 Fi (j ) = αiL

γ that includes complete pro-
cessing steps. According to this method, we only need to
solve a low-order recursive equation and can easily find a
general solution.

Since the classical model yield only an approximate so-
lution, exact closed-form expressions for the parallel pro-
cessing time and speed-up cannot be obtained. However, if
the computation speed is significantly less than the com-
munication link speed, the communication time for trans-
mitting load can be neglected and the load can be evenly
distributed over all processors. Therefore, the following
theorem shows the parallel processing time and speedup of
algorithm C (Classical method) with the classical model.

THEOREM 1 If the computation speed is significantly less
than the communication link speed (at least of the order of
10, βi ≥ 10), the parallel processing time of [57, Algorithm
C] is

T C

m+1 =
(

1 −
m∑

i=1

α
γ

i

)

Lγ A0

where αi = α0
∏i

k=1 f
1/γ

k , α0 = 1
1+∑m

i=1

∏i
k=1 f

1/γ

k

, and fk =
Ak−1

Ak
. If a homogeneous single-level tree network is consid-

ered, then the speedup is given as

SpeedupC

m+1 = Lγ A

T C

m+1

= (1 + m)γ

(1 + m)γ − m

where Ai = A and Gi = G for all i.

Since algorithm C yields only an approximate solu-
tion to distribute fractional loads, this work compares with
algorithm C in Theorem 1.

IV. ALGORITHM

This section presents an algorithm S (Single-
installment) whose goal is to use the new model with the
single-installment technique to distribute a nonlinear load in
a single-level tree. The pseudocode of the proposed method
is given in algorithm S. A load distribution is feasible if the
processor can receive the entire data set and no processor
is idle after it has received the first subset. The follow-
ing lemma shows a sufficient condition for a feasible load
distribution.

LEMMA 2 A load distribution is feasible if α
γ−1
i Lγ−1βi ≥

1 − αi for 1 ≤ i ≤ m.

PROOF In the proposed algorithm, the processor Pi re-
ceives a fraction with size of αi

∑ni−1
j=0 (αγ−1

i Lγ−1βi)j after
ni communication steps (describe in Sections IV-A and
IV-B.) A load distribution is feasible if the processor can
receive the entire data set and no processor is idle after it has
received the first subset. Therefore, the following inequality
must be confirmed

1 ≤ αi

ni−1∑

j=0

(
α

γ−1
i Lγ−1βi

)j

(1)

for some ni ∈ N. According to the inequality (1), two cases
must be considered: either α

γ−1
i Lγ−1βi ≥ 1 or α

γ−1
i Lγ−1

βi < 1. Here, in the case of α
γ−1
i Lγ−1βi ≥ 1, inequality

(1) can easily be verified for a certain ni ∈ N. For ex-
ample, ni = �1/αi� in the case of α

γ−1
i Lγ−1βi = 1. For

α
γ−1
i Lγ−1βi < 1, the processor Pi can receive a fraction

with size of

lim
ni→∞ αi

ni−1∑

j=0

(
α

γ−1
i Lγ−1βi

)j

= αi

1 − α
γ−1
i Lγ−1βi

.

Therefore, the processor Pi can receive the entire data set
if the following constraint is satisfied:

1 ≤ αi

1 − α
γ−1
i Lγ−1βi

yielding the constraint α
γ−1
i Lγ−1βi ≥ 1 − αi . �

From Lemma 2, a processor Pi is a useless proces-
sor if α

γ−1
i Lγ−1βi < 1 − αi . Algorithm S uses a procedure

PE (Processor Elimination) to remove useless processors.
Then, algorithm S performs the following three operations:
1) P0 partitions the entire data set into m + 1 fractions and
distributes m data subsets to each child; 2) while every pro-
cessor computes its loads, P0 transmits the remaining data
subsets to all children until every processor has received
the entire data set; and 3) every processor performs the
remaining processing steps.
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TABLE II
Algorithm PE (Processor Elimination)

TABLE III
Algorithm S (Single-Installment)

A. Algorithm With Single Installment for Second-Order
Complexity

This section considers the second-order computational
load distribution. Fig. 3 presents the load distribution di-
agram obtained by using the proposed algorithm with

TABLE IV
Algorithm FON (Finding Optimal Number)

TABLE V
Algorithm M (Multi-installment)

Fig. 3. Load distribution diagram of a proposed algorithm with γ = 2.
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γ = 2. While P0 computes (α0L)2 + α0(1 − α0)L2 pro-
cessing steps for processing the two-dimension data set
S0 × S, P0 successively transmits two data sets Si and
S \ Si to Pi where 1 ≤ i ≤ m. After Pi receives the data
set Si with size αiL, it performs (αiL)2 processing steps
for processing the data set Si × Si and receives the data
set Si,1 ⊆ S \ Si . Since Pi only can receive a fragment of
load with size (αiL)2βi while it preforms (αiL)2 process-
ing steps, the size of Si,1 is at most (αiL)2βi . Therefore,∣
∣Si,1

∣
∣ = αi,1L = min{α2

i Lβi, 1 − αi}L where (1 − αi)L is
the size of S \ Si . Generally, if Pi receives the data
Si,j and has not received the complete data set (i.e.,
S \ (

⋃j

k=1 Si,k ∪ Si) �= ∅), then Pi computes αiαi,jL
2 pro-

cessing steps for processing the data set Si × Si,j and re-
ceives the data Si,j+1 ⊆ S \ (

⋃j

k=1 Si,k ∪ Si) with a size
of αi,j+1L = min{αiαi,jLβi, 1 − αi − ∑j

k=1 αi,k}L. We re-
peat this procedure until Pi has received the complete data
set. In conclusion, Pi computes αiL

2 = (αiL)2 + αi(1 −
αi)L2 processing steps for processing the data set Si × S.
According to [8], the total time for processing the load
is minimum only if all processors finish computing at the
same time. For this purpose, the recursive equations for
load distribution are as follows:

α0L
2A0 = (αiL)2Ai + αi(1 − αi)L

2Ai + αiLGi

= α2
i L

2Ai + αi(1 − αi)L
2Ai + αiLGi

= αi(αi + 1 − αi)L
2Ai + αiLGi

= αiL
2Ai + αiLGi

which yields

αi = α0L
2A0

L2Ai + LGi

(2)

for i = 1, 2, . . . , m. Since the set S is partitioned into a
list S0,S1, . . . ,Sm of subsets and |Si | = αiL for 0 ≤ i ≤
m,

∑m
i=0 αiL = L. Therefore, substituting αi from (2) in∑m

i=0 αi = 1 gives

α0 = 1

1 + ∑m
i=1

L2A0
L2Ai+LGi

.

The following theorem explains the results.

THEOREM 3 For a single-level tree network with the root
as the initial processor, we have

T S

m+1 = α0L
2A0 = L2A0

1 + ∑m
i=1

L2A0
L2Ai+LGi

.

If a homogeneous single-level tree network is considered,
then the speedup is given as

SpeedupS

m+1 = L2A

T S

m+1

= 1 + mLβ

Lβ + 1

where Ai = A, Gi = G and βi = β = A
G

for all i. Its
asymptotic speed-up is limL→∞ SS

m+1 = m + 1.

B. Algorithm With Single Installment for γ th-Order Com-
plexity

This section discusses the γ th-order computational load
distribution. While P0 performs α0L

γ processing steps for
processing the γ -dimension data set S0 × Sγ−1, P0 suc-
cessively transmits two data sets Si and S \ Si to each
Pi where 1 ≤ i ≤ m. After Pi has received the data set
Si , it performs (αiL)γ processing steps for processing the
data set Sγ

i and receives the data Si,1 ⊆ S \ Si , where
|Si | = αiL and |Si,1| = αi,1L = min{αγ

i Lγ−1βi, 1 − αi}L.
If Pi receives the data Si,j but has not yet received the
entire data set, then Pi computes α

γ−1
i αi,jL

γ process-
ing steps for processing the data set Sγ−1

i × Si,j and re-
ceives the data Si,j+1 ⊆ S \ (

⋃j

k=0 Si,k ∪ Si) with a size
of αi,j+1L = min{αγ−1

i αi,jL
γ−1βi, 1 − αi − ∑j

k=1 αi,k}L.

The iteration is continued until Pi has received the entire
data set. According to the above procedure, Pi performs
a set of processing steps {Fi(2γ − 1), Fi(2γ − 2)}. Since
Pi has the entire data set, Pi performs a set of processing
steps

{
Fi(2γ − 3), Fi(2γ − 4), . . . , Fi(2γ−1)

}
for the cor-

responding γ -dimension data set, where 0 ≤ i ≤ m.
As determined in the above step, the number of pro-

cessing steps of Pi is

2γ −1∑

j=2γ−1

Fi (j ) = αi

(
α

γ−1
i + C

γ−1
1 α

γ−2
i (1 − αi) + · · ·

+ C
γ−1
γ−2αi (1 − αi)

γ−2 + (1 − αi)
γ−1

)
Lγ

= αi (αi + 1 − αi)
γ−1 Lγ

= αiL
γ .

The total number of processing steps is
∑m

k=0

∑2γ −1
j=2γ−1

Fk(j ) = Lγ . Fig. 4 presents the load distribution diagram
of the proposed algorithm with γ ≥ 3. For the purpose of
minimum processing time, the recursive equations for load
distribution are as follows:

α0L
γ A0 =

2γ −1∑

j=2γ−1

Fi (j ) Ai + αiLGi

= αiL
γ Ai + αiLGi

which yields

αi = α0L
γ A0

Lγ Ai + LGi

(3)

for i = 1, 2, . . . , m. Substituting αi from (3) in
∑m

i=0 αi =
1 yields

α0 = 1

1 + ∑m
i=1

Lγ A0
Lγ Ai+LGi

.

The following theorems explain these results.

THEOREM 4 For a single-level tree network with the root
as the initial processor, we have

T S

m+1 = α0L
γ A0 = Lγ A0

1 + ∑m
i=1

Lγ A0
Lγ Ai+LGi

.
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Fig. 4. Load distribution diagram of the proposed algorithm for γ ≥ 3.

If a homogeneous single-level tree network is considered,
then the speedup is given as follows:

SpeedupS

m+1 = Lγ A

T S

m+1

= 1 + mLγ−1β

Lγ−1β + 1

where Ai = A, Gi = G, and βi = β = A
G

for all i. Its
asymptotic speed-up is limL→∞ SS

m+1 = m + 1.

Since algorithm C yield only an approximate solution,
algorithm C cannot be compared with algorithm S in a
mathematical method. However, algorithm C can evenly
distribute the load over all processors if β ≥ 10. Therefore,
we have the following theorem.

THEOREM 5 For algorithms C and S without start-up costs,
SpeedupS

m+1 ≥ SpeedupC

m+1 for L, m ≥ 1 and β ≥ 10 on
homogeneous single-level tree networks.

PROOF Consider the case in which L, m ≥ 1 and β ≥ 10.
The inequality LHS = 1 + mLγ−1β

Lγ−1β + 1 ≥ (1 + m)γ

(1 + m)γ − m
= RHS

must be proved. Since RHS is decreasing in γ and LHS
is increasing in L and β, only 1 + 10m

11 ≥ (1 + m)2

(1 + m)2 − m
need to

be probed. The inequality 1 + 10m
11 ≥ (1 +m)2

(1 + m)2 − m
is equiva-

lent to 10m2 + 10m − 1 ≥ 0. Solving 10m2 + 10m − 1 =
0 yields roots of 0.0916 and −1.0916. According to
Proposition 1, the inequality 1 + 10m

11 ≥ (1 +m)2

(1 + m)2 − m
holds if

m ≥ 0.0916. �

V. ALGORITHM WITH MULTIPLE INSTALLMENTS

This section elucidates the γ th-order computational
load distribution with reference to the multiple-installments
technique. Algorithm M (Multi-installment) includes the
pseudocode of the proposed method. First, algorithm M

calls algorithm PE with ρ = 1 to remove useless pro-
cessors. Next, algorithm FON (Finding Optimal Number)
searches for the optimal number of installments ρ. Each
child processor deals with ρ data sets. The entire load S can
be partitioned into ρm + 1 fractions S0,S1, . . . ,Sρm where
|Skm+i | = αiL for 0 ≤ k < ρ and 1 ≤ i ≤ m. The proces-
sor P0 deals with the data set S0 × Sγ−1 and the processor

Pi deals with the data sets Skm+i × Sγ−1 for 0 ≤ k < ρ and
1 ≤ i ≤ m. As P0 is computing α0L

γ processing steps for
the data set S0 × Sγ−1, the proposed algorithm performs
the following two steps. The first step is formally analo-
gous to the γ th-order computational load distribution in the
Section IV-B. Hence, each processor Pi performs αiL

γ pro-
cessing steps for the data setSi × Sγ−1 and has received the
entire data set. In the second step, each processor Pi imme-
diately computes

∑ρ−1
k=1

∑2γ −1
j=2γ−1 Fkm+i (j ) processing steps

for the data set
⋃ρ−1

k=1 (Skm+i × Sγ−1) where 1 ≤ i ≤ m.
Based on the above steps, the recursive equations for load
distribution are as follows:

α0L
γ A0 = ραiL

γ Ai + αiLGi, i = 1, 2, . . . , m

which yields

αi = α0L
γ A0

ρLγ Ai + LGi

(4)

for i = 1, 2, . . . , m. Since the set S is partitioned into
a list S0,S1, . . . ,Sρm of subsets and |Skm+i | = αiL for
0 ≤ k < ρ and 1 ≤ i ≤ m, α0 + ρ

∑m
i=1 αi = 1. Therefore,

substituting αi from (4) in α0 + ρ
∑m

i=1 αi = 1 gives

α0 = 1

1 + ρ
∑m

i=1
Lγ A0

ρLγ Ai+LGi

. (5)

EXAMPLE 2 Assume that L = 100, γ = 2, ρ = 2, A0 =
1, A1 = 1.2, A2 = 1.5, A3 = 2, G1 = 0.1, G2 = 0.2,
G3 = 2. Fig. 5 presents the load distribution diagram of
the algorithm M. According to (5) and (4), the frac-
tions of the load are α0 = 0.3337, α1 = 0.1390, α2 =
0.1112, and α3 = 0.0830. The entire load S can be par-
titioned into S0,S1, . . . ,S6 where |S0| = α0L = 33.37,
|S1| = |S4| = α1L = 13.90, |S2| = |S5| = α2L = 11.12,
and |S3| = |S6| = α3L = 8.30. Since α

γ−1
1 Lγ−1A1/G1 =

166.8 > 1 − α1 = 0.86, α
γ−1
2 Lγ−1A2/G2 = 83.4 > 1 −

α2 = 0.89 and α
γ−1
3 Lγ−1A3/G3 = 8.3 > 1 − α3 = 0.92,

this load distribution is feasible. The processing is
α0L

γ A0 = 0.3337 × 1002 × 1 = 3337. The processor P0

computes F (S0,S) processing steps for the data set S0 × S

CHEN AND CHU: DIVISIBLE NONLINEAR LOAD DISTRIBUTION ON HETEROGENEOUS SINGLE-LEVEL TREES 1671



Fig. 5. Example of algorithm M with parameters L = 100, γ = 2, ρ = 2, A0 = 1, A1 = 1.2, A2 = 1.5, A3 = 2, G1 = 0.1, G2 = 0.2, G3 = 2.

and the processor Pi computes F (Si ,S) + F (Si+3,S) pro-
cessing steps for the data sets Si × S and Si+3 × S where
1 ≤ i ≤ 3.

In the first communication, P0 transmits the data
sets S1, S2, and S3 to P1, P2, and P3, respectively.
While processors P1, P2, P3 respectively computes the
data set S1 × S1, S2 × S2, and S3 × S3, they start the
second communication. Since α

γ

1 LA1/G1 = 23.18 > 1 −
α1 = 0.86 and α

γ

2 LA2/G2 = 9.27 > 1 − α2 = 0.89, P1

and P2 can receive the data sets S1,1 = S \ S1 and
S2,1 = S \ S2, respectively. After P1 and P2 have com-
puted the data set S1 × S1 and S2 × S2, they perform
F (S1,S1,1) = α1α1,1L

2 = α1(1 − α1)L2 processing steps
and F (S2,S2,1) = α2α2,1L

2 = α2(1 − α2)L2 processing
steps, respectively. However, since α

γ

3 LA3/G3 = 0.69 <

0.92 = 1 − α3, P3 only receives a data set S3,1 ⊆ S \
S3 with a size of α3,1L = 68.91. While P3 computes
F (S3,S3,1) = α3α3,1L

2 processing steps for the data set
S3 × S3,1, it receives the data set S3,2 = S \ (S3,1 ∪ S3

)

with a size of α3,2L = (1 − α3 − α3,1)L = 22.79. After P3

has received the data set S3,2, it performs F (S3,S3,2) =
α3α3,2L

2 processing steps for the data set S3 × S3,2. Each
child processor has received the entire data set at the first
installment, that is, S1 ∪ S1,1 = S2 ∪ S2,1 = S3 ∪ S3,1 ∪
S3,2 = S. Then, each child processor immediately com-
putes the second installment after it has finished its first
installment.

The following theorems explain the results.

THEOREM 6 For a single-level tree network with the root
as the initial processor, we have

T M

m+1,ρ = α0L
γ A0 = Lγ A0

1 + ρ
∑m

i=1
Lγ A0

ρLγ Ai+LGi

.

A homogeneous single-level tree network is considered,
where Ai = A, Gi = G, and βi = β = A

G
for all i. The

speedup is given as

SpeedupM

m+1 = Lγ A

T M

m+1,ρ

= 1 + ρmLγ−1β

ρLγ−1β + 1
.

Its asymptotic speed-up is limρ→∞ SM

m+1 = m + 1.

THEOREM 7 For algorithms S and M without start-up
costs, SpeedupM

m+1 ≥ SpeedupS

m+1 for ρ ≥ 1 on homoge-
neous single-level tree networks.

PROOF The inequality 1 + ρmLγ−1β

ρLγ−1β+1 ≥ 1 + mLγ−1β

Lγ−1β+1 holds
for ρ ≥ 1. The proof is complete. �

A. Algorithms With Start-Up Costs

This section considers the computation start-up cost
θcp and communication start-up cost θcm. In the affine cost
model, the computation time and the communication time
of a load L are θcp + LA and θcm + LG, respectively, where
G is the time to transmit a unit of load and A is the time
to process a processing step. For analyzing the influence of
start-up costs, the number of communications needs to be
known. The minimum number of communications can be
obtained by the following lemma.

LEMMA 8 For a single-level tree network with the root as
the initial processor, the minimum number of communica-
tions that are required to transfer the entire data set to Pi

is

n∗
i =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ln

(
α
γ−1
i

Lγ−1βi−1

αi
+1

)

ln
(
α

γ−1
i Lγ−1βi

) if α
γ−1
i Lγ−1βi �= 1

1/αi if α
γ−1
i Lγ−1βi = 1.

PROOF The processor Pi receives a fraction of load

with size αi

(
α

γ−1
i Lγ−1βi

)j

L at (j + 1)th communication.

Since Pi needs to receive the entire data set, the following
constraint must be satisfied:

L ≤ αi

ni−1∑

j=0

(
α

γ−1
i Lγ−1βi

)j

L.
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If α
γ−1
i Lγ−1βi �= 1,

ni ≥
ln
(

α
γ−1
i Lγ−1βi−1

αi
+ 1

)

ln
(
α

γ−1
i Lγ−1βi

) .

If α
γ−1
i Lγ−1βi = 1, ni ≥ 1/αi . The minimum number of

communications is the lower bound of the above inequali-
ties. �

Considering the start-up costs, the parallel processing
time of algorithm M can be obtained by the following the-
orem.

THEOREM 9 For a single-level tree network with the root
as the initial processor, we have

T M

m+1,ρ = Lγ A0

1 + ρ
∑m

i=1
Lγ A0

ρLγ Ai+LGi

+ θcp + θcm

+ m
max
i=1

{⌈
n∗

i

⌉ − 1
}

max
{
θcp, θcm

}
.

If a homogeneous single-level tree network is considered,
where Ai = A, Gi = G, and βi = β = A

G
for all i. The

speedup is given as

SpeedupM

m+1 = Lγ A + θcp

T M

m+1,ρ

.

PROOF Assume that i = arg mini

{
α

γ−1
i βi

}
. We have n∗

i ≥
n∗

j for j ∈ {1, . . . , m}. The parallel processing time com-
prises a communication start-up cost in the first commu-
nication,

(
n∗

i − 1
)

max
{
θcp, θcm

}
start-up costs for the re-

ceiving of the rest of the data set, and a computation start-up
cost for the remaining processing steps. �

When the start-up costs are considered, the performance
may decline as the number of installments exceeds a cer-
tain value. The optimal number of installments needs to
be found. However, the optimal number of installments is
difficult to determine. Therefore, this work finds a range
for searching an optimal number of installments. We use
Um+1,ρ and Lm+1,ρ in the analysis where

Um+1,ρ = Lγ A0

1 + ρ
∑m

i=1
Lγ A0

ρLγ Ai+LGi

+ θcp + θcm

+ m
max
i=1

{
n∗

i

}
max

{
θcp, θcm

}
,

Lm+1,ρ = Lγ A0

1 + ρ
∑m

i=1
Lγ A0

ρLγ Ai+LGi

+ θcp + θcm

+ m
max
i=1

{
n∗

i − 1
}

max
{
θcp, θcm

}
.

In fact, Lm+1,ρ ≤ T M

m+1,ρ ≤ Um+1,ρ . We have Um+1,ρ −
Lm+1,ρ = max

{
θcp, θcm

}
and d

dρ
Um+1,ρ = d

dρ
Lm+1,ρ . Let

ρ1 = Lγ γ−1
√

β
γ − 1

(m + 1) Lγ−1β
,

ρ2 =
−1 +

√
mL2γ−1Aβ

(m+2) max{θcp,θcm}
(m + 1) Lγ−1β

,

and

ρ3 =
−1 +

√
mL2γ−1Aβ

(m+1) max{θcp,θcm}
(m + 1) Lγ−1β

.

The bound on the optimal number of installments is as
follows.

LEMMA 10 For a homogeneous single-level tree network
with the root as the initial processor, the optimal number of
installments can be found in the following range:

min {ρ1, ρ2} ≤ ρ∗ ≤ max {ρ1, ρ3}
where Ai = A, Gi = G, βi = β = A

G
, αi = α, and n∗

i = n∗

for all 1 ≤ i ≤ m.

PROOF Solving αγ−1Lγ−1β = 1 for ρ yields the root ρ1.
According to (4), the fraction αi is decreasing in ρ for
1 ≤ i ≤ m. So, αγ−1Lγ−1β is decreasing in ρ. In other
words, αγ−1Lγ−1β ≥ 1 at ρ ≤ ρ1 and αγ−1Lγ−1β < 1 at
ρ > ρ1.

By Lemma 8, n∗ = 1/α at ρ = ρ1. Since αγ−1Lγ−1β

is decreasing in ρ, n∗ is increasing in ρ. Because n∗ = 1/α

in ρ = ρ1 and n∗ is increasing in ρ, n∗ ≤ 1/α in ρ ≤ ρ1

and n∗ > 1/α in ρ > ρ1. We consider an upper bound of
Um+1,ρ in the case of αγ−1Lγ−1β ≥ 1. Since n∗ ≤ 1/α at
ρ ≤ ρ1, the following inequality applies:

Um+1,ρ ≤ Lγ A

1 + ρ
∑m

i=1
Lγ−1β

ρLγ−1β+1

+ θcp + θcm

+ 1

α
max

{
θcp, θcm

}

= RHS1 (6)

at ρ ≤ ρ1. Moreover, we consider a lower bound Lm+1,ρ in
the case of αγ−1Lγ−1β < 1. Since n∗ > 1/α at ρ > ρ1, the
following inequality holds:

Lm+1,ρ >
Lγ A

1 + ρ
∑m

i=1
Lγ−1β

ρLγ−1β+1

+ θcp + θcm

+
(

1

α
− 1

)
max

{
θcp, θcm

}

= RHS2 (7)

at ρ > ρ1.
By carefully inspecting the formulas T M

m+1,ρ, Um+1,ρ,

Lm+1,ρ, RHS1 and RHS2, they have a same term

Lγ A

1 + ρ
∑m

i=1
Lγ−1β

ρLγ−1β+1

+ θcp + θcm.

We call this term as the decreasing term. The decreas-
ing term is decreasing in ρ. The remaining terms in
T M

m+1,ρ, Um+1,ρ, Lm+1,ρ, RHS1, and RHS2 are increasing in
ρ. Therefore, the bound of optimal number of installments
can be obtained by analyzing RHS1 and RHS2.

Since Um+1,ρ − Lm+1,ρ = max
{
θcp, θcm

}
, the point

with slope of − max
{
θcp, θcm

}
in RHS1 needs to be found.

Solving d
dρ

RHS1 = − max
{
θcp, θcm

}
yields a single feasi-

ble root ρ2 (the other is negative.) Solving d
dρ

RHS1 = 0
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yields the root ρ3. Solving d
dρ

RHS2 = 0 also yields the root

ρ3. Since d
dρ

RHS1 is nondecreasing in ρ, ρ2 ≤ ρ3. There-
fore, three cases must be considered.

1) ρ2 ≤ ρ3 ≤ ρ1.
2) ρ2 ≤ ρ1 ≤ ρ3.
3) ρ1 ≤ ρ2 ≤ ρ3.

In case 1, the slope of RHS1 is at most − max
{
θcp, θcm

}

in ρ ≤ ρ2. Since n∗ ≤ 1/α in ρ ≤ ρ1 and the decreasing
terms in Um+1,ρ, Lm+1,ρ and RHS1 are the same, the slopes
of Um+1,ρ and Lm+1,ρ are less than the those of RHS1 in ρ ≤
ρ1. The following inequality can be obtained Um+1,ρ+1 ≤
Um+1,ρ − max

{
θcp, θcm

} = Lm+1,ρ in ρ < ρ2. Therefore,
T M

m+1,ρ+1 ≤ Um+1,ρ+1 ≤ Lm+1,ρ ≤ T M

m+1,ρ in ρ < ρ2 is ob-
tained. Since the parallel processing time T M

m+1,ρ is nonin-
creasing in ρ ≤ ρ2, so the optimal number of installments
ρ∗ is greater than or equal to ρ2. Since RHS2 is increasing
in ρ > ρ1 (∵ ρ3 ≤ ρ1) and 1/α <

⌈
n∗

i

⌉
in ρ > ρ1, T M

m+1,ρ

is also increasing in ρ > ρ1 and the global minimum point
of T M

m+1,ρ is less than or equal to ρ1. Therefore, the optimal
number of installments ρ∗ is less than or equal to ρ1.

In case 2, as in case 1, the optimal number of install-
ments ρ∗ is greater than or equal to ρ2. Since RHS2 is
increasing in ρ > ρ3 and 1/α ≤ ⌈

n∗
i

⌉
in ρ > ρ3 ≥ ρ1, the

global minimum point of T M

m+1,ρ is less than or equal to ρ3.
Thus, the optimal number of installments ρ∗ is less than or
equal to ρ3.

In case 3, the slope of RHS1 is at most − max
{
θcp, θcm

}

in ρ ≤ ρ1 (∵ ρ1 ≤ ρ2). As in case 1, T M

m+1,ρ is nonincreasing
in ρ ≤ ρ1. Thus, the optimal number of installments ρ∗ is
greater than or equal to ρ1. Since RHS2 is increasing in ρ >

ρ3 and 1/α ≤ ⌈
n∗

i

⌉
in ρ > ρ3 ≥ ρ1, the global minimum

point of T M

m+1,ρ is less than or equal to ρ3. Therefore, the
optimal number of installments ρ∗ is less than or equal to
ρ3. �

The algorithm FON is based on Lemmas 2 and 10 to
search an optimal number of installments. Another way can
be used to avoid the search policy with little loss in perfor-
mance. That is, the number of installments ρ can be directly
set as max {1, �min {ρ1, ρ2}�} or max {1, �min {ρ1, ρ2}�}.
The following theorem shows that algorithm M is not worse
than algorithm S if ρ ∈ [1, max {1, �min {ρ1, ρ2}�}].

THEOREM 11 For algorithms S and M with start-up
costs, T M

m+1,ρ ≤ T S

m+1 or SpeedupM

m+1 ≥ SpeedupS

m+1 for
ρ ∈ [1, max {1, �min {ρ1, ρ2}�}].

PROOF From Lemma 10, T M

m+1,ρ is nonincreasing in
ρ ∈ [1, max {1, �min {ρ1, ρ2}�}]. Since T S

m+1 = T M

m+1,ρ=1,
the proof is complete. �

Since n∗ is increasing in the number of child processors,
the performance may decline as the number of child pro-
cessors exceeds a certain value. Therefore, this work finds a
range for searching an optimal number of child processors.

Fig. 6. Speed-up of algorithms C and S with A = 10, G = 1, L = 500,
and γ = 2.

Let

m1 =
γ−1
√

βL

ρ
− 1

ρβLγ−1
− 1,

m2 =
−1 +

√
L2γ−1Aρβ(Lγ−1ρβ+1)

(ρ+1) max{θcp,θcm}
Lγ−1ρβ

− 1,

m3 =
−1 +

√
L2γ−1Aρβ(Lγ−1ρβ+1)

ρ max{θcp,θcm}
Lγ−1ρβ

− 1.

The bound on the optimal number of child processors is as
follows.

LEMMA 12 For a homogeneous single-level tree network
with the root as the initial processor, the optimal number of
child processors can be found in the following range:

min {m1, m2} ≤ m∗ ≤ max {m1, m3}
where Ai = A, Gi = G, βi = β = A

G
, αi = α, and n∗

i = n∗

for all 1 ≤ i ≤ m.

PROOF The proof is formally analogous to the proof of
Lemma 10. �

To avoid the search policy, the number of child proces-
sors m can be directly set as max {1, �min {m1, m2}�} or
max {1, �min {m1, m2}�}. According to Lemma 12, the fol-
lowing theorem shows that the performance of algorithm
M is nondecreasing in m ∈ [1, max {1, �min {m1, m2}�}].
THEOREM 13 For algorithm M with start-up costs,
T M

m+1,ρ ≤ T M

m or SpeedupM

m+1 ≥ SpeedupM

m for m ∈
[1, max {1, �min {m1, m2}�}].

VI. DISCUSSION OF RESULTS

This section compares the performance of the classi-
cal method with that of the proposed methods on a single
level tree network. Fig. 6 plots the speed-ups of algorithms
C and S without start-up costs. The speed-ups of algo-
rithm C is decreasing in m and reveals that the postpro-
cessing steps are increasing in m. Since Lγ−1β dominate
the other terms in the speed-up equation of algorithm S, the
algorithm S approaches its maximal speed-up of m + 1
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Fig. 7. Speed-up of algorithms S and M with A = 0.05, G = 1,
L = 500, γ = 2, θcp = 0.1, θcm = 0.1, and ρ = 3.

Fig. 8. Speed-up of algorithms S and M with A = 0.1, G = 1,
L = 500, γ = 2, θcp = 20, θcm = 20, and ρ = 3.

when Lγ−1β is very large. For example, the speed-up of al-
gorithm S reaches 1 + mLγ−1β

Lγ−1β + 1 = 10.99 at m = 10, which
is very close to the asymptotic speed-up m + 1.

Next, the numerical results concerning the speed-
ups of algorithms S and M are presented. The
parallel processing time of algorithm M is com-
posed of two terms Lγ A0

1+ρ
∑m

i=1
Lγ A0

ρLγ Ai + LGi

and θcp + θcm +
maxm

i=1

{⌈
n∗

i

⌉ − 1
}

max
{
θcp, θcm

}
. The first term is de-

creasing in m and the second term is increasing in m. The
start-up costs are small if the increase in the second term
is less than the decrease in the first term, otherwise the
start-up cost is large. Fig. 7 shows the results for small
start-up costs. Both algorithms are very close to the opti-
mal solution m + 1. The first terms of parallel processing
time are 6291.4, 4203.5, 3156.1, 2526.6, 2106.4, 1806.1,
and 1580.7 that are decreasing in m. The second terms of
parallel processing time are 0.5, 0.5, 0.6, 0.7, 0.9, 1.2, and 2.
The increment of the second term is less than the decrease
of first term. Algorithm M consistently outperforms algo-
rithm S when start-up costs are very small. For example,
when the number of child processors is m = 7, the speed-
up of algorithm M is 7.8980, which is very close to the
asymptotic value, whereas the speed-up of algorithm S is
7.7284. Since both algorithms are very close to m + 1, the
outperformance of algorithm M is not considerable. Fig. 8
shows the results for large start-up costs. For m ≥ 14, the
first terms of parallel processing time are 1677 and 1572
and the second terms of parallel processing time are 400
and 600. The increment in the second term is greater than
the decrease in the first term which results in bad perfor-
mance. The algorithm M performs the worst when m is

Fig. 9. Speed-up of algorithm M with A = 0.1, G = 1, γ = 2,
θcp = 40, θcm = 40, and ρ = 3.

Fig. 10. Speed-up of algorithm M with A = 1, G = 1, γ = 2,
θcp = 0.1, θcm = 0.1, and m = 15.

large. For example, the algorithm M outperforms the algo-
rithm S when m is small (m ≤ 6), whereas the algorithm
S performs best than the algorithm M when m is large
(m > 6). The start-up costs affected the algorithm M more
than the algorithm S.

Fig. 9 shows the results for algorithm M with differently
sized loads. As L increases, the speed-up of algorithm
M approaches m + 1 and is unaffected by start-up costs.
According to the observation of Figs. 7 and 9, the algorithm
M consistently outperforms the algorithm S when the
load to be processed is very large or when the start-up
costs are small. Moreover, the optimal number of child
processors is in agreement with Lemma 12. For example,
when L = 1000, the speed-up of algorithm M is nonde-
creasing in m ≤ 28, consistent with Lemma 12, which
states that the optimal number of child processors can be
found in a range min {m1 = 32.33, m2 = 24.00} ≤ m∗ ≤
max {m1 = 32.33, m3 = 27.86}. The cases of L = 500
and L = 750 are also consistent with Lemma 12, which
states that the optimal number of child processors can be
found in ranges min {m1 = 15.66, m2 = 11.49} ≤ m∗ ≤
max {m1 = 15.66, m3 = 13.43} and min{m1 = 24.00, m2

= 17.75} ≤ m∗ ≤ max {m1 = 24.00, m3 = 20.65}, re-
spectively.

Fig. 10 presents the numerical results concerning
the speed-up of algorithm M with differently sized
loads. Also, the speed-up of algorithm M approaches
m + 1 and is unaffected by start-up costs if L is very
large. We assume that L is very large if the incre-
ment of the second term of parallel processing time
θcp + θcm + maxm

i=1

{⌈
n∗

i

⌉ − 1
}

max
{
θcp, θcm

}
is less than

the decrease in the first term of parallel processing
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time Lγ A0

1+ρ
∑m

i=1
Lγ A0

ρLγ Ai + LGi

. The optimal number of install-

ments is in agreement with Lemma 10. For exam-
ple, when L = 1000, the speed-up of algorithm M is
nondecreasing in ρ ≤ 36, consistent with Lemma 10,
which states that the optimal number of installments
can be found in a range min {ρ1 = 62.50, ρ2 = 5.87} ≤
ρ∗ ≤ max {ρ1 = 62.50, ρ3 = 6.05}. The cases of L =
500 and L = 750 are also consistent with Lemma 10,
which states that the optimal number of installments can
be found in ranges min{ρ1 = 31.25, ρ2 = 4.15} ≤ ρ∗ ≤
max{ρ1 = 31.25, ρ3 = 4.28} and min{ρ1 = 46.87, ρ2 =
5.08} ≤ ρ∗ ≤ max{ρ1 = 46.87, ρ3 = 5.24}, respectively.

VII. CONCLUSION

This work proposed two algorithms S and M to dis-
tribute a divisible nonlinear load in a single-level tree
network. The algorithm S employs the single-installment
processing approach. The algorithm M applied the multi-
installment processing approach to yield an improved non-
linear load distribution on a single-level tree network.
The closed-form solutions for parallel execution times and
speed-ups, obtained by the proposed algorithms, are also
derived. This work reveals that the performance of algo-
rithm S improves the classical algorithm. This work finds
two ranges to search an optimal number of installments and
an optimal number of child processors when the computa-
tion and communication start-up costs are considered.

REFERENCES

[1] M. Adler, Y. Gong, and A. L. Rosenberg
Optimal sharing of bags of tasks in heterogeneous clusters
In Proc. 15th Annu. ACM Symp. Parallel Algorithms Archit.,
2003, vol. 3, pp. 1–10.

[2] Y. Bai and R. C. Ward
Parallel block tridiagonalization of real symmetric matrices
J. Parall. Distrib. Comput., vol. 68, no. 5, pp. 703–715, 2008.

[3] S. Bataineh, T.-Y. Hsiung, and T. G. Robertazzi
Closed form solutions for bus and tree networks of processors
load sharing a divisible job
IEEE Trans. Comput., vol. 43, no. 10, pp. 1184–1196, Oct.
1994.

[4] S. M. Bataineh
Toward an analytical solution to task allocation, processor as-
signment, and performance evaluation of network processors
J. Parallel Distrib. Comput., vol. 65, no. 1, pp. 29–47, 2005.

[5] O. Beaumont, L. Marchal, V. Rehn, and Y. Robert
Fifo scheduling of divisible loads with return messages under
the one-port model
In Proc. 20th Int. Parallel Distrib. Process. Symp., 2006, p. 14.

[6] V. Bharadwaj, D. Ghose, and V. Mani
Multi-installment load distribution in tree networks with delays
IEEE Trans. Aerosp. Electron. Syst., vol. 31, no. 2, pp. 555–567,
Apr. 1995.

[7] V. Bharadwaj and W. H. Min
Scheduling divisible loads on heterogeneous linear daisy chain
networks with arbitrary processor release times
IEEE Trans. Parallel Distrib. Syst., vol. 15, no. 3, pp. 273–288,
Mar. 2004.

[8] V. Bharadwaj, T. G. Robertazzi, and D. Ghose
Scheduling Divisible Loads in Parallel and Distributed Systems.
Los Alamitos, CA, USA: IEEE Comput. Soc. Press, 1996.

[9] J. Błazewicz and M. Drozdowski
Scheduling divisible jobs on hypercubes
Parallel Comput., vol. 21, no. 12, pp. 1945–1956, 1995.

[10] J. Błazewicz and M. Drozdowski
The performance limits of a two-dimensional network of load-
sharing processors
Found. Comput. Decis. Sci., vol. 21, no. 1, pp. 3–15, 1996.

[11] J. Błazewicz, M. Drozdowski, F. Guinand, and D. Trystram
Scheduling a divisible task in a two-dimensional toroidal mesh
Discrete Appl. Math., vol. 94, no. 13, pp. 35–50, 1999.

[12] J. Błazewicz, M. Drozdowski, and M. Markiewicz
Divisible task scheduling–Concept and verification
Parallel Comput., vol. 25, no. 1, pp. 87–98, 1999.

[13] B. D. Carlson, E. D. Evans, and S. L. Wilson
Search radar detection and track with the hough transform. III.
Detection performance with binary integration
IEEE Trans. Aerosp. Electron. Syst., vol. 30, no. 1, pp. 116–125,
Jan. 1994.

[14] Y.-K. Chang, J.-H. Wu, C.-Y. Chen, and C.-P. Chu
Improved methods for divisible load distribution on k-
dimensional meshes using multi-installment
IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 11, pp. 1618–
1629, Nov. 2007.

[15] S. Charcranoon, T. Robertazzi, and S. Luryi
Parallel processor configuration design with process-
ing/transmission costs
IEEE Trans. Comput., vol. 49, no. 9, pp. 987–991, Sep. 2000.

[16] C.-Y. Chen and C.-P. Chu
Improved methods for divisible load distribution on d-
dimensional hypercube using multi-installment
J. Chin. Inst. Eng., vol. 31, no. 7, pp. 1199–1206, 2008.

[17] C.-Y. Chen and C.-P. Chu
A novel computational model for non-linear divisible loads on
a linear network
IEEE Trans. Comput., vol. 65, no. 1, pp. 53–65, Jan. 2016.

[18] C.-Y. Chen and C.-P. Chu
Novel methods for divisible load distribution with start-up costs
on a complete b-ary tree
IEEE Trans. Parallel Distrib. Syst., vol. 26, no. 10, pp. 2836–
2848, Oct. 2015.

[19] Y. Cheng and T. Robertazzi
Distributed computation with communication delay [dis-
tributed intelligent sensor networks]
IEEE Trans. Aerosp. Electron. Syst., vol. 24, no. 6, pp. 700–712,
Nov. 1988.

[20] M. Drozdowski and P. Wolniewicz
Out-of-core divisible load processing
IEEE Trans. Parallel Distrib. Syst., vol. 14, no. 10, pp. 1048–
1056, Oct. 2003.

[21] M. Drozdowski
Selected problems of scheduling tasks in multiprocessor com-
puter systems
PhD dissertation, Instytut Informatyki Politechnika Poznanska,
Poznan, 1997.

[22] M. Drozdowski and W. Glazek
Scheduling divisible loads in a three-dimensional mesh of pro-
cessors
Parallel Comput., vol. 25, no. 4, pp. 381–404, 1999.

[23] M. Drozdowski, M. Lawenda, and F. Guinand
Scheduling multiple divisible loads
Int. J. High Perform. Comput. Appl., vol. 20, no. 1, pp. 19–30,
2006.

[24] M. Drozdowski and P. Wolniewicz
Performance limits of divisible load processing in systems with
limited communication buffers
J. Parallel Distrib. Comput., vol. 64, no. 8, pp. 960–973, 2004.

[25] M. Drozdowski and P. Wolniewicz
Experiments with scheduling divisible tasks in clusters of work-
stations
In Proc. Euro-Par 2000 Parallel Process., 2000, pp. 311–319.

1676 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 54, NO. 4 AUGUST 2018



[26] M. Drozdowski and P. Wolniewicz
Optimum divisible load scheduling on heterogeneous stars with
limited memory
Eur. J. Oper. Res., vol. 172, no. 2, pp. 545–559, 2006.

[27] R. O. Duda and P. E. Hart
Use of the hough transformation to detect lines and curves in
pictures
Commun. ACM, vol. 15, no. 1, pp. 11–15, Jan. 1972.

[28] P. Dutot
Divisible load on heterogeneous linear array
In Proc. Int. Parall. Distrib. Process. Symp., Nice, France, 2003,
p. 7.

[29] M. Field, D. Stirling, Z. Pan, and F. Naghdy
Learning trajectories for robot programing by demonstration
using a coordinated mixture of factor analyzers
IEEE Trans. Cybern., vol. 46, no. 3, pp. 706–717, Mar. 2016.

[30] I. Foster and C. Kesselman
The Grid 2: Blueprint for a New Computing Infrastructure.
Amsterdam, The Netherlands: Elsevier, 2003.

[31] D. Ghose and H. J. Kim
Computing blas level-2 operations on workstation clusters us-
ing the divisible load paradigm
Math. Comput. Model., vol. 41, no. 1, pp. 49–70, 2005.

[32] W. Glazek
Distributed computation in a three-dimensional mesh with com-
munication delays
In Proc. 6th Euromicro Workshop Parallel Distrib. Process.,
Jan. 1998, pp. 38–42.

[33] W. Gropp, E. Lusk, and A. Skjellum
Using MPI: Portable Parallel Programming With the Message-
Passing Interface, vol. 1. Cambridge, MA, USA: MIT Press,
1999.

[34] N. Guil, J. Villalba, and E. L. Zapata
A fast hough transform for segment detection
IEEE Trans. Image Process., vol. 4, no. 11, pp. 1541–1548,
Nov. 1995.

[35] J. Guo, J. Yao, and L. Bhuyan
An efficient packet scheduling algorithm in network processors
In Proc. IEEE 24th Annu. Joint Conf. IEEE Comput. Commun.
Soc, Mar. 2005, vol. 2, pp. 807–818.

[36] J. T. Hung, H. J. Kim, and T. G. Robertazzi
Scalable scheduling in parallel processors
In Proc Conf. Inf. Sci. Syst., 2002, p. 6.

[37] J. T. Hung and T. Robertazzi
Scheduling nonlinear computational loads
IEEE Trans. Aerosp. Electron. Syst., vol. 44, no. 3, pp. 1169–
1182, Jul. 2008.

[38] J.-T. Hung and T. Robertazzi
Distributed scheduling of nonlinear computational loads
In Proc. Conf. Inf. Sci. Syst., 2003, p. 6.

[39] M. R. Inggs and A. D. Robinson
Ship target recognition using low resolution radar and neural
networks
IEEE Trans. Aerosp. Electron. Syst., vol. 35, no. 2, pp. 386–393,
Apr. 1999.

[40] K. B. Khalifa, M. Boubaker, N. Chelbi, and M. H. Bedoui
Learning vector quantization neural network implementation
using parallel and serial arithmetic
Int. J. Comput. Sci. Eng. Syst., vol. 2, no. 4, pp. 251–256, 2008.

[41] H.-J. Kim
A novel optimal load distribution algorithm for divisible loads
Cluster Comput., vol. 6, no. 1, pp. 41–46, 2003.

[42] K. Ko
Scheduling Data Intensive Parallel Processing in Distributed
and Networked Environments. Stony Brook, NY, USA: State
Univ. New York Stony Brook, 2000.

[43] K. Ko and T. G. Robertazzi
Signature search time evaluation in flat file databases
IEEE Trans. Aerosp. Electron. Syst., vol. 44, no. 2, pp. 493–502,
Apr. 2008.

[44] Y. Kyong and T. G. Robertazzi
Greedy signature processing with arbitrary location distribu-
tions: A divisible load framework
IEEE Trans. Aerosp. Electron. Syst., vol. 48, no. 4, pp. 3027–
3041, Oct. 2012.

[45] K. Li
Managing divisible load on partitionable networks
In High Performance Computing Systems and Applications.
New York, NY, USA: Springer, 1998.

[46] K. Li
Improved methods for divisible load distribution on k-
dimensional meshes using pipelined communications
IEEE Trans. Parallel Distrib. Syst., vol. 14, no. 12, pp. 1250–
1261, Dec. 2003.

[47] K. Li
Parallel processing of divisible loads on partitionable static
interconnection networks
Cluster Comput., vol. 6, no. 1, pp. 47–55, 2003.

[48] K. Li
Speed-up of parallel processing of divisible loads on k-
dimensional meshes and tori
Comput. J., vol. 46, no. 6, pp. 625–631, 2003.

[49] K. Li
New divisible load distribution methods using pipelined com-
munication techniques on tree and pyramid networks
IEEE Trans. Aerosp. Electron. Syst., vol. 47, no. 2, pp. 806–819,
Apr. 2011.

[50] P. Li, B. Veeravalli, and A. A. Kassim
Design and implementation of parallel video encoding strate-
gies using divisible load analysis
IEEE Trans. Circuits Syst. Video Technol., vol. 15, no. 9,
pp. 1098–1112, Sep. 2005.

[51] X. Li, B. Veeravalli, and C. C. Ko
Divisible load scheduling on a hypercube cluster with finite-
size buffers and granularity constraints
In Proc. 1st IEEE/ACM Int. Symp. Cluster Comput. Grid, 2001,
pp. 660–667.

[52] X. Li, B. Veeravalli, and C. C. Ko
Distributed image processing on a network of workstations
Int. J. Comput. Appl., vol. 25, no. 2, pp. 1–10, 2003.

[53] W. H. Min and B. Veeravalli
Aligning biological sequences on distributed bus networks: A
divisible load scheduling approach
IEEE Trans. Inf. Technol. Biomed., vol. 9, no. 4, pp. 489–501,
Dec. 2005.

[54] H. Othman and T. Aboulnasr
A separable low complexity 2d hmm with application to face
recognition
IEEE Trans. Pattern Anal. Mach. Intell., vol. 25, no. 10,
pp. 1229–1238, Oct. 2003.

[55] D. A. L. Piriyakumar and C. S. R. Murthy
Distributed computation for a hypercube network of sensor-
driven processors with communication delays including setup
time
IEEE Trans. Syst., Man, Cybern. A, Syst., Humans, vol. 28,
no. 2, pp. 245–251, Mar. 1998.

[56] S. Suresh, H. Huang, and H. J. Kim
Scheduling in compute cloud with multiple data banks using
divisible load paradigm
IEEE Trans. Aerosp. Electron. Syst., vol. 51, no. 2, pp. 1288–
1297, Apr. 2015.

[57] S. Suresh, H. Kim, C. Run, and T. Robertazzi
Scheduling nonlinear divisible loads in a single level tree net-
work
J. Supercomput., vol. 61, pp. 1068–1088, 2012.

[58] S. Suresh, V. Mani, and S. Omkar
The effect of start-up delays in scheduling divisible loads on
bus networks: An alternate approach
Comput. Math. Appl., vol. 46, no. 10, pp. 1545–1557, 2003.

CHEN AND CHU: DIVISIBLE NONLINEAR LOAD DISTRIBUTION ON HETEROGENEOUS SINGLE-LEVEL TREES 1677



[59] S. Suresh, S. Omkar, and V. Mani
Parallel implementation of back-propagation algorithm in net-
works of workstations
IEEE Trans. Parallel Distrib. Syst., vol. 16, no. 1, pp. 24–34,
Jan. 2005.

[60] S. Suresh, C. Run, H. J. Kim, T. Robertazzi, and Y.-I. Kim
Scheduling second-order computational load in master-slave
paradigm
IEEE Trans. Aerosp. Electron. Syst., vol. 48, no. 1, pp. 780–793,
Jan. 2012.

[61] S. Suresh, V. Mani, S. Omkar, and H. Kim
Divisible load scheduling in distributed system with buffer con-
straints: Genetic algorithm and linear programming approach
Int. J. Parallel, Emergent Distrib. Syst., vol. 21, no. 5, pp. 303–
321, 2006.

[62] A. Vakanski, I. Mantegh, A. Irish, and F. Janabi-Sharifi
Trajectory learning for robot programming by demonstration
using hidden Markov model and dynamic time warping
IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 42, no. 4,
pp. 1039–1052, Aug. 2012.

[63] B. Veeravalli
Design and performance analysis of heuristic load-balancing
strategies for processing divisible loads on ethernet clusters
Int. J. Comput. Appl., vol. 27, no. 2, pp. 97–107, 2005.

[64] B. Veeravalli, X. Li, and C. C. Ko
On the influence of start-up costs in scheduling divisible loads
on bus networks
IEEE Trans. Parallel Distrib. Syst., vol. 11, no. 12, pp. 1288–
1305, Dec. 2000.

[65] S. Viswanathan, B. Veeravalli, and T. G. Robertazzi
Resource-aware distributed scheduling strategies for large-
scale computational cluster/grid systems
IEEE Trans. Parallel Distrib. Syst., vol. 18, no. 10, pp. 1450–
1461, Oct. 2007.

[66] K. Wang and T. G. Robertazzi
Scheduling divisible loads with nonlinear communication time
IEEE Trans. Aerosp. Electron. Syst., vol. 51, no. 3, pp. 2479–
2485, Jul. 2015.

[67] Y. Yang, K. van der Raadt, and H. Casanova
Multiround algorithms for scheduling divisible loads
IEEE Trans. Parallel Distrib. Syst., vol. 16, no. 11, pp. 1092–
1102, Nov. 2005.

[68] J. Yao and B. Veeravalli
Design and performance analysis of divisible load scheduling
strategies on arbitrary graphs
Cluster Comput., vol. 7, no. 2, pp. 191–207, 2004.

[69] Z. Zeng and B. Veeravalli
Distributed scheduling strategy for divisible loads on arbitrarily
configured distributed networks using load balancing via virtual
routing
J. Parallel Distrib. Comput., vol. 66, no. 11, pp. 1404–1418,
2006.

[70] Q. Zhang, T. S. Yeo, H. S. Tan, and Y. Luo
Imaging of a moving target with rotating parts based on the
hough transform
IEEE Trans. Geosci. Remote Sens., vol. 46, no. 1, pp. 291–299,
Jan. 2008.

Chi-Yeh Chen received the B.S. degree in communication engineering from Da-Yeh Uni-
versity, Changhua, Taiwan, in 2001, the M.S. degree in computer science and information
and engineering from National Cheng Kung University, Tainan, Taiwan, in 2005, and the
Ph.D. degree in computer science and information and engineering from National Cheng
Kung University, Tainan, Taiwan, in 2012.

He is currently an Assistant Researcher with the Department of Computer Science and
Information Engineering, National Cheng Kung University. His research interests include
scheduling problems, approximation algorithms, parallel algorithm, and load distribution.

Chih-Ping Chu received the B.S. degree in agricultural chemistry from National Chung
Hsing University, Taichung, Taiwan, the M.S. degree in computer science from the Uni-
versity of California, Riverside, Riverside, CA, USA, and the Ph.D. degree in computer
science from Louisiana State University, Baton Rouge, LA, USA.

He is currently a Professor with the Department of Computer Science and Information
Engineering, National Cheng Kung University, Tainan, Taiwan. His research interests
include high-performance computing, parallel processing, internet computing, e-learning,
and software engineering.

1678 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 54, NO. 4 AUGUST 2018



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


