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This paper proposes a new method for tracking the entire trajec-
tory of a ballistic missile from launch to impact on the ground. Mul-
tiple state models are used to represent the different ballistic missile
dynamics in three flight phases: boost, coast, and re-entry. In particu-
lar, the transition probabilities between state models are represented
in a state-dependent way by utilizing domain knowledge. Based on this
modeling system and radar measurements, a state-dependent inter-
acting multiple model approach based on Gaussian particle filtering is
developed to accurately estimate information describing the ballistic
missile such as the phase of flight, position, velocity, and relevant mis-
sile parameters. Comprehensive numerical simulation studies show
that the proposed method outperforms the traditional multiple model
approaches for ballistic missile tracking.
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I. INTRODUCTION

A ballistic missile (BM) is one of the major threats from
the air in modern warfare, so it is important to intercept
before it hits the target on the ground. To intercept the BM,
first it needs to be tracked by radar systems to estimate
the state information such as position, velocity, and other
relevant parameters, based on which its future trajectory
can be predicted by a corresponding dynamic model.

The BM typically experiences three different flight
phases: boost, coast, and re-entry [1]. During those phases,
the characteristics of the BM are significantly different:

1) in the boost phase, the BM experiences a powered flight
from launch to thrust cutoff;

2) in the coast phase, the thruster of the BM is turned
OFFand the missile flies freely without the influence of
atmospheric drag because it is in a relatively high part
of the atmosphere; and

3) in the re-entry phase, the BM reaches the lower part of
the atmosphere and the atmospheric drag becomes con-
siderable again and lasts until its impact to the ground.

Various works have considered BM tracking for the
boost phase. A boost phase missile tracking algorithm is
proposed in [2]. A nonlinear model is proposed to model
the missile dynamics by correlating its transitional dynam-
ics with the altitude motion and the line-of-sight angle is
used as measurements. Based on the state model and mea-
surements, the extended Kalman filter (EKF) is applied
to estimate the state of a missile. An improved algorithm
over [2] with better tracking performance is proposed in
[3]. The batch-based algorithm is used for the state initial-
ization and an adaptive process-noise matrix is added to
compensate for the errors of the transition matrix in the
dynamic model. A new dynamic model is proposed in [4],
in which the thruster acceleration of the booster is mod-
eled by a vector-differential equation that includes effects
of both propellant depletion and attitude motions. The new
model is incorporated into the EKF framework for the boost
phase tracking. Li et al. [5] proposed a maximum likelihood
(ML) algorithm for BM tracking at a particular acquisition
time in the boost phase and the launch point. Based on the
profile-based modeling of the boost phase and the line-of-
sight measurements, the ML estimation method is applied
for constructing and solving an optimization function for
estimating relevant parameters. A kind of adaptive filter al-
gorithm is proposed in [6] for the boost-phase trajectory
estimation. Polynomial model is used as the motion model
of the boost trajectory and the corresponding process noise
variance is constructed to make sure the state estimation
error approximates the error lower bound of the optimal
estimation. In order to achieve stably tracking the ballistic
target and better adaptability to the flicker noise in the boost
phase, a multiple model-based method, which combines the
unscented Kalman filter and unscented particle filter as in
[7], is proposed for tracking the ballistic missile in the boost
phase.
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There are also works for tracking the BM in the coast
and re-entry phase. Tracking of the BM in the coast phase is
proposed in [8]. The sensor mechanism is modeled to deal
with the time lag due to the mechanism of data collection
and transmission and it is incorporated into the EKF for
the state estimation. In the approach proposed in [9] for the
coast phase tracking, the Doppler frequency is also taken
into account for new measurement information. And differ-
ent from the traditional Kalman filtering-based approach,
a unscented Kalman filtering (UKF) filtering approach is
exploited for tracking. For the re-entry phase tracking, an
extended interval Kalman filter approach [10] and sequen-
tial Monte Carlo-based approach [11] have been developed
by considering the effect of atmospheric drag. Besides, a
comparison study between different filtering methods for
BM tracking during the re-entry phase is presented in [12].
From the numerical simulation results, it was shown that
the Rao–Blackwellised particle filter achieves the best per-
formance, especially when large initial uncertainties exist.

Note that the aforementioned methods only consider
tracking of the BM during a particular phase by using
one type of state models. However, in order to accurately
track the whole trajectory of the BM, multiple state mod-
els need to be used as the BM experiences different flight
phases from the launch to impact. To this end, Benavoli
et al. [13] proposed an optimization-based method to es-
timate the BM states and model parameters by adopting
multiple models. A particle filtering-based approach has
also been applied to estimate the burnout time. Different
BM dynamic models (as detailed in [13]) have been de-
signed to construct the cost function before and after the
estimated burnout time and optimized for the state and pa-
rameter estimation. The limitation of this method is that it
is always assumed that the tracking of a BM starts from the
boost phase.

The most widely used method for the tracking of mul-
tiple BM flight phases is the interacting multiple model
(IMM) method as used in [14]–[17]. Multiple state models
corresponding to different flight phases have been applied
in the development of IMM algorithms where the state es-
timation is given by three steps: interaction, filtering, and
combination [18]. However, the current multiple model ap-
proaches still cannot fully represent the real behavior of
a typical ballistic missile. For example, the IMM-based
method uses a modeling system with constant transition
probabilities between different models. This is not a real-
istic approach for BM tracking as the transitions between
different phases are related with the states, that is, state de-
pendent. For instance, the higher the BM is, the more likely
the BM flight phase transits from boost to coast.

In this paper, a new multiple model-based filtering ap-
proach is developed for BM tracking. First, the state mod-
eling framework with multiple models and state-dependent
transition probabilities is adopted for the BM movement
modeling. The BM movement characteristics in different
flight phases are reflected in multiple models. Compared
with the traditional multiple model-based BM tracking with
constant transition probabilities, the state-dependent tran-

Fig. 1. Illustration of the entire trajectory and different phases of the
BM.

sition probabilities between different models are used in
this paper. Based on this modeling system, state-dependent
interacting multiple model Gaussian particle filtering (SD-
IMMGPF) approach is developed to implement the exact
Bayesian inference framework. Different from the generic
particle filtering-based state-dependent multiple model
particle filtering (SD-IMMPF) ([19] and [20]), the pro-
posed approach uses a modified version of the GPF [21] as
mode-matched filtering. Compared with the SD-IMMPF,
the proposed SD-IMMGPF approach can exploit both state
model and measurement information for generating parti-
cles which can better approximate the posterior state distri-
bution for improving tracking results.

The structure of this paper is as follows. Section II
describes the tracking models, including the proposed state
modeling framework and the measurement model used in
BM tracking. The general Bayesian inference procedure
and the proposed SD-IMMGPF approach are presented in
Section III. Comprehensive numerical simulation studies
using different algorithms are presented in Section IV, and
the final conclusions and suggestions for future work are
given in Section V.

II. BALLISTIC MISSILE TRACKING MODELS

A. Multiple Model System With State-Dependent Tran-
sition Probabilities

This section presents the state modeling system used for
the ballistic missile tracking. Multiple state models are ap-
plied for the different missile movements in different phases
where the state transitions between them are represented in
a state-dependent way.

1) Multiple State Models: The entire trajectory of the
BM from launch to impact is commonly divided into three
phases [1], [13]: boost, coast, and re-entry phases, as il-
lustrated in Fig. 1. Thus, three state models are defined to
reflect different BM dynamics. Similar to [13], we made
the following assumptions.

1) Earth is perfectly spherical and the rotation of the earth
is considered.

2) The effect of the aerodynamic lift is currently neglected
as in [10], [11], and [13].

3) It is assumed that a single-stage boost phase with a
constant thrust force exists.
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Boost model: During the boost phase, the missile is af-
fected by the gravity, thrust, and aerodynamic drag force
[13]. In an earth-centered-earth-fixed (ECEF) coordinate
system [1], as the earth rotates about the conventional
terrestrial pole (CTP) axis with an angular velocity ω, the
missile is also affected by two other forces: coriolis and
centripetal force. According to Newton’s force law, the fol-
lowing basic equations hold:

ṗt = vt

v̇t = athrust
t + adrag

t + agravity
t + acorriolis

t + acentripetal
t

(1)

where pt = (px
t , p

y
t , p

z
t )T and vt = (vx

t , v
y
t , vz

t )T ((·)T de-
notes the vector transpose) represent the position and
velocity in the ECEF coordinate system at the time t ,
respectively. Its z-axis is the CTP axis. The x and y axes
lie in the equatorial plane with the x-axis pointing to-
ward the Greenwich meridian. The vectors athrust

t , adrag
t ,

agravity
t , acorriolis

t , and acentripetal
t represent the accelerations

introduced by thrust, aerodynamic drag, gravity, coriolis,
and centripetal force, respectively.

As in [13] and [22], the thrust acceleration athrust
t acts

along the target’s longitudinal axis (parallel to the velocity
vector vt ) and its magnitude is

|athrust
t | = gIspṁt

mt

(2)

where m(t) is the target’s mass, g = 9.81 ms−2 represent
the gravitational acceleration, Isp is the specific impulse (ex-
pressed in seconds), and ṁt is the mass burn rate. Assuming
that the specific impulse is constant and the target mass mt

decreases linearly at a constant rate ṁ (mt = m0 − ṁt , m0

is the targets mass at the launch time), the thrust accelera-
tion magnitude can be expressed as

|athrust
t | = ng

1 − qt
(3)

where n = Ispq is the initial thrust-to-weight ratio and q =
ṁt

m0
is the normalized mass burn rate.

The drag acceleration adrag
t is opposite to the target’s

velocity vector vt . According to [22], its magnitude is
given by

|adrag
t | = cD(|vt |)Sρ(ht )|vt |2

2mt

(4)

where |vt | is the velocity magnitude at time t and ht rep-
resents the altitude of the BM. S is defined as the target
body cross-sectional area perpendicular to the velocity [22].
cD(|vt |) is the drag coefficient as a function of the velocity
magnitude and ρ(·) is the air density function defined as

ρ(ht ) = ρ0 exp(−k · ht ) (5)

where ρ0 = 1.22 and k = 0.14 × 10−3.
By assuming cD(|vt |)S/mt to be constant [13], a bal-

listic coefficient parameter β = mt/cD(|vt |)S is introduced
and (4) can be rewritten as

|adrag
t | = ρ(ht )|vt |2

2β
(6)

The gravitational acceleration points from the target to
the earth’s center and its magnitude is given by the Newton’s
law of universal gravitation as ([13] and [22])

|agravity
t | = uG

|pt |2 (7)

where uG = 3.99 × 1014 N m2/kg and |pt | represents the
position magnitude.

The coriolis and centripetal accelerations, acorriolis
t and

acentripetal
t are defined as ([13] and [22])

acorriolis
t = 2wE × vt

acentripetal
t = wE × (wE × pt )

(8)

where “×” represents the cross product and wE =
(0, 0, −ω)T . ω = 7.29 × 10−5 rad/s is the earth’s angular
speed.

Combining definitions of separate acceleration terms
from (2) to (8), the total acceleration of the BM during the
boost phase (denoted as ab

t ) can be represented as

ab
t = athrust

t + adrag
t + agravity

t + acorriolis
t + acentripetal

t

= ng

1 − qt

vt

‖vt‖ − ρ(ht )

2β
‖vt‖vt − uG

pt

‖pt‖ + 2wE × vt

+ wE × (wE × pt ). (9)

From the acceleration terms in (9) and the piecewise-
constant acceleration assumption during a short time in-
terval T , we can obtain the evolution of the position and
velocity between t and t + T as[

pt+T

vt+T

]
= F

[
pt

vt

]
+ G(ab

t + wb
t ) (10)

where wb
t = (wx,b

t , w
y,b
t , w

z,b
t )T represent the boost phase

acceleration uncertainties in three axes and the matrix F

and G are defined as

F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 T 0 0
0 1 0 0 T 0

0 0 1 0 0 T

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

T 2

2 0 0
0 T 2

2 0

0 0 T 2

2

T 0 0

0 T 0

0 0 T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

(11)

Typically, as BM parameters n, q, and β in (9) are
unknown, they need to be estimated. The estimated param-
eters can then be used in missile trajectory prediction and
missile type identification. In order to estimate the initial
thrust-to-weight ratio n and normalized mass burn rate q, a
simple Brownian motion model is used as

nt+T = nt + T · wn
t

qt+T = qt + T · w
q
t

(12)

where nt and qt represent modeled n, q values at time
instance t . wn

t and w
q
t represent the introduced parameter

uncertainties.
A similar way could be used to model the ballistic co-

efficient β. However, when the BM is at a high altitude, the
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value of ρ(ht )
2β

in (9) will be close to zero regardless of β

due to the exponential decay of the term ρ(ht ) with respect
to the height ht . In this case, different values of β have the
same effect on the position and velocity evolution, and thus
the value of β cannot be estimated correctly. In order to ad-
dress this issue, we adopt the same strategy for parameter
modeling used in [10]. Instead of β, a parameter γt = ρ(ht )

2β

is first modeled and calculated. β can then be computed
from γt . By the Euler approximation [23], the evolution of
γt can be modeled as

γt+T = γt + T · γ ′
t + T · w

γ
t (13)

where w
γ
t represents the parameter uncertainty and γ ′

t rep-
resents the differentiation of γt with respect to the time t

given as

γ ′
t = −k · γt

px
t v

x
t + p

y
t v

y
t + pz

t v
z
t√

(px
t )2 + (py

t )2 + (pz
t )2

. (14)

By augmenting the state dynamic equation (10) with
the parameter models in (12) and (13), the complete state
model for the boost phase is represented as

xb
t+T = Fbxb

t + Gb

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

ab
t

γ ′
t

0

0

⎤
⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎣

wb
t

w
γ
t

wn
t

w
q
t

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ (15)

where

xb
t =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

px
t

p
y
t

pz
t

vx
t

v
y
t

vz
t

γt

nt

qt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, F b=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 T 0 0 0 0 0

0 1 0 0 T 0 0 0 0

0 0 1 0 0 T 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Gb =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T 2

2 0 0 0 0 0

0 T 2

2 0 0 0 0

0 0 T 2

2 0 0 0

T 0 0 0 0 0

0 T 0 0 0 0

0 0 T 0 0 0

0 0 0 T 0 0

0 0 0 0 T 0

0 0 0 0 0 T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(16)

Coast and re-entry models: After the boost phase, a BM
will not be affected by the thrust force. The acceleration
components (denoted as acr

t ) in three axes become

acr
t = −γt‖vt‖vt − uG

pt

‖pt‖ + 2wE × vt

+wE × (wE × pt ). (17)

When a BM is in the coast phase, it is at a high altitude
and γt is a very small value. In this case, we model the γt

to follow a Gaussian distribution with zero mean and very
small standard deviation σ– γt ∼ N(0, σ 2). According to
the definition of γt and the piecewise-constant acceleration
assumption, the coast model is represented as

xc
t+T = Fcxc

t + Gc

([
acr

t

0

]
+

[
wc

t

w
γ,c
t

])
(18)

where

xr
t =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

px
t

p
y
t

pz
t

vx
t

v
y
t

vz
t

γt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, F c =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 T 0 0 0
0 1 0 0 T 0 0
0 0 1 0 0 T 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Gc =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T 2

2 0 0 0
0 T 2

2 0 0

0 0 T 2

2 0
T 0 0 0
0 T 0 0
0 0 T 0
0 0 0 T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

where wc
t is a 3 × 1 vector representing the coast model

acceleration uncertainties and w
γ,c
t is a scalar representing

the uncertainty of γt in the coast model.
For the re-entry phase, the BM altitude decreases and

the parameter γt is no longer negligible. Similar to the
boost model, when the BM is within the lower part of the
atmosphere, we model the evolution of γt in (13). The BM
re-entry dynamic is then modeled as

xr
t+T = F rxr

t + Gr

([
acr

t

γ ′
t

]
+

[
wr

t

w
γ,r
t

])
(20)

where

xr
t =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

px
t

p
y
t

pz
t

vx
t

v
y
t

vz
t

γt

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, F r =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 T 0 0 0
0 1 0 0 T 0 0
0 0 1 0 0 T 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Gr =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T 2

2 0 0 0

0 T 2

2 0 0

0 0 T 2

2 0

T 0 0 0

0 T 0 0

0 0 T 0

0 0 0 T

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)
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Fig. 2. (a) Structure of a multiple model system with constant transition
probabilities and (b) state dependent ones, with mt , xt and yt

representing the flight phase, state and measurement, respectively.

and wr
t is a 3 × 1 vector representing the re-entry model

acceleration uncertainties and w
γ,r
t is a scalar representing

the uncertainty of γt in the re-entry model.
2) State-Dependent Model Transition Probabilities:

Transition probabilities between different flight phases (or
the corresponding state models equivalently) can be rep-
resented as constant values in [14]–[17] where the current
flight phase depends only on the one at the previous time
instance, as illustrated in Fig. 2(a). However, in reality, the
flight phase is also related to the state, as represented in
Fig. 2(b). Thus, the transition probabilities between differ-
ent flight phases (or state models) are state dependent.

It is worthwhile noting that the transition between flight
phases is dependent on the altitude information, as sug-
gested in [1]. When the height reaches a particular thresh-
old, the thruster of the BM is turned OFF and the flight phase
transits to the coast phase, as illustrated in Fig. 3(a). As the
missile flies in the coast phase, it first reaches a peak and
then drops toward the ground due to the effect of gravity.
When the altitude drops to a certain value, the BM reenters
the low part of the atmosphere and transits to the re-entry
phase, as illustrated in Fig. 3(b).

This domain knowledge related to the flight phase tran-
sition and the altitude can be used to reflect the correspond-
ing state model transitions as follows

mt = coast, if ht > h1 and mt−1 = boost

mt = re-entry, if ht < h2 and mt−1 = coast
(22)

where mt represents the index of the state model (boost,
coast, or re-entry) related to the flight phase. The param-
eters ht represents the ballistic missile height; h1 and h2

represent threshold values. Normally, the exact values of
h1 and h2 are unknown, but some information could be
obtained from previously collected information (e.g., the
trajectory data collected for a particular missile type). The
more information we obtain, the more accurate values can
be obtained with less uncertainties.

In this paper, to consider the uncertainties of h1 and h2,
the Gaussian distribution is exploited to model them

h1 ∼ N(·|mh1, σ
2
h1

)

h2 ∼ N(·|mh2, σ
2
h2

)
(23)

where mh1 and mh2 represent the guess of the true values
of h1 and h2, whilst σh1 and σh2 represent the standard
deviations which represent the uncertainties for the height
thresholds.

From (22) and (23), the transition probabilities from the
boost to coast and from the coast to re-entry are modeled as
(24), where CDF(·|m, σ 2) represents the cumulative den-
sity function for a Gaussian distribution with the mean m

and standard deviation σ . In this way, the transition prob-
abilities between different state models are modeled in a
state-dependent way with respect to the ht

p(mt = coast|mt−1 = boost) = p(ht > h1)

= CDF(ht |mh1, σ
2
h1)

p(mt = re-entry|mt−1 = coast) = p(ht < h2)

= 1 − CDF(ht |mh2, σ
2
h2).

(24)

B. Measurement Model

It is assumed that a radar measures the range rm
t , az-

imuth angle θm
t , and elevation angle ϕm

t of a BM in a local
east-north-up (ENU) coordinate system [13]. The ENU co-
ordinate system has the origin at the radar position, with
three axes being toward the east, north, and up directions,
respectively. The global ECEF and local ENU coordinate
systems are illustrated in Fig. 4, and the corresponding co-
ordinates can be converted through⎡

⎢⎣
pe

t

pn
t

pu
t

⎤
⎥⎦ = M ·

⎛
⎜⎝

⎡
⎢⎣

px
t

p
y
t

pz
t

⎤
⎥⎦ − pR

⎞
⎟⎠ (25)

where
[
pe

t , p
n
t , p

u
t

]T
represents a position in the local ENU

coordinate of the radar, pR = [
px,R, py,R, pz,R

]T
is the po-

sition of the radar in the ECEF coordinate system and M

denotes the rotation matrix

M =

⎡
⎢⎣

− sin (λ) cos (λ) 0

− cos (λ) sin (φ) − sin (λ) sin (φ) cos (φ)

cos (λ) cos (φ) sin (λ) cos (φ) sin (φ)

⎤
⎥⎦
(26)

with φ and λ being the latitude and longitude of the radar.
Under the local ENU coordinate system, the measure-

ment equation is described as⎡
⎢⎣

rm
t

θm
t

ϕm
t

⎤
⎥⎦ = h(xs

t ) + nm
t

=

⎡
⎢⎢⎢⎢⎣

√
(pe

t )2 + (pn
t )2 + (pu

t )2

arctan
(

pn
t

pe
t

)

arctan

(
pu

t√
(pe

t )2 + (pn
t )2

)

⎤
⎥⎥⎥⎥⎦ + nm

t

(27)

where xs
t represents the state vector of a particular state

model s, corresponding to the boost, coast, or re-entry
phase as mentioned previously, and nm

t a measurement noise
vector.
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Fig. 3. Transition of the BM between different phases. (a) BM transits from boost to coast when it reaches a certain threshold with thruster being off.
(b) As the BM approaches the lower part of the atmosphere from time t1 to t2, the height h reduce due to the effect of gravity.

Fig. 4. Illustration of the global ECEF and local ENU coordinate
systems.

III. STATE-DEPENDENT INTERACTING MULTIPLE
MODEL GAUSSIAN PARTICLE FILTERING

Based on different models defined in the previous sec-
tion, an SD-IMMGPF algorithm is developed for ballistic
missile tracking. It is based on the exact Bayesian infer-
ence framework for a multiple model system but with state-
dependent transition probabilities.

A. Exact Bayesian Framework for the Multiple Model
System

The overall process of the exact Bayesian framework is
divided into four steps

p(mt−1|Zt−1)
Mixing−−−→ p(mt |Zt−1) (28)

p(xt−1|mt−1, Zt−1)
interacting−−−−−→ p(xt−1|mt, Zt−1) (29)

p(xt−1|mt, Zt−1)
Evolutions−−−−−→ p(xt |mt, Zt−1) (30)

p(xt |mt, Zt−1)
Correction−−−−−→ p(xt , mt |Zt ) (31)

where mt denotes the model index, xt the state vec-
tor, and Zt an ensemble of measurement vectors with
Zt = {z1, . . . , zt }.

1) Detailed Bayesian Inference Procedure: The
Bayesian inferences for the four steps are described as
follows.

Mode mixing: The mode mixing is related to the evolu-
tion of the model probability between consecutive discrete
time instances t − 1 and t . Using the law of total probability,
we have

p(mt = s|Zt−1) =
∑
r∈M

p(mt = s, mt−1 = r|Zt−1)

=
∑
r∈M

p(mt = s|mt−1 = r, Zt−1)p(mt−1 = r|Zt−1),

∀s, r ∈ M = {boost, coast, re-entry}
(32)

where p(mt = s|mt−1 = r, Zt−1) can be further decom-
posed as

p(mt = s|mt−1 = r, Zt−1)

=
∫

πrs(xt−1) · p(xt−1|mt−1 = r, Zt−1) dxt−1
(33)

where πrs(xt−1) represents the state-dependent model tran-
sition probability from r to s.

State interacting: State interacting generates the initial
mode-conditioned density p(xt−1|mt = s, Zt−1) according
to the conditional probability relation and the law of total
probability as

p(xt−1|mt = s, Zt−1)

=

∑
r∈M

πrs(xt−1) · p(xt−1, mt−1 = r|Zt−1)

p(mt = s|Zt−1)
.

(34)

YU ET AL.: MULTIPLE MODEL BALLISTIC MISSILE TRACKING 1071



Evolution: The state evolution step is to propagate
the mode-conditioned state density from t − 1 to t .
Given the initial density provided in (34), the mode-
conditioned prior distribution p(xt |mt = s, Zt−1) at t is
calculated as

p(xt |mt = s, Zt−1)

=
∫

p(xt |xt−1, mt = s, Zt−1)p(xt−1|mt = s, Zt−1) dxt−1

(35)

where p(xt |xt−1, mt = s, Zt−1) depends on the state model
mt = s.

Correction: Finally, the updated measurement is incor-
porated to correct the prior by Bayes rule

p(xt , mt = s|Zt )

∝ p(zt |xt , mt = s)p(xt |mt = s, Zt−1) · p(mt = s|Zt−1).
(36)

The state estimation can then be derived from the updated
posterior distribution p(xt , mt = s|Zt ).

B. SD-IMMGPF Implementation

There is no analytical solution for the exact Bayesian
inference framework due to the nonlinearity and non-
Gaussian distribution of the multiple model system. Thus,
a particular implementation method is needed to obtain the
approximated solution of the posterior state distribution in
(36). Considering the state-dependent transition probabili-
ties in the Bayesian inference framework, the conventional
IMM filtering method in [14]–[17] is not suitable since it as-
sumes the constant transition probabilities. In [19] and [20],
a particle filtering-based SD-IMMPF approach is proposed
in order to implement the aforementioned Bayesian infer-
ence framework. However, in the SD-IMMPF approach,
only the state model is applied for new particle generation;
thus it is likely to obtain outliers (more details are explained
below).

Instead of the SD-IMMPF, this study proposed a
Gaussian particle filtering-based SD-IMMGPF for imple-
menting the Bayesian inference to increase the sampling
efficiency and tracking performance. Compared with its
counterpart, the SD-IMMGPF applies Gaussian particle
filtering-based approach for every mode-matched filter to
generate particles better approximating the state posterior
distribution (36). The details of the SD-IMMGPF approach
are shown as follows.

Initially, it starts at time t − 1 with the set of weighted
particles {xr,k

t−1, w
r,k
t−1; r ∈ M, k ∈ {1, . . . , N}} to approxi-

mate the probability p(xt−1, mt−1 = r|Zt−1).
Mode mixing implementation: Prior mode probability

in (32) is approximated with generated particles as

p(mt = s|Zt−1) ≈
∑
r∈M

N∑
k=1

πrs(x
r,k
k−1) · w

r,k
t−1 � �s

t−1 (37)

where �s
t−1 is defined to facilitate the rest of the

derivation.

State interacting implementation: The state interacting
process can be implemented by inserting particles at t − 1
with the different mode index r , into (34) such that

p(xt−1|mt = s, Zt−1)

≈
∑
r∈M

N∑
k=1

πrs(x
r,k
t−1)wr,k

t−1δ(xt−1 − xr,k
t−1)/�s

t−1.
(38)

Evolution and correction implementation: In the SD-
IMMPF method proposed in [19], a generic particle
filtering-based approach is applied as the mode-matched
filter to obtain the approximation of the posterior distribu-
tion. First, the resampling method is applied to obtain a
set of N particles {xs,k

t−1}k=1,...,N from (38), based on which
new particles {xs,k

t }k=1,...,N are then predicted according to
the state model corresponding to mode s. Weights of parti-
cles {ws,k

t }k=1,...,N are calculated by the likelihood function.
The posterior distribution of (36) is then approximated by
the obtained {ws,k

t , xs,k
t }k=1,...,N for every mode s value.

However, the limitation of the SD-IMMPF method is that
particles are only generated from the state model and the
generated particles are likely to be outlier with low likeli-
hood probability (as mentioned in [24]), which deteriorates
the tracking performance. When the initial condition is not
accurate enough and the number of particles is small, the
performance of the SD-IMMPF algorithm is rather poor (as
will be shown in the simulation studies).

In order to address this limitation of the SD-IMMPF,
the Gaussian particle filtering (GPF) [21] based approach
is applied for mode-matched filtering. Conditioned on a
particular mode, a new importance function which is a
Gaussian approximation of the mode-based posterior distri-
bution is constructed, by exploiting information in both the
state and measurement models. In this way, particles which
have higher likelihood values can be sampled from the
constructed importance function to better approximate the
related posterior distribution of (36), leading to more accu-
rate state estimation. Besides, compared with other variants
of particle filtering, which also exploits state and measure-
ment models for sampling particles (such as unscented par-
ticle filtering (UPF) [25]), the GPF-based implementation
is time efficient. The reason is that rather than constructing
important functions for every particle (as in UPF, for ev-
ery particle an important function needs to be constructed
by the unscented Kalman filtering for sampling), only one
important function needs to be constructed for every mode
for particles generation.

First, the mean and covariance for a Gaussian dis-
tribution to approximate p(xt−1|mt = s, Zt−1) can be
obtained as

μs
t−1 =

∑
r∈M

N∑
k=1

πrsw
r,k
t−1xr,k

t−1

�s
t−1 =

∑
r∈M

N∑
k=1

πrsw
r,k
t−1(xr,k

t−1 − μs
t−1) · (xr,k

t−1 − μs
t−1)T .

(39)
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Based on this mean and covariance, we obtain a Gaus-
sian approximation of the distribution p(xt |mt = s, Zt ).
Different methods can be applied to obtain such an ap-
proximation; in this paper, the EKF is applied considering
its efficiency and successful applications in the posterior
distribution approximation of BM tracking [14]–[17]. The
EKF in the GPF consists of the two steps: prediction and up-
date. The prediction step predicts the mean and covariance
by a particular state model as

μs
t |t−1 = f s(μs

t−1) (40)

where f s(·) represents the state transition function corre-
sponding to a particular mode s, from (15), (17), and (20)
for the BM tracking problem

�s
t |t−1 = (J s

t )|μs
t−1

�s
t−1((J s

t )|μs
t−1

)T + Qs (41)

where (J s
t )|μs

t−1
represents the (sth) model first-order

Jacobian matrix value of mode s, at the initial mean value
μs

t−1. The Qs matrix is the covariance of the noise vector
for the mode s. The mean and covariance are then updated
from the predicted results

Ss
t = Ht |μs

t |t−1
�s

t−1(Ht |μs
t |t−1

)T + R

Ws
t = �s

t |t−1(Ht |μs
t |t−1

)T (Ss
t )−1 (Kalman gain)

rs
t = zt − h(μs

t |t−1) (measurement residual)

μs
t = μs

t |t−1 + Ws
t rs

t (mean)

�s
t = �s

t |t−1 − Ws
t �s

t |t−1(Ws
t )T (covariance)

(42)

where h(·) is the measurement model function in (27). The
matrix Ht |μs

t |t−1
represents the value of the first order Ja-

cobian matrix related to the measurement model function
at μs

t |t−1. The matrix R represents the measurement noise
covariance. A Gaussian distribution is then obtained with
the mean μs

t and covariance �s
t , which is applied to ap-

proximate the posterior p(xt |mt = s, Zt ).
A new set of particles {xi,s

t }i=1,...,N is then sampled from
this Gaussian distribution represented as N(xi,s

t |μs
t , �

s
t ),

which is constructed considering both the state model and
measurement model. In this way, measurement information
is considered for the particle generation, and thus generated
particles will be more likely in a high measurement likeli-
hood region. From the concept of importance sampling in
[24] and (36), the posterior distribution p(xt , mt = s|Zt ) is
approximated as

p(xt , mt = s|Zt ) ≈
∑

i

wi,s
t δ(xt − xi,s

t ) (43)

with particle weights {wi,s
t }i=1,...,N being estimated as

wi,s
t ∝p(zt |xi,s

t , mt =s)N(xi,s
t |μs

t |t−1, �
s
t |t−1)p(mt =s|Zt−1)

N(xi,s
t |μs

t , �
s
t )

(46)
where N(xi,s

t |μs
t |t−1, �

s
t |t−1) is a Gaussian approxima-

tion of p(xt |mt = s, Zt−1). From the obtained parti-
cles and corresponding weights, both the state esti-
mation and model probability can be estimated. The

Algorithm 1: Summary of the SD-IMMGPF Algo-
rithm.

Initially, it starts at time t−1 with the set of weighted
particles {xr,k

t−1, w
r,k
t−1; r ∈ M, k ∈ {1, . . . , N}} to

approximate the probability p(xt−1, mt−1 = r|Zt−1).
• Mode mixing implementation:

The prior mode probability p(mt = s|Zt−1) is
computed by (37).
• State interacting implementation:

p(xt−1|mt = s, Zt−1) is approximated by particles
{xr,k

t−1, w
r,k
t−1; r ∈ M, k ∈ {1, . . . , N}} using (38)

• Importance sampling function construction:
(i) For every mode s, initial mean μs

t−1 and
covariance �s

t−1 for Gaussian approximation of
p(xt−1|mt = s, Zt−1) are estimated by (39)

(ii) The extended Kalman filtering procedure is
performed according to prediction ((40), (41)) and
update (42) to obtain a Gaussian approximation of
p(xt |mt = s, Zt ), with mean μs

t and covariance �s
t .

• Particles sampling and weights calculation:
N Particles are generated from the importance

function by xi,s
t ∼ N(x|μs

t , �
s
t ) for i = 1, ..., N and

related weights {wi,s
t }Ni=1 are computed by (44).

Finally, according to the particles and weights, the
state is estimated as:

x̂t =
∑
s∈M

N∑
i=1

wi,s
t xi,s

t (44)

and the probability of a particular mode mt = s is
calculated as:

p(mt = s) =
N∑

i=1

wi,s
t (45)

procedure of the SD-IMMGPF algorithm is summarized in
Algorithm 1.

IV. NUMERICAL SIMULATION STUDIES

In this section, numerical simulation studies are per-
formed to analyze the performance of the proposed
SD-IMMGPF method for the BM tracking in terms of es-
timating mode probabilities, BM states, and parameters.
An entire BM trajectory is simulated in the ECEF coordi-
nate system in Fig. 5. Key parameters of the simulated
BM flight trajectory are listed in Table I, which corre-
sponds to the short range ballistic missile, as described
in [26]. Based on the simulated BM trajectory, algorithms
can be applied for the BM tracking, with the following
settings.

Initialization: Considering the uncertainty about the ini-
tial state vector, Gaussian distributions are applied to model
different components of the initial state vector. The initial
position p0 and velocity v0 in the ECEF coordinate system
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Fig. 5. Simulated BM trajectory and radar position in the ECEF
coordinate system.

TABLE I
Parameters of the Simulated BM Trajectory

Flight time Range Boost time Engine-off velocity

305 (s) 292 (km) 66 (s) 1.46 (km/s)

can be modeled as

p0 ∼ N(·|p0, �
p
0 ), v0 ∼ N(·|v0, �

v
0) (47)

where the means p0 and v0 represent the initial guess of
the true position and velocity, respectively. The associated
uncertainties �

p

0 and �v
0 are given by

�
p
0 =

⎡
⎢⎣

100, 0, 0

0, 100, 0

0, 0, 100

⎤
⎥⎦ (m), �v

0=

⎡
⎢⎣

1, 0, 0

0, 1, 0

0, 0, 1

⎤
⎥⎦ (m/s).

(48)
The BM parameters n, q, and γ are modeled as

n0 ∼ N(·|n0, (σn
0 )2), with n0 = 3, σ n

0 = 0.1

q0 ∼ N(·|q0, (σq

0 )2), with q0 = 0.01, σ
q

0 = 0.001

γ0 ∼ N(·|γ 0, (σγ

0 )2), with γ 0 = 2 · 10−4, σ
γ

0 = 10−5

(49)

where n0, q0, and γ0 represent BM parameters at t = 0. The
means n0, q0, and γ 0 represent initially detected BM pa-
rameter values, and σn

0 , σq

0 , and σ
γ

0 represent the associated
standard deviations.

State and measurement models: The uncertainty vectors
for three state models [boost (15), coast (18), and re-entry
(20)] are defined as

wb
t ∼ N(·|06×1, diag ([1, 1, 1, (10−5)2, (10−1)2, (10−3)2]))

wc
t ∼ N(·|06×1, diag ([1, 1, 1, (10−8)2]))

wr
t ∼ N(·|06×1, diag ([1, 1, 1, (10−5)2]))

(50)

where diag([a1, . . . , an]) represents an n × n diagonal ma-
trix with elements on the diagonal line being [a1, . . . , an]
and others being zeros.

Fig. 6. Estimated flight phases probabilities by different estimation
algorithms. (a) Boost phase. (b) Coast phase. (c) Reentry phase.

The state-dependent transition probabilities between
different state models are set as

boost coast re-entry

boost
coast
re-entry

⎛
⎜⎝

1 − p1(ht ) p1(ht ) 0

0 p2(ht ) 1 − p2(ht )

0 0 1

⎞
⎟⎠ (51)

where p1(ht ) = CDF(ht |mh1, σh1) and p2(ht ) =
CDF(ht |mh2, σh2). Related parameters are set as: mh1 =
35 000 (m), mh2 = 25 000 (m), and σh1 = σh2 = 3000 (m).

The measurement model in (27) uses Gaussian
noises as

nm
t ∼ N(·|03×1, �m) (52)

where

�m = diag ([(100)2 (m)2, (0.1)2 (rad)2, (0.1)2 (rad)2])
(53)

The aforementioned parameter values have been used
in the throughout simulations unless explicitly mentioned
to set to other values.
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Fig. 7. Position RMSE curves during different intervals. (a) After the
transition from boost to coast phase. (b) During the coast phase. (c) After

the transition from coast to entry phase.

A. Modeling System Comparison

In this section, we compare the proposed SD-
IMMGPF approach with those using a constant transition
probabilities-based multiple modeling system, including
four IMM approaches implemented by EKF in [14]–[17],
unscented Kalman filter, particle filter in [27], and Gaussian
particle filter. For convenience, these four approaches are
denoted as CTP-IMMEKF, CTP-IMMUKF, CTP-IMMPF,
and CTP-IMMGPF for short. Comparisons have been made
in terms of the flight phases probabilities, position, and ve-
locity estimates.

1) Estimation of Flight Phase Probabilities: The esti-
mated probabilities of a particular BM flight phase (boost,

Fig. 8. Velocity RMSE curves during different intervals. (a) After the
transition from boost to coast phase. (b) During the coast phase. (c) After

the transition from coast to entry phase.

coast, re-entry) is compared. For the particle filtering-based
methods, 10 000 particles are used for the filtering corre-
sponding to every mode (the same number is applied for
the following simulations unless otherwise stated).

In total, 100 Monte Carlo simulations are performed
and the averaged flight phases probabilities obtained from
different methods are plotted in Fig. 6. From the figure,
we can see the advantages of the proposed method over
other constant transition probabilities-based ones from two
aspects:

1) the estimated probabilities by the SD-IMMGPF method
are better matched with the ground truth and there are
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TABLE II
Averaged Position RMSEs(m) of Different Phases for 100 Monte Carlo Simulations

CTP-IMMEKF CTP-IMMUKF CTP-IMMPF CTP-IMMGPF SD-IMMGPF

Averaged RMSE for 70–90 (s) 304.86 325.71 294.55 276.06 242.23
Averaged RMSE for 100–200 (s) 176.87 179.11 156.52 151.52 145.18
Averaged RMSE for 280–300 (s) 314.68 298.81 355.60 351.97 226.66

TABLE III
Averaged Velocity RMSEs(m/s) of Different Phases for 100 Monte Carlo Simulations

CTP-IMMEKF CTP-IMMUKF CTP-IMMPF CTP-IMMGPF SD-IMMGPF

Averaged RMSE for 70–90 (s) 82.43 90.75 73.02 60.56 41.32
Averaged RMSE for 100–200 (s) 15.30 9.53 7.60 7.42 5.25
Averaged RMSE for 280–300 (s) 72.69 75.01 81.59 77.49 52.76

no obvious fluctuations for the estimated model proba-
bilities during a particular phase period; and

2) in the transition periods between different phases, the
change of the mode probabilities estimated by the SD-
IMMGPF method reacts much faster to the true mode
change.

The obtained advantages are attributed to the state-
dependent transition probabilities between state models
corresponding to different flight phases, which reflect
the true flight phase transitions of the BM in a more
realistic way.

2) Estimation of Position and Velocity: Second, we
compare the tracking accuracy for BM positions and ve-
locities by different methods. The root-mean-square-error
(RMSE) is used to evaluate the tracking accuracy.

Figs. 7 and 8 show the averaged RMSEs from a hun-
dred Monte Carlo simulations for position and velocity at
every time instance during particular time intervals, respec-
tively. Besides, the averaged position and velocity RMSEs
of these intervals are further given in Tables II and III,
from which can see that the advantages (smaller RMSEs)
of the proposed SD-IMMGPF approach over others. We
need to emphasize that compared with its counterpart of the
CTP-IMMGPF approach using the exact same GPF-based
implementation approach, the proposed SD-IMMGPF ap-
proach still achieves better results especially during inter-
vals just after phase transitions, thanks to the better flight
phases probabilities estimations during these intervals, as
shown in Fig. 6, by exploiting the state dependent transition
probabilities.

B. Implementation Methods Comparisons

We particularly compare two methods of implement-
ing the Bayesian inference: the SD-IMMPF and proposed
SD-IMMGPF algorithms, where the same state dependent
transition modeling is adopted. First, the two algorithms
are evaluated under different number of particles using the
aforementioned parameter settings for initialization, state
model, and measurement model. Note that the particle filter
is a numerical implementation of exact Bayesian estimation

Fig. 9. Position RMSE and velocity RMSE curves by the SD-IMMPF
and the proposed SD-IMMGPF method. (a) Position RMSE curves.

(b) Velocity RMSE curves.

which is supposed to be the optimal solution for the prob-
lem. When the number of particles are enough large, there
is no conservativeness. However, the performance may de-
grade with the decrease of the number of particles.

In total, 100 Monte Carlo simulations have been made.
The estimated averaged position and velocity RMSEs
curves at every time instance are presented in Fig. 9. The av-
eraged position and velocity RMSEs of the related intervals
are further given in Tables IV and V.

From the results, it can be observed that the perfor-
mance of the SD-IMMPF is heavily affected by the parti-
cle size. It becomes worse as the particle number reduces.
That is because the SD-IMMPF approach only applies the
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TABLE IV
Comparisons of the Averaged Position
RMSEs(m) between SD-IMMGPF and

SD-IMMPF

SD-IMMPF SD-IMMGPF

N = 2500 471.82 232.63
N = 5000 301.02 215.61
N = 10000 215.91 210.23

TABLE V
Comparisons of the Averaged Velocity

RMSEs(m/s) between SD-IMMGPF and
SD-IMMPF

SD-IMMPF SD-IMMGPF

N = 2500 66.13 53.93
N = 5000 58.69 49.51
N = 10000 49.86 43.87

Fig. 10. Position RMSE and velocity RMSE curves by the SD-IMMPF
and the proposed SD-IMMGPF method under worse initial conditions.

(a) Position RMSE curves. (b) Velocity RMSE curves.

state model to generate new particles, as mentioned in
Section III. It is likely to generate more outliers with low
likelihood values, thus a comparatively larger number of
particles are needed to guarantee good performance.

Second, we test different algorithms with different par-
ticle sizes under a comparatively worse initial condition
with larger uncertainties set for the initial position/velocity
components in (54). The RMSE curves and averaged RMSE
values during corresponding intervals are shown in Fig. 10
as well as Tables VI and VII.

TABLE VI
Comparisons of the Averaged Position
RMSEs(m) between SD-IMMGPF and

SD-IMMPF under Worse Initial Conditions

SD-IMMPF SD-IMMGPF

N = 2500 994.08 232.96
N = 5000 582.33 215.80
N = 10000 296.70 211.30

TABLE VII
Comparisons of the Averaged Velocity

RMSEs(m/s) between SD-IMMGPF and
SD-IMMPF under Worse Initial Conditions

SD-IMMPF SD-IMMGPF

N = 2500 116.73 55.13
N = 5000 69.60 50.40
N = 10000 59.13 44.22

�
p
0 =

⎡
⎢⎣

400, 0, 0

0, 400, 0

0, 0, 400

⎤
⎥⎦ (m), �v

0=

⎡
⎢⎣

4, 0, 0

0, 4, 0

0, 0, 4

⎤
⎥⎦ (m/s)

(54)
Compared with the previous results, we can see that the

performance of the SD-IMMPF is also significantly affected
by the initial condition. As the initial condition becomes
worse, the performance of the SD-IMMPF becomes worse;
however, the proposed SD-IMMGPF is much more robust
to the initial conditions.

The reason behind it is that, as the initial condition be-
comes worse, subsequent particles predicted by the state
model only will be inconsistent with the true posterior
distribution, which leads to the poor performance of the
SD-IMMPF. However, in the SD-IMMGPF, the Kalman
filtering based approach is applied to construct importance
functions representing a Gaussian approximation of the true
posteriori distribution for every mode, from which reason-
able particles can still be generated and corrected by the
likelihood function. The related performance will not dete-
riorate too much.

We also investigate various versions of the generic par-
ticle filtering (e.g., auxiliary particle filtering [24] and un-
scented particle filter [25]) for implementing the Bayesian
inference of the state-dependent multiple model frame-
work (denoted as SD-IMMAPF and SD-IMMUPF for
short). Comparisons are made between SD-IMMAPF, SD-
IMMUPF, and the proposed method. For a fair comparison,
different particle filtering methods follow the same state
models, measurement model, and initial condition [as given
in (47), (48), and (49)].

RMSEs at different time instances obtained from 100
Monte Carlo simulations are plotted in Fig. 11, with the
averaged position and velocity RMSEs being shown in
Table VIII. Besides, the averaged computation time of dif-
ferent filtering algorithms for a single time instance is cal-
culated. We can see that the proposed SD-IMMGPF method
achieves smaller RMSEs compared with SD-IMMAPF with
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TABLE VIII
Comparisons of the Averaged RMSEs and Computational Time between

SD-IMMGPF and Other Versions of Particle Filtering Based Implementation

SD-IMMAPF SD-IMMUPF SD-IMMGPF
(N = 5000) (N = 600) (N = 5000)

Averaged position RMSEs(m) 269.59 217.95 217.54
Averaged velocity RMSEs(m/s) 59.33 45.91 46.49
Computational time(s) 0.07 1.07 0.06

Fig. 11. Position and velocity RMSE curves by SD-IMMAPF (N =
5000), SD-IMMUPF (N = 600), and proposed SD-IMMGPF (N =

5000). (a) Position RMSE curves. (b) Velocity RMSE curves.

a similar computational cost. Although the SD-IMMUPF
achieves a similar performance as the SD-IMMGPF, its
computational cost is much larger (more than 17 times).
Thus, the proposed SD-IMMGPF approach can achieve
highly accurate tracking results with a low computational
cost.

C. BM Parameters Estimation

Finally, the performance in estimating BM parameters
is evaluated by comparing with the ground truth values from
100 Monte Carlo simulations. Based on the initial parameter
distributions mentioned before and SD-IMMGPF filtering,
the BM parameter curves for each Monte Carlo run, corre-
sponding mean curve and boundaries determined by three
times the standard deviation σ from the mean values, are
plotted in Fig. 12. It can be observed that the estimated
parameter values quickly converge to the ground truth. In
this way, the proposed algorithm can also be used for the
parameters estimation, which can be potentially applied for

Fig. 12. BM parameter estimation from 100 Monte Carlo simulations.
(a) n. (b) q. (c) β.

the missile-type classification. We then evaluated the pa-
rameter estimation performance by different filtering meth-
ods, by comparing 100 times averaged RMSEs of different
parameters at the end of a particular phase (n and q are
estimated at the end of the boost phase t = 64 s and β is es-
timated at the end of the re-entry phase t = 305 s). Results
for different filtering methods are presented in Table IX. We
can see that the proposed SD-IMMGPF method achieves
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TABLE IX
Averaged RMSEs of Different Parameter Estimations for 100 Monte Carlo

Simulations

CTP-IMMEKF SD-IMMPF SD-IMMGPF

Averaged RMSE of n (×10−2) 4.06 3.14 1.18
Averaged RMSE of q (×10−4) 2.10 2.05 1.98
Averaged RMSE of β 71.68 63.81 49.73

the most accurate parameter estimation results, compared
with the CTP-IMMEKF and the SD-IMMPF method.

V. CONCLUSION AND FUTURE WORK

This paper has proposed a new method for tracking
the whole trajectory of a ballistic missile. Compared with
the current state-of-the-art methods for the ballistic missile
tracking, the proposed method has the following novelty
both in the state model and Bayesian inference implemen-
tation. First, a new modeling framework is applied to model
BM movements in different phases. Multiple models are
applied to describe the BM dynamics in different phases
while transition probabilities between different models are
modeled in a state-dependent way rather than fixed val-
ues [([14]–[17])]. Second, a new SD-IMMGPF method is
developed to implement the Bayesian inference based on
the proposed modeling framework by exploiting both the
state model dynamics and measurement information in an
efficient way. Comprehensive numerical simulation stud-
ies show that the proposed method achieves more accu-
rate mode probabilities, state components, and parameters
estimations compared with others [such as the traditional
IMM-based approach ([14]–[17]) and different particle fil-
tering based implementation approaches ([19] and [20])].
Note that the developed algorithm can also be applied to
exploit domain knowledge for tracking and behavior-type
identification of other objects such as vehicle, ships, and
pedestrians. In this way, the developed method has the po-
tential to be applied in wider application areas such as the
situation awareness in public areas, maritime transport, and
autonomous vehicles. For future work, we will further de-
velop the current algorithm from different aspects. From
the modeling aspect, the semi-Markov model [28] will be
investigated to model the different manoeuvres (e.g., ma-
noeuvring to evade the interceptor) to accommodate more
complex movements of the BM; meanwhile, a model noise
with full rank covariance matrix will be investigated. From
the algorithm development aspect, we will investigate the
combination of the state-dependent model switching-based
multiple model framework with other filtering techniques to
deal with the particle loss problem, such as the particle flow
algorithm as in [29] or exploiting various numbers of par-
ticles in every mode for filtering. Finally, we will consider
a more challenging scenario as in [30] and [31], to track
the BM by a sensor-networked system considering the pos-
sible network-induced phenomena such as missing/fading
measurements, sensor saturations, communication delays,
and randomly occurring incomplete information.
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