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[. INTRODUCTION

Multitarget tracking (MTT) is essential in many appli-
cation areas, such as motion-based recognition, automated
security, navigation and surveillance, medical imaging, traf-
fic control, and human—computer interaction [1]-[3]. MTT
belongs to a class of dynamic state estimation problems
[3]-[5]. In MTT, targets can appear and disappear randomly
in time and this results in a varying and unknown number
of targets and their corresponding states. Furthermore, not
all measurements received by sensors at each time instance
are due to existing targets. The sensor may pick up de-
tections as false alarms due to clutter or may even miss
some detections. As a result, the measurements received at
each time step are corrupted and consist of indistinguish-
able measurements that may be either target originated or
due to clutter. Therefore, the main objective of MTT is to be
able to jointly estimate target states and number of targets
from a set of corrupted observations.

Furthermore, because there is no particular ordering
between measurements received and target states at each
time step in terms of association, both the received mea-
surements and target states can be represented as finite
sets [6]-[9]. The modeling of target states and observa-
tions as a random finite set (RFS) allows for the use of
the Bayesian filtering approach (as an optimal multitar-
get filter) to estimate the multitarget states in the pres-
ence of clutter, missed detections, and association uncer-
tainty [6]—[9]. Tractable alternatives to the optimal multi-
target filters include the RFS-based probability hypothesis
density (PHD) filter, the cardinalized PHD (CPHD) filter
[8]-[10], the multitarget multi-Bernoulli (MeMBer) filter,
and its cardinality-balanced version, the CBMeMBer filter
[8], [9], [11]. Both the CPHD in [10] and the CBMeM-
Ber in [11] have been shown to have better performance
than the MeMBer filter in [8]. The CBMeMBer filter was
proposed specifically to address the pronounced bias in the
cardinality estimate of the MeMBer filter. For more details
on other tractable RFS-based MTT methods, the reader is
referred to [12]-[15].

The PHD filter is a recursion that propagates the
posterior intensity of the RFS of targets in time [6]. The
integral of the PHD is the expected number of targets in a
measurable region, and the peaks of the PHD function pro-
vide the estimates of the target states [6], [8], [9]. The PHD
filter is able to track time-varying multiple targets without
the need to explicitly associate measurements to tracks.
In the literature, the PHD filter has been implemented in
two distinct fashions, that is, as the Gaussian mixture PHD
(GM-PHD) filter [16] and the sequential Monte Carlo
PHD (SMC-PHD) filter [17]. In the GM-PHD filter imple-
mentation, the PHD is assumed to be a GM while in the
SMC-PHD filter implementation, the PHD is approximated
by a set of weighted particles and does not need any further

IThe MeMBer filter is a recursion that propagates (approximately) the
multitarget posterior density and is based on the assumption that every
multitarget posterior is a MeMBer process [8], [11].
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assumptions. The SMC-PHD filter is therefore more
suitable for tracking in nonlinear and non-Gaussian
environments.

In SMC filter design, the choice of importance density
function from which samples are drawn to avoid sample de-
generacy and impoverishment is of crucial importance [18].
Furthermore, in MTT which involves multiple modalities,
if particles are in clusters representing the modes of the pos-
terior, the iterative process of randomly drawing samples
from proposal distributions results in random fluctuations
in the total weight attributed to each mode [19]. In addition,
the errors associated with the estimation of the weights of
each mode will increase in magnitude with time [19]. These
errors arise due to the stochastic nature of drawing samples
from the proposal distribution and the stochasticity of
the resampling process [19]. These two processes greatly
influence the performance of SMC filters. SMC filters are
further affected by how well the state space of targets is
populated with samples. In addition, Vo et al. [20] argued
that the mean squared error (MSE) of the SMC-PHD
filter is inversely proportional to the number of samples.
In [18], it is shown that the optimal importance density
function is the posterior. In many cases it is difficult to
sample from the optimal importance density. As an attempt
to solve the importance sampling problem, Maskell and
Julier [19] proposed an optimized proposal distribution for
SMC filters with multiple modes in general. However, this
approach tends to be problem specific. In [21], Yoon et al.
proposed the Gaussian mixture unscented sequential Monte
Carlo probability hypothesis density (GM-USMC-PHD)
filter which uses the GM representation to approximate the
importance sampling function and the predictive density
functions via the unscented information filter (UIF). Addi-
tionally, in [22] and [23] the auxiliary SMC-PHD filter and
its improved version, the auxiliary particle PHD (AP-PHD)
filter are proposed, respectively. Both try to use the
auxiliary particle approach to incorporate the measurement
into the importance sampling function. This, however,
involves double computation on the measurement and more
samples are required to populate the state space in order to
make the importance sampling function more viable.

However, it is also possible to construct suboptimal
approximations to the optimal importance density by using
local linearization techniques [18]. As a realization of this,
the unscented Kalman particle PHD filter was proposed in
[24] for the joint tracking of multitargets. It tries to use the
unscented Kalman filter (UKF) in the prediction step. This
allowed for the inclusion of the latest measurement to draw
particles. Similarly, Ma et al. [25] proposed the Kalman
particle PHD filter for multitarget visual tracking, which
uses the Kalman filter to construct the proposal density
also in the prediction step. Furthermore, Tang et al. [26]
presented an improvement to the SMC-PHD filter, which
incorporates the latest measurements into the resampling
step by using the UKF.

Additionally, there are other works in the literature that
combine the implementation of the GM and particle PHD
filter into one filter such as the GM particle PHD filter in
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[27] and [29] and the Gaussian mixture SMC-PHD in [30].
These methods attempt to combine the advantages of both
GM-PHD and SMC-PHD filters. The methods give some
level of performance improvement without easing com-
putational burden or the number of particles. Also, it may
be possible to implement the Markov Chain Monte Carlo
(MC) sampling method in the update stage of the SMC-
PHD filter as a way of asymptotically approximating the
posterior. However, this approach will require even more
particles, as these extra particles will be used to perform
some sort of random walk in order to achieve maximum a
posteriori estimate of target states but no guarantees exist
about it yielding good point estimates [31]. Recently, Zheng
et al. [32] proposed a data-driven SMC-PHD filter for MTT.
The method tries to segment the measurements available at
each time step into measurements due to persistent targets
and measurements due to newborn targets. Again this does
not help to reduce the number of particles but rather, more
particles are required to populate regions of interest.

It is desirable, therefore, to have an efficient filter that
can provide for particle state correction for any proposal
distribution using fewer particles. This gives the motivation
for the Kalman-gain aided sequential Monte Carlo proba-
bility hypothesis density (KG-SMC-PHD) filter. The KG-
SMC-PHD filter provides for the particle state correction of
the predicted multitarget state. This is achieved with the ap-
plication of the Kalman state update technique on selected
particles to minimize the MSE between the estimated mea-
surements and actual measurement.

In this paper, we propose an SMC-PHD filter with a
validation threshold to select promising particles and to
guide them to regions of high likelihood using the Kalman
gain, irrespective of the importance density function. This
method seeks to minimize the MSE between the estimated
measurements due to selected particles and the actual mea-
surements to achieve a more efficient SMC-PHD filter with
less computational complexity. This allows fewer particles
to be used to populate the state space and at the same time
achieve improved tracking performance as opposed to the
standard SMC-PHD filter.

The remainder of this paper is organized as follows. In
Section II, the MTT problem is presented in terms of process
and measurement models. Section III presents the idea of
the importance density function and highlights some com-
mon choices of proposal distributions. In Section IV, the
PHD filter recursion is presented and explained followed by
a description of the standard SMC-PHD filter implemen-
tation. Next, Section V presents our proposed KG-SMC-
PHD filter. Simulation results together with discussions are
presented in Section VI. Finally, conclusions are drawn in
Section VII.

[Il. MTT PROBLEM FORMULATION

The MTT problem relates to that of modeling a dy-
namical system. Two models are generally used, the state
evolution model and the measurement model.
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A. State Model

A nonlinear system governed by the state evolution
model is considered

Xp = fi_1(Xe—1, V&) (D

where x; denotes the fth target state at discrete time k, vy
is an independent and identically distributed (i.i.d.) process
noise vector, and f;_(-) is the nonlinear system transition
function. Then, the multitarget state at time k can be written
as

Xk: {Xl,ka'--»XT,k} (S E_Y (2)

where 7 is the number of targets present at each time k, and
E; denotes the state space.

B. Measurement Model

Let the multitarget cumulative measurement sequence
up to time K be Zy.x :Zy,Z,,...,Zx C E,. Measure-
ments consist of both target-originated measurements and
false alarms due to clutter. Then, the multitarget measure-
ment set at time k in the observation space is

Zk = {Zl,/(, ey za,k} U {Cl,k, ce

where {z Lhs v za,k} denotes the target-originated
measurement set with number of measurements «;
{cl,k, ... cﬁ,k} denotes the false measurement set with the
number of measurements 3, and E, denotes the observa-
tion space. The tth target-originated nonlinear measurement
model is given as

csil CE, (3)

z; = hp(xg, mg) 4)
where hy(+) is a nonlinear function and ny is an i.i.d. process
noise vector.

[1l.  IMPORTANCE DENSITY FUNCTION

In this section, we focus on proposal distributions and
their role in SMC methods in general.
A. Importance Sampling

MC methods for numerical integration deal with prob-

lems of the form

\ fy)m(y)dy )

where 7 (y) is such that 7(y) > 0 and integrates to unity

fq w(ydy =1 (©)

is a pdf.

It is also the assumption that it is possible to generate
N > 1 samples distributed according to the probability
density 7 (y). The MC estimate of the integral (5) is formed
by taking the average over the set of samples

1 N
g== ; fi) (7)
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where N is assumed to be large. However, 7 (y) is not
usually a familiar density and so it is difficult to generate
samples directly from it. When the latter is the case, the
integral of (5) can be solved by letting ¢(y) be a proposal
distribution or importance density which is easy to generate
samples and with the assumption that 7 (y) > 0= ¢(y) > 0
for all y € :M". Under this assumption, (5) becomes
n(y)

fm(y)dy = / f (y)?q(y)dy (®)
An MC estimate is then computed by generating N > 1
samples from ¢(y) instead of 7 (y) and forming a weighted
sum

mn

N
g = Z FaDwy) ©)
where w(y;) « Z((g’)) are the associated weights [33]. To

sum up, given a distribution 7 (y) that is difficult to sample
from, importance sampling facilitates sampling from 7 (y)
by sampling from an alternate distribution ¢(y) known as
proposal distribution but weighting appropriately.

B. Importance Densities

Some common choices of importance density in SMC
methods are given below.

1) Transitional Prior (TP): This is the most popular
choice of suboptimal proposal distribution for SMC-PHD
filters and particle filters in general because its implemen-
tation is easy and straightforward [34]. This choice requires
sampling from the dynamic prior, i.e.,

g (XX _p. zi) = p (xelx}_y) - (10)

2)  Extended Particle Filter (EPF): Given that the
measurement model of (4) is nonlinear, but Gaussian, it is
possible to use a proposal distribution that exploits a linear
approximation to the posterior [19] in the same way as
the extended Kalman filter (EKF) uses a local linearization
about its estimates. The proposal distribution is then given
as

q (Xklxi,p zr) = N (X3 0y, Ap) (11)
where
w =1 (x-1) + AH R (z — h(f_ 1 (x-1)) (12)
oh
H, = — (13)
0 i1 (k1)

where A; and R, denote state and measurement covari-
ances, respectively, and Hy, is the measurement transforma-
tion matrix.

3)  Unscented Particle Filter (UPF): As an alter-
native to the EPF, an unscented transform can be used to
calculate the mean h(f;_; (x4_)) and covariance H; by gen-
erating sigma points and applying a transform such that the
new generated samples have f;_;(x;_;) as mean and P;_,
as covariance. h(f;_;(x;_1)) is then evaluated at each sigma
point and Hy, computed from these samples [19].
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Prediction

Fig. 1.

Schematic representation of the standard SMC-PHD filter showing the 2-D state space of the PHD of two targets populated with particles.

The contours represent the state space of targets. The contour centers and number of centers represent the mode and cardinality of targets, respectively.
Boxes A, B, and C represent various stages of the filter. The square-shaped and diamond-shaped particles are for target 1 and target 2, respectively.
The colours stand for different particle states. The particles marked with “,/” in B denote particles with higher weight for when the latest observation
arrives.

IV. PROBABILITY HYPOTHESIS DENSITY
A. PHD Filter

The PHD D, of a given RFS A is the first-order moment
of A and is given by [6], [8], [9] the following equation:
Di(x) =E{5,(x)} = / 8x (x) PA(dX) (14)
where E{-} is the statistical expectation operator and
Sa(X) = D _icp Sy is the random density representation
of A. P, is the probability measure of the RFS. The PHD
filter is a recursion of the PHD, Dy that is associated with
the multitarget posterior density p(Xy|Zy), and

P (XilZy) < p(Zi| X)) p (Xi|Zi—1) 15)

where p(Z;|X;) and p(Xi|Zi—1) denote the multitarget
likelihood and prior density, respectively.

The prediction formula of the PHD, Dy is given as [8],
[9] follows:

Dyjp—1(X¢1Zx—1) = yi(xx)

+/¢k|k71(xk9kal)Dkfllkfl(kal|Zk71)dxk71 (16)
with the factor

Prii—1(Xs Xp—1) = ps(Xk—1) frye—1 (X, Xk—1)

+ Drjk—1(Xk, Xk—1) (17)

where y4(-) is the PHD of the spontaneous birth, pg(-) is
the probability of the target survival, fix—1(Xg, Xx—1) is the
single target motion model, and by ;— (Xg, Xx—1) is the PHD
of the spawned targets.
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The update formula is given as
Dy (X Zy)

. I//k z(Xk)
= | vt Z Kk(Z) + (Drji—15 Ye.z)

Dyji—1 (X | Zi—1)

(18)

with v(xp) =1 — pp(Xp), Vi (Xk) = pp(Xi)g(z|x), and
kx(z) = hycr(z); where pp(x;) and v(x;) denote the proba-
bility of target detection and nondetection for a given (Xy),
respectively, g(z|xy) is the measurement likelihood func-
tion for the single target, x¢(z) is the clutter intensity, Ay is
the average number of Poisson clutter points per scan, and
cr(z) is the probability density over the state-space of the
clutter point; (-, -) denotes inner product and is computed
as [8], [9]

(D=1 Yr.2) :/Dk|k—1(xk|Zk—l)wk,z(xk)dxk‘ (19)

B. Standard SMC-PHD Filter

The PHD filter can be implemented either as in the SMC
fashion (particle-PHD) or as the GM-PHD. The SMC-PHD
filter approximates the PHD using random samples and
is more specifically an effective scheme in nonlinear and
non-Gaussian scenarios as well as different noise models
[35]. For comparison purposes, the standard SMC-PHD
filter of [17] is briefly presented. The implementation of
the standard SMC-PHD filter usually requires four stages.
These stages are briefly presented in Algorithm 1.

Fig. 1 illustrates how particles are used to represent
and track targets in the standard SMC-PHD filter. The state
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Algorithm 1: The Standard SMC-PHD Filter.
I atk =0, Initialize | {x], wi} |
2: fork=1:Kdo
3:  Prediction
4: forl=1:L;do
5 Draw samples for existing targets, f‘iq 1 ™

‘Ik(‘ |i§<_1 ’ Zk)’
> and compute weights,

! _ 1 RLX )
klk—1 QG- 1%, Zy) k=1
6: end for
7. forl=L;,+1:L;do
8: Draw samples for newborn targets, ifcl 1 ™
Pi(1Zy),
; -1 _ G
> and compute weights, We—1 = TFopren 120
9:  end for
10:  Update
11: forzeZ;do
12: Ci(z) = Zlﬁﬁ] PD(’~‘5<|k—1)g(Z|’~‘§<|k—1)‘Z’/{\k—l
13: for/ =1:L; do
14: update weight,
; % _De@R, -
), = [V + Zzelk %] Il<|k—1
>y=1-— pD(i;dk—l)
15: end for
16:  end for

17:  Resample
18:  Compute estimated number of targets,

fk\k = round (Zf:kl ﬁ),é)
19:  Resample L particles using resampling
techniques such as in [34].

)
20: return | % T 1™ = {xl wl}Lk
: flk—1 = 1 Xp» W

L f1
21: end for

space of two targets populated with particles at time k is
shown. In A, during the prediction stage, the PHD is rep-
resented with eight equally weighted particles. In B, as
the latest measurement arrives, the particle weights are up-
dated accordingly. Particles with higher weights are chosen
for resampling. As seen in B, the highly weighted parti-
cles are marked with “,/,” respectively, five particles for
the first target and six particles for the second target. To
ensure that the number of particles remains eight for each
target, the particles marked with “,/” are resampled de-
pending on the size of their weights as seen in C. Notice
that the particle positions remain unchanged and the parti-
cles corresponding to high weights are retained and those
with lower weights are discarded. The estimated state of
the targets or the posterior at time k is derived from the re-
sampled particles. It is true that populating the state space
of the targets with many more particles will result in more
particles falling near the modes of the state space. This will
translate to higher weighted particles and a more accurate
posterior. However, doing this will increase computational
complexity.
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In the next section, the proposed SMC-PHD filter is
presented.

V. PROPOSED SMC-PHD FILTER

In the standard SMC-PHD filter, the particles appear to
be scattered and it is difficult to guide particles to regions
of interest. The filter’s ability to estimate the posterior at
a given time depends on how densely the state space is
populated with samples and how well the estimated mea-
surements match the actual measurements received in that
time frame. The weights are then updated accordingly. The
SMC-PHD filter does not provide for particle state cor-
rection to achieve particle improvement. In other words, it
does not seek to reduce the error between the actual mea-
surement and the estimated measurements irrespective of
the importance density chosen. The proposed method seeks
to address this problem. The novelty of our approach lies
in the technique behind the Kalman filter. The Kalman fil-
ter is a minimum MSE estimator, which in effect seeks to
recursively minimize the MSE between the estimated mea-
surements and actual measurements using the Kalman gain
[36]. The Kalman gain computes the required correction
from the observation and transforms the correction of the
observation back to the correction of state. The proposed ap-
proach tries to apply particle state correction/improvement
using the Kalman gain to guide validated particles in the
SMC-PHD filter to the region of higher likelihood to better
approximate the posterior at each time step.

A. Measurement Set Partition

Given that T} targets exist at time k, the measurements
received at k may consist of target-originated measure-
ments (i.e., measurements due to persistent target or
newborn targets) and clutter. In the standard SMC-PHD
filter, all measurements are used to compute weights to
show the significance of all particles with no attempt to
check for errors. Therefore, a measurement set partition
is needed to separate the measurement set into target-
originated measurements and measurements due to clutter.
We use a statistical distance measure and gating technique
to achieve this. The second step is to identify promising
particles from the predicted target state using a validation
threshold and improve their states using the Kalman gain
while updating weights as measurement arrives.

At time k, measurements assumed to originate from
persistent targets are identified by computing the square
Mahalanobis distance between elements in the measure-
ment set Z;_; at time k — 1 and Z; at time k from (3)
as

di2,j,k = (Z;c - ZI{—I)T Ek_] <Z;c - Z£—1> (20)
fori=1,...,|Z;land j =1,...,|Z;_1]. &) is the mea-
surement covariance matrix. For target-originated measure-
ments zi and zi_l belonging to the same target, the square
Mahalanobis distance d; ; , is x* distributed with degree of
freedom equal to the dimension of the measurement vector.
Therefore, a unit-less threshold d can be computed for a
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given probability using the inverse cumulative x> function
such that the Pr[dﬁ ik < d] falls within a given confidence
region [3].

Assuming that measurement noise is not too great and
the time increment is not too large, a target-generated mea-
surement in Z; will usually be nearby some measurement
in Z;_;. Assuming that clutter is not too dense and is un-
correlated frame to frame, a clutter measurement in Z; will
usually not be near any measurement in Z;_;. Thus, dl.% jkas

defined in (20) will tend to be small for some j if z}; is due
to a target. Likewise, it will tend to be large for all j if z}'( is
a clutter measurement. So, for a given i, the measurement
z} is recorded as a valid target-originated measurement
if

(2D

is satisfied or, otherwise, regarded either as clutter or a
potential newborn target. Therefore, the clutter-free mea-
surement set at time k is

z =)

n=1

- 2 ~
min;d; ;, < d

(22)

wheren =1, ...,ng and n, = |Zk , that is, the total num-
ber of measurements in Z; satisfying (21).

B. Validated Particle Selection and Correction

Once the measurement set is partitioned, the selection
and correction step follows. In order to identify those par-
ticles to correct, a validation threshold t is used, which
selects particles from the predicted target state that fall
under a given measurement for correction. A predicted par-
ticle, iil «1 1s selected for correction if, for each clutter-free

measurement z; € Zy

g (@K y) =7, forl=1,... L (23)

where g(z;, |f(§(| «—1) 1s the measurement likelihood function;
7 is chosen to be inversely proportional to the total number
of samples per persistent target p, i.e.,

1

T —.

o
Each particle satisfying (23) is assumed to be a reasonable
candidate for correction given the current measurement.
A large v will lead to a tighter particle selection while a
smaller value of t will result in wider particle selection,
that is, more particles will be selected for correction. Once
a reasonable candidate ii‘ « has been identified, it’s state
is corrected as

(24)

f‘i = iqu—l + K (ZZ —f (iéclk—l)) (25)
Ky =P H S, (26)
S;' =R, +H,P,_ H (27)
P, =P — KiH Py (28)

where f (7‘§<| +_1) is the projection of the predicted state X, on
to the measurement, Xy is the Kalman gain, H is the mea-
surement transformation matrix, P is the state estimation
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covariance matrix, R is the measurement error covariance
matrix, and S is the innovation covariance matrix.

Therefore, given that the ¢th target generated the clutter-
free measurement z, ; at time &, and its state is represented
by particles {xt, X }fz , from the predicted target state, then,
only those particles, {x;},_, satisfying (23) will be se-
lected for correction according to (25) where s < p.

Fig. 2 illustrates how particles representing the state of
the PHD of targets are selected for correction as the mea-
surement originating from the rth target arrives at time k.
From the figure, in A, during the prediction stage, each of
the target states is represented with eight equally weighted
particles. As the latest measurement for each target arrives,
particles with high likelihood are marked with “,/” as seen
in B. The validation threshold 7 of (23) is then applied to
the likelihood of particles with “,/.” Each particle whose
likelihood satisfies the threshold condition is selected for
correction. The selected particles are shown with “*” in B.
The particle weights are updated accordingly. Notice from
B that for the first target, five particles have high likelihood
but only three from the five were chosen for state correc-
tion. Similarly, for the second target, six particles gave high
likelihood but out of which only four were selected for state
correction. The selected particles from B are then corrected
using (25) and (26) as shown in C. The corrected particles
are then resampled to ensure that the number of particles
remains eight for each target.

Note, the above measurement set partition approach can
be applied under the following assumptions: that newborn
targets exist for at least two consecutive time steps, the
maneuvering of targets is not too abrupt, the sample period
8t is not too large, measurement noise is not too large,
clutter is not too dense, and clutter is not time correlated.

Furthermore, we emphasize that the proposed KG-
SMC-PHD is different from the GM-PHD in [16] even with
the application of the gating technique as will be demon-
strated in the simulation section. This is primarily because
we do not assume the strict linearity and Gaussianity con-
dition of [16].

C. KG-SMC-PHD Implementation of the PHD Filter

We now present the initialization, prediction, update,
and resample steps of the KG-SMC-PHD filter.

1) Initialization: At time k = 0, initialize the PHD
Dy by a number of particles with associated weights
{xi. wy }[sz1 . A particle approximation of the intensity func-
tion at time step k > O can be obtained from a particle
distribution at the previous time step using prediction and
update stages.

2)  Prediction: The predicted PHD Dy is

Ly

D1 i | Zi—y) = Z wllclkfls(x - ii\kfl)'
=1

(29)

We draw Lj_; and J; particles from two proposal densi-
ties (chosen from the possibilities discussed in Section III,
i.e., TP, EPF or UPF) to represent persistent and newborn
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Prediction

State Correction C |

Fig. 2. Schematic representation of the proposed SMC-PHD filter showing the 2-D state space of the PHD of two targets populated with particles.
The contours represent the state space of targets. The contour centers and number of centers represent the mode and number of targets, respectively.
Boxes A, B, C, and D represent various stages of the filter. The square-shaped and diamond-shaped particles are for target 1 and target 2, respectively.
The colors stand for different particle states. The particles with “,/” stand for particles with higher weight for when latest the observation arrives.
Particles with “*”” denote particles selected for state correction.

targets, respectively, as

<l ~ qk('|i2719 Zk), | = 1, "'7Lk71
Kl—1 . (30)
Dk Zy), =L +1,...,L;
with corresponding weights
&L R
¢].(.,‘k l( ﬁl k_l) 11(7]9 [ = 17 © Lk*l
) a1 1%y Z)
Wiig—1= ]
vi(Xp)

=Ly 1+1,...,L
(31

Jie Pk Rii—11Z)’
with the term

Drepk—1 Xk, Xg—1) = ps(X—1) frjk—1(Xk, Xk—1)
+ bpji—1(Xk, Xp—1)

where Ly = Li—1 + Ji, qr(-|) and py(-|-) denote the pro-
posal distributions for persistent and newborn targets, re-
spectively; yx(-) is the PHD of the spontaneous birth, pg(-)
is the probability of target survival, fijx—1(Xg, Xx—1) is the
single target motion model, and by —(Xg, X¢—1) is the PHD
of spawned targets; J; is the number of particles for new-
born targets.

3) Update: Foreachz] e Zk where Zk is the clutter-
free measurement set at time k obtained using (20) and (21),
let

M) = k(@) + Ci(Z}) (32)
Ly
Ce@) =Y poRig & Riyy_ )jpey  (33)

=1
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then, forl =1, ..., Ly, compute the likelihood g(z |X ;_,)
and verify if (23) is true, correct predicted state by comput-
ing ’~‘§< using (25) then compute (33) and update the weights
using

(34)

P& )8 &} K} )
i = v 3 LB
z€Zy,
wherev = | — PD(f‘iuc—l)‘ However, if (23) is not satisfied,
the predicted state is not corrected, ifc is computed as f(i =
ifd «—1 and (32) and (34) are computed immediately.
The updated PHD, Dy is then given as

Ly

Dy (%l Zy) = Z whe(x — %).6
=1

(35)

4)  Resample:

1) The expected number of targets Tk|k is computed as

Ly
Tk = round E i
=1

where round(-) denotes round to the nearest integer.

2) Ly = ,of}dk particles are resampled (p corresponds to
the number of particles per existing target) according to
the modified systematic resampling technique below.
a) Find all noncontributing weights w; from @; such

that w; € Wy and replace with @, where 0 < & <K
/lo. This is to ensure that only weights belonging to
corrected particles are chosen for resampling.

(36)
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Algorithm 2: KG-SMC-PHD Filter.
1: Initialization
2: Initialize filter parameters as in Section V-C1.
3: Prediction
4: Follow the prediction technique as in
Section V-C2.
: Update
6: Obtain clutter free measurement Z; at time k using
(20) and (21) by computing:
7: forallz; € Z; andz; | € Z;_; do
8: if(z, —z] )TE "'zl —z]_,) <d then

W

9: 7 =1,
10:  endif
11: end for

12: Z = Uy, {z}

13: for all z; € Z; do

14: for/ =1:L;do

15: if ¢(z} %} ,_,) > T then
16: ilk = Kyt + Kz — f(iiqk—l))
17: Compute (32)

18: else

19: X, =X,

20: Only compute (32)
21: end if

22: Compute (34)

23: end for

24: end for

25: Resample

26: Find all non contributing weights w; from w; such
that w; € W, and replace with @ where 0 < & <
1 and resample as in Section V-C4. This is to
ensure that only weights belonging to corrected
particles are chosen for resampling.

b) Then compute cumulative probability ¢; =0, ¢; =
..,'[
ot (G =2 L+ e

¢) Draw a starting point u; from U [0, Lik].
d) Forj=1,..., L

uj=u + LG~ 1)
while u; > ¢;, [ =1+ 1. End while

X

.

Eal

w

SIS

3) Rescale (multiply) the weights by f“k‘k to obtain
{xt, TLL‘:}ZLQ, where w} = TLk—‘:

) WL
{ka wk}1=kl'

Ty L

!
therefore {x, 75},%,

The pseudocode of the proposed KG-SMC-PHD filter
is described in Algorithm 2.
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Fig. 3. True target trajectories in the range-bearing plane with start/end

positions for each track shown with O)/A.

VI.  SIMULATION RESULTS

In this section, the nonlinear tracking performance of
the proposed KG-SMC-PHD filter is demonstrated.

A. Simulation Context and Filter Parameters

We consider a two-dimensional (2-D) nonlinear range
and bearing scenario with unknown and varying number of
targets observed over a cluttered region. A total of ten tar-
gets enter and exit the scene at various times throughout the
simulation scenario. The observation region is a half disk of
radius 2000 m. A plot of the ground truth (true trajectories)
of the targets along with the start and end positions of each
track is shown in Fig. 3. The start and end positions are
indicated by a circle and a triangle, respectively. The non-
linear target dynamics are described by a nearly constant
turn state model driven by white noise acceleration

X = Flor— )X + T'vg (37)
W = Wp—1 + Otup_; (38)
where
sin wdt 1 — cos wdt 7]
w w
0 cos wdt 0 —sin wét
F(w) = . ’
1 — cos wét sin wdt
w w
| 0 sin wdt 0 cos wdt |
— 0
2
St 0
I =
82
0 —
2
L 0 8t |

F(w) is the transition matrix for nearly constant turn rate,
8t denotes the sample period which is assumed to be 1s
in this simulation, and I denotes the input matrix. The
target state vector X; = [Xe, o]’ comprises the planar
positions and velocities given as Xy = [Xj, Xy, Vk, viel”
along with turn rate wy. The variables (x;, y;) represent the
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position of the target and (X, yi) represent the velocities.
vi = N(,0,021) and wux_y = N(-,0,021) with o, =
10 m/s?> and o, = /180 rad/s. [-]7 denotes transpose
operation.

Targets can appear and disappear in the tracking
volume at any time. Target spawning is not considered
in this example. Each persistent target has a probability
of survival, pg(x4—;) =0.9. The target birth process
is modeled as a Poisson point process with intensity
function Ye(xe) = 03N, %1, Q) + 0.3N (-, %, Q) +
0.3N (-, %3, Q) + 0.3N (-, %4, Q) + 0.3N (-, %5, Q), where
X, = [—1000, 0, 200, 0]7, %, = [1000, 0, 1500, 017, %3 =
[0, 0, 1500, 017, %4 = [500, 0,500, 0], x%s = [1500, 0,
1000, 0] and covariance matrix, Q = diag([200, 50, 200,
50, 6(rr/180)]7).

The target-originated measurements are given by the
nonlinear model

o= [g" + o (39)
k_
with
1000] Xy
o (EY 11 |
and
0010 R
6y = arctan w 41
[1000]x; + x;

where the measurement noise n; is a zero-mean Gaus-
sian white noise vector with covariance matrix R =
diag([o?, 02]) with 0, = 10m and o = 0.5 rad. The
measurement sensor’s location, [x,, ys]7 is at the origin.
Clutter is uniformly distributed over the observation re-
gion of [0, 7] x [0,2000] with a Poisson point process
on the clutter region with a uniform intensity function
kr = 3.2 x 1073 (radm)~! (giving an average of A = 20
clutter points per scan). The total number of particles at
time k is

Li=Li+Jy and Ly = pTip (42)
where Tku‘ denotes the expected number of targets, L is
the number of particles for all persistent tracks, p denotes
number of particles per persistent track, and J; = g is the
number of samples per newborn track. The probability of
detection pp(xx)is 0.9.

To analyze the estimation error of the filter, we use the
optimal subpattern assignment (OSPA) proposed in [37]
and computation time (CT). The OSPA distance metric
enables us to compare multitarget filtering algorithms [37].
The OSPA distance between two arbitrary finite sets, that
is, the state set A = {a,, ..., a,,} and the ground truth state

setB={by,...,b,}is
, 0, if m=ri=0
dY(A.B)={ O(A,B), if m < (43)
d9A,B), if m>n
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TABLE I
Filter Performance Comparison in Terms of OSPA Distance, CT, and PD
for . = 20 and p = 1000 with Measurement Partition

Filter PD OSPA (m) CT (s)

SMC-PHD TP (from Section III-B1) 94.85 9.50
EPF (from Section II1-B2) 83.17 11.67
UPF (from Section I1I-B3) 81.72 12.85

KG-SMC-PHD TP (from Section III-B1) 22.19 10.43
EPF (from Section II11-B2) 19.64 13.40
UPF (from Section III-B3) 18.69 14.51

TABLE II
Filter Performance Comparison in Terms of OSPA Distance, CT, and
PD for A = 30 and p = 1000 with Measurement Partition

Filter PD OSPA (m) CT(s)
SMC-PHD TP (from Section I1I-B1) 111.76 10.63
EPF (from Section I1I-B2) 105.46 12.15
UPF (from Section I1I-B3) 103.78 13.40
KG-SMC-PHD TP (from Section ITII-B1) 31.56 11.77
EPF (from Section I1I-B2) 21.70 14.90
UPF (from Section IT1I-B3) 20.15 15.76
where
1 m P
OA,B) 2 (= [min Y da;, b))’ + ¢P(i —m))] .
(A.B) = |- HZ] (@i ba)” + (i — 1)
(44)
[1,; is the set of permutations with length i on the set
{1,...,7}. d9(a,b) := min{é, | a—b ||} is the distance

between single target vectors a and b. ¢ > 0 is the cut-off
parameter and p > 1 is a unit-less real number. We choose
parameters ¢ = 300 and p = 1. The cut-off parameter ¢
determines the relative weighting of the penalties assigned
to localization and cardinality errors, and p determines the
sensitivity to outliers. For more details on the OSPA metric,
the reader is referred to [37].

B. Effect of Proposal Distributions

Here, different importance sampling functions, TP, EPF,
and UPF of Section III are applied to the SMC-PHD and
KG-SMC-PHD filters to observe the effects of each choice
on filter performance. The results obtained are shown in
Tables I and II. The number of particles used in each of the
two clutter cases is p = 1000. Tables I and II show results
averaged over 1000 MC trials for A = 20 and A = 30 with
measurement set partition, respectively. Overall, using the
UPF as a proposal distribution gives better performance for
both filters in terms of low OSPA distance but this method
incurs the most computational load. This is primarily due
to the generation of sigma points for each particle and the
computation that follows during the unscented transform
process. Using both EPF and UPF to construct the proposal
distributions give better performance in terms of yielding
lower OSPA, when compared to using TP. This is because
both EPF and UPF helps us to place generated samples
“under” measurements as soon as measurements become
available. However, the improvement of using the UPF over
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TABLE III
Filter Performance in Terms of Number of
Particles, OSPA Distance, and CT for A = 20
with Measurement Partition

Filter P OSPA (m) CT (s)

SMC-PHD 50 149.31 0.42
100 100.36 0.86
500 86.38 5.19
1000 83.17 11.67

KG-SMC-PHD 50 44.70 0.72
100 33.29 1.26
500 22.11 6.29
1000 19.64 13.40

TABLE IV

Filter Performance in Terms of Number of
Particles, OSPA Distance, and CT for A = 30
with Measurement Partition

Filter P OSPA (m) CT (s)

SMC-PHD 50 154.82 0.47
100 117.88 0.93
500 106.19 5.99
1000 105.46 12.15

KG-SMC-PHD 50 47.15 0.87
100 39.30 1.36
500 25.79 7.02
1000 21.70 14.90

EPF is not too significant in terms of OSPA distance. As
a result, the EPF will be used as the importance sampling
function for both filters in our subsequent discussion.

C. Varying Number of Particles

For this case, the EPF was chosen as the importance
sampling density for both filters. This is because as dis-
cussed earlier, using the EPF gives a lower CT. Tables III
and I'V show results of filter performance in terms of num-
ber of particles, OSPA distance, and CT obtained for both
filters averaged over 1000 MC simulations for different p
values when clutter is present with measurement partition.
It can be observed from both tables that the performance
of the SMC-PHD filter appears to deteriorate further with
more position and cardinality mismatch (high OSPA dis-
tance) as clutter density increases while the proposed filter
is seen to maintain a consistent performance with improved
accuracy in position and cardinality (low OSPA distance).
The CT of the proposed filter, however, is seen to be higher
than the SMC-PHD filter for a given p value. This is due
to the particle state correction step of the proposed filter.
However, the number of particles required in terms of per-
formance level (i.e., low OSPA) by the proposed filter is
far less when compared to the SMC-PHD filter making the
proposed filter more efficient.

Fig. 4 depicts the average of 1000 MC runs of the true
and estimated number of targets for p = 500 with average
number of clutter per scan, A = 20. This result shows that
the KG-SMC-PHD filter is able to estimate properly the
number of targets under such high clutter condition. Fig. 5

2260

Cardinality

4+ <-ml.....~m

= True
* KG-SMC-PHD

0 I I I I I I I I I
10 20 30 40 50 60 70 80 90 100

Time (s)
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Fig. 5. xand y components (versus time) of the true target trajectories
and the KG-SMC-PHD filter estimates for p = 500 particles per existing
track.

shows the x and y components (versus time) of the true
trajectories and the KG-SMC-PHD filter estimates. The
plots indicate that the proposed filter with p = 500 parti-
cles per existing track is able to properly track all targets
and in addition to being able to identify all target births
and deaths while successfully accommodating nonlineari-
ties under high clutter condition.

D. Other Filters

To further demonstrate the performance of the KG-
SMC-PHD filter, the proposed filter was evaluated along
with the GM-PHD filter of [16], the GM-USMC-PHD fil-
ter of [21], and the AP-PHD filter in [23] in addition to
the standard SMC-PHD filter. The evaluation is in terms of
OSPA distance and CT. For this comparison, the EPF was
used to construct the importance sampling function for both
the KG-SMC-PHD filter and the SMC-PHD filter. The KG-
SMC-PHD filter was evaluated at 500 and Ssﬂ particles for
existing and newborn tracks, respectively, while 1000 and
@ particles for existing and newborn tracks, respectively,
were used for the SMC-PHD filter.

The GM-PHD filter was implemented with an EKF. The
maximum number of Guassian terms was set to 100, with
the merging (7,,) and pruning threshold (7),) set at 10 m and
1073, respectively. A Gaussian component is considered to
be target originated if its weight is above 0.4. The estimated
number of targets is given by the sum of weights of the GM.
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TABLE V
Filter Performance Comparison in Terms
of OSPA Distance and CT for A = 20
with Measurement Set Partition

Filter OSPA (m) CT (s)

KG-SMC-PHD 22.11 6.29

SMC-PHD 83.17 11.67

GM-PHD 38.05 2.59

GM-USMC-PHD 35.38 13.58

AP-PHD 33.19 16.99
TABLE VI

Filter Performance Comparison in Terms of OSPA
Distance and CT for Different Filters for A = 20
without Measurement Set Partition

Filter OSPA (m) CT (s)
KG-SMC-PHD 22.11 6.29
SMC-PHD 94.66 10.11
GM-PHD 44.93 1.90
GM-USMC-PHD 47.23 12.25
AP-PHD 39.01 14.22

In the AP-PHD filter implementation, 1000 particles
were used per existing track and losﬂ particles were used for
the newborn track. Each new track initialization is measure-
ment driven and each current measurement is associated
with the corresponding highest bidder if the bid is greater
than 0.4. The auxiliary importance sampling [23] process
starts with the selection of the measurements that are well
described by the targets states extracted from the estimated
PHD and this is achieved using the auction algorithm. Both
auctioning and state extraction is done as in [23].

The GM-USMC-PHD filter uses a GM to approximate
the importance density function. The GM implementation
of the GM-USMC-PHD filter is similar to the GM-PHD fil-
ter in terms of number of Gaussian components, and prun-
ing and merging thresholds. The number of samples per
GM component is set to 1000. The newborn track initial-
ization, resampling, and state extraction steps follow [21]
and the mean and the covariance of Gaussian is computed
using the UTF [3].

Tables V and VI show filter performance results aver-
aged over 1000 MC runs with and without measurement
set partition, respectively. In both tables, measurement par-
tition was applied to the KG-SMC-PHD filter. The effect
of the measurement partitioning process can be seen in
Table V as the OSPA distance improved for the other fil-
ters. This is because measurements due to clutter were dis-
carded and not used in the weight update stages of the filters.
Notice also there is a slight increase in CT from Table V
as compared to VL. This reflects the added CT during the
partitioning process. Overall, under high clutter, the KG-
SMC-PHD filter gives a better performance as it maintains
low OSPA distance. This is mainly due to our particle state

2The OSPA [37] metric measures the combination of both localization and
cardinality distance.
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Fig. 7. Averaged OSPA distances versus varying clutter intensity over
1000 MC trials.

correction technique. Also, in Table V, it can be observed
that with just 500 particles per existing track, the KG-SMC-
PHD filter outperformed all other filters by having lower
OSPA distance.

Fig. 6 plots the time-averaged OSPA distances for all
the five filters over 1000 MC trials with measurement set
partition. Here, 1000 particles were used per existing track
for the KG-SMC-PHD filter while the parameters of the
other four filters were maintained. As shown in Fig. 6, high
values of OSPA distance occurs when new targets are born
around time indices k = 10, 20, 40, and 60. It is observed
from the figure that the SMC-PHD filter gave the least per-
formance, while the proposed filter shows superior perfor-
mance in terms of average OSPA distance per target when
compared to the other filters under high clutter condition.
The proposed filter achieved this good performance level
due to our selective particle correction technique. Fig. 6
further suggests that for our simulation example, there is
not a significant difference performance wise between the
GM-PHD, GM-USMC-PHD, and the AP-PHD filters as all
three filters gave similar level of performance in terms of
average miss-distance per target.

E. Overall Evaluation

We now discuss the filter limitations in terms of OSPA
distance and number of clutter points, number of parti-
cles and CT as well as general filter performance. Fig. 7
plots time averaged 1000 MC trials of the OSPA dis-
tance for the SMC-PHD filter and the KG-SMC-PHD
filter against clutter intensities from k; = 0 (radm)~' to
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Fig. 8. KG-SMC-PHD and SMC-PHD filter performance evaluation in
terms of OSPA distance and CT versus varying number of particles time
averaged over 1000 MC trials for A = 20.

K =8 x 1073 (radm)™!, that is, from A =0 to A = 50.
Both filters were implemented with measurement set par-
tition with p = 1000. It is observed that the miss-distance
increases for both filters as clutter intensity increases. How-
ever, this increase in OSPA distance is more significant in
the SMC-PHD filter implementation compared with the
proposed filter. Fig. 7 clearly shows that the proposed filter
outperforms the SMC-PHD filter as it maintains an average
OSPA distance of less than 51 m up to clutter intensity of
Ky = 8 x 1073 (radm)~! due to the particle state correction
technique in our approach while the SMC-PHD filter starts
to exhibit breakdown from about k;, = 6.4 x 107> (radm)~!
(i.e., A = 40). For this simulation example, the proposed
filter performed well up to A = 60 and started exhibiting
breakdown at about A = 65. Note that this time-averaging
result is intended as a guide to provide a broad indication
of the performance of the filter and can vary depending on
the application scenario.

Fig. 8 shows the effect of the choice of number of par-
ticles on OSPA distance and CT. As expected, on the right-
hand side of the y-axis, the CT increases for both filters as
number of particles increases. It is also observed that for the
same number of particles, the CT of the SMC-PHD filter is
always lower when compared to the proposed approach and
the difference in CT for both filters increases with increase
in number of particles. The extra computation load for the
proposed filter is due to the extra particle state correction
step of our approach. However, on the left-hand side of the
y-axis, the miss-distance of the proposed technique is seen
to be significantly lower compared to the SMC-PHD filter.
Although the performance of the SMC-PHD filter is seen to
improve with increase in the number of particles, the filter
did not achieve the accuracy level of the proposed filter even
with 10 000 particles. In terms of miss-distance, Fig. 8 also
suggests that the proposed filter is more efficient as only
few a particles (less than 1000) are required to achieve an
OSPA distance of less than 50 m while the SMC-PHD filter
requires about 10 000 particles.

Comparing the contributions of this paper, first, a par-
titioning technique was used on consecutive measurement
sets to separate existing targets from clutter and newborn
targets. This process primarily serves the function of re-
ducing the number candidate measurements to use in the
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weight update stage in the presence of clutter. A reduced
computational burden is thus achieved as the unnecessary
computation on measurements due to clutter is avoided dur-
ing weight update. Second, the Kalman gain as a correction
technique seeks to achieve minimal variance and thereby
gives better accuracy (in approximating the posterior). As
a result, fewer particles are required to populate regions
of interest. Furthermore, the effect of the partitioning pro-
cess is not apparent in the no clutter to partition. However,
the correction step is needed with or without clutter. As a
whole, the use of the Kalman-gain correction method is the
contribution which gives the main improvement.

VII.  CONCLUSION

We have proposed a new and efficient SMC-PHD fil-
ter for MTT, which seeks to minimize the MSE between
received and estimated measurements at any given time.
This was achieved by first partitioning the measurement set
into target-originated measurements and clutter for weight
computation and applying the Kalman gain to selected parti-
cles for state correction. The tracking performance was im-
proved because only target-originated measurements were
used for weight computation and the MSE at each time step
was reduced resulting in fewer number of particles for state
estimation. Simulation results demonstrate that our algo-
rithm outperforms the standard SMC-PHD filter as well as
other alternative implementations of the PHD filter. In our
future work, the proposed filter will be extended to track ma-
neuvering and closely spaced targets and applied to other
target tracking applications including that in a multiple-
input-multiple-output (MIMO) radar environment.
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