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The sensitivity of the initial guess in terms of optimizer based on
an hp-adaptive pseudospectral method for solving a space maneu-
ver vehicle’s (SMV) trajectory optimization problem has long been
recognized as a difficult problem. Because of the sensitivity with re-
gard to the initial guess, it may cost the solver a large amount of
time to do the Newton iteration and get the optimal solution or even
the local optimal solution. In this paper, to provide the optimizer a
better initial guess and solve the SMV trajectory optimization prob-
lem, an initial guess generator using a violation learning differential
evolution algorithm is introduced. A new constraint-handling strat-
egy without using penalty function is presented to modify the fitness
values so that the performance of each candidate can be generalized.
In addition, a learning strategy is designed to add diversity for the
population in order to improve the convergency speed and avoid local
optima. Several simulation results are conducted by using the com-
bination algorithm; simulation results indicated that using limited
computational efforts, the method proposed to generate initial guess
can have better performance in terms of convergence ability and con-
vergence speed compared with other approaches. By using the initial
guess, the combinational method can also enhance the quality of the
solution and reduce the number of Newton iteration and computa-
tional time. Therefore, the method is potentially feasible for solving
the SMV trajectory optimization problem.
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I. INTRODUCTION

Trajectory optimization problems for re-entry vehicles
have been investigated widely by some researchers [1]–[4].
One of the current objectives is the development of space
maneuver vehicles (SMV) for a dynamic mission profile.
Due to the high nonlinear nature of the problem, numer-
ical methods are usually employed to solve this type of
problems [5], [6]. Numerical methods for solving optimal
control problems are divided into two major classes: in-
direct methods and direct methods [7], [8]. However, it is
more challenging to solve the re-entry problem by using
indirect methods, since in an indirect method, first-order
necessary conditions for optimality should be derived from
the original optimal control problem according to the cal-
culus of variations so that the Hamiltonian boundary-value
problem can be constructed. This process usually becomes
costly due to the complexity of the dynamic model and path
constraints. Hence, the direct optimization method has been
widely used in addressing trajectory optimization type of
problems.

It is worth noting that other algorithms were also pro-
posed such as that by Liu et al. [9], [10] who proposed
specific convex programming methods. These methods are
based on second-order cone programming for solving gen-
eral trajectory optimization problems. By applying these
algorithms, the original problem is first convexified into
a convex optimal control problem, and then discretization
is applied to generate a second-order cone programming
problem.

In the investigation carried out in this paper, the direct
method is applied to solve the problem, in which the first
step is to parameterize the continuous-time optimal control
problem. For the discretization techniques, the most com-
mon methods are multiple shooting, direct collocation, and
pseudospectral methods [7], [11]–[17]. Using these meth-
ods, the optimal control problem can be transformed to
a nonlinear optimization problem or nonlinear program-
ming problems (NLPs) [18]. The resulting NLP problem
can be solved numerically by well-developed algorithms
such as sequential quadratic programming (SQP) and in-
terior point method. Most of the discretization techniques
can provide very good accuracy for many cases. Take the
multiple shooting method as an example, if the dynamics
are parameterized with fix-step, the high accuracy can be
achieved if the step length is small enough [19]. In recent
years, pseudospectral methods have attracted more atten-
tion and more work is being carried out in this field [6]. The
main advantage with pseudospectral methods [20], [21] is
that high accuracy can be achieved with much less temporal
nodes [22], [23].

It should be noted that a key ingredient to solve the
SMV trajectory optimization problem is the ability to solve
NLPs. While the general pseudospectral method and the hp-
adaptive pseudospectral method [22], [24]–[27] can have
a good performance approximating the problem, the effi-
ciency depends largely on the initial guess value. If an initial
guess, which is adequately close to the optimal solution, can
be provided to the solver, then the efficiency of the NLP
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solvers can be significantly improved and vice versa. For
some optimal control software like GPOPS and DIRCOL,
this process can usually be made by simply interpolating the
boundary conditions provided by the user. However, due to
the lack of physical knowledge, the initial guess value pro-
vided by the user may not be physically meaningful and it
can hardly satisfy the dynamic model and path constraints.
Therefore, the NLP solver will start at an infeasible point
where most of the constraints are violated (i.e., cannot be
satisfied) meaning the number of the Newton iteration will
be increased.

To tackle this problem, this paper presents a combi-
natory approach that uses the violation learning differen-
tial evolution (VLDE) algorithm and the hp-adaptive pseu-
dospectral method. The VLDE algorithm is presented as an
initial guess generator. The fundamental framework of the
proposed algorithm is based on [28]. Since the main diffi-
culty for solving the SMV trajectory programming problem
is the strict path constraints, a new constraint handling strat-
egy using the violation and satisfactory degree [29], [30] is
designed and embedded in the algorithm framework so that
the feasibility of the calculated solution can be improved
significantly. Compared with genetic algorithm (GA) [3],
[31], differential evolution (DE) [31]–[33], particle swarm
optimization (PSO), and other evolutionary algorithms, the
proposed algorithm tends to be more stable at the first sev-
eral iterations and has better convergence ability. Another
advantage of the proposed algorithm is that the diversity
of the population can be improved, so that it has the abil-
ity to avoid local optimal solution. In addition, since the
proposed approach uses an adaptive way to crossover and
mutate, it can offer the algorithm a higher speed to converge.
Moreover, based on the definition of violation degree and
satisfactory degree, a proper fitness function is designed
that does not contain penalty factors or weight coefficients.
Because of these advantages, the VLDE approach is applied
to solve the SMV trajectory planning problem.

The paper is organized as follows. In Section II, the
aerodynamic model of the SMV and some basic princi-
ples of the trajectory optimization problem are introduced.
Section III describes the method used to discretize the op-
timal control problem. Then, in Section IV, the process of
solving SMV trajectory problem using the VLDE algorithm
is explained in detail. In Section V, a series of comparisons
between the VLDE-based method and other methods are
carried out.

II. PROBLEM DESCRIPTION

The overall mission can be seen in Fig. 1. The general
skip re-entry can be divided into five phases: initial roll,
down control, up control, Kepler, and final entry. Consider-
ing the mission of the SMV is to overfly the ground target
with specific altitude, only the challenging phase 2 is taken
into account in this paper.

A. SMV Dynamic Model

The Earth is considered as a symmetrical sphere and
the Earth’s rotation is ignored. The three degree-of-freedom

Fig. 1. Mission profile.

dynamic equations of the re-entry vehicle are given by (1).
In the equations of motion, r is the radial distance from
the Earth center to the vehicle, θ and φ are the longitude
and latitude, respectively. V is the Earth-relative velocity,
γ is the relative flight-path angle, ψ is the relative veloc-
ity heading angle measured clockwise from the north, m
is the mass of vehicle, t is time. α and σ are angle of at-
tack and bank angle, respectively. The state variables are
X = [r, θ, φ, V, γ, ψ, α, σ ]T , while the controls are αc and
σc. In reality, the actual control variables cannot change sig-
nificantly (i.e., from lower bound to upper bound). There-
fore, in the model provided in (1), two rate constraints
are introduced, which can be concluded to the last two
equations:

ṙ = V sin γ

θ̇ = V cos γ sinψ

r cosφ

φ̇ = V cos γ cosψ

r

V̇ = − D

m
− g sin γ

γ̇ = L cos σ

mV
+

(
V 2 − gr

rV

)
cos γ

ψ̇ = L sin σ

mV cos γ
+ V

r
cos γ sinψ tanφ

α̇ = Kα(αc − α)
σ̇ = Kσ (σc − σ ). (1)

The atmosphere model, lift L, and drag D can be for-
mulated as

g = μ

r2
ρ = ρ0 exp

r − r0

hs

L = 1

2
ρV 2CLSD = 1

2
ρV 2CDS (2)

where S is the reference area, ρ is the density of the at-
mosphere, and ρ0 is the density of the atmosphere at sea
level. r0 is the Earth radius, CL and CD are lift and drag

2032 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 53, NO. 4 AUGUST 2017



coefficients determined by the angle of attack α and Mach
number, respectively, and g is the gravity acceleration.

The drag and lift coefficients can be determined by the
following equations:

CD = CD0 + CD1α + CD2α
2

CL = CL0 + CL1α (3)

whereCL0,CL1,CD0,CD1, andCD2 are mission-dependent
lift and drag coefficients.

B. Re-Entry Process Constraints

1) Terminal state constraint: Due to the mission require-
ment, the descent phase should have strict boundary
conditions. The terminal state constraints are given as

r(tf ) = rf

γ (tf ) = γf (4)

where tf is the terminal time of the mission and rf , γf
represent the altitude and flight path angle values at the
final time.

2) Constraint of state and control variables: The tolerant
region of state variables during the descent phase can be
summarized as

rmin ≤ r ≤ rmax θmin ≤ θ ≤ θmax

φmin ≤ φ ≤ φmax Vmin ≤ V ≤ Vmax

γmin ≤ γ ≤ γmax ψmin ≤ ψ ≤ ψmax

αmin ≤ α ≤ αmax σmin ≤ σ ≤ σmax. (5)

Similarly, the control variables should vary in its accept-
able regions and can be written as

αc(min) ≤ αc ≤ αc(max)

σc(min) ≤ σc ≤ σc(max). (6)

3) Path constraint: The heating rate, dynamic pressure, and
normal acceleration constraints should be taken into ac-
count during the entire descent phase and it can be writ-
ten as follows:

Q̇d = KQρ
0.5V 3.07(c0 + c1α + c2α

2 + c3α
3)

g1(t) = Q̇d − Q̇dmax ≤ 0

Pd = 1

2
ρV 2

g2(t) = Pd − Pdmax ≤ 0

nL =
√
L2 +D2

mg

g3(t) = nL − nLmax ≤ 0 (7)

where Qdmax, Pdmax, and nLmax represents maximum
allowable values for heating rate, dynamic pressure, and
normal acceleration, respectively.

C. Objective Function of Trajectory Optimization

In this paper, to complete the mission in the shortest
time minimizing the final time is chosen as the objective

function J :

J = min tf . (8)

Therefore, the trajectory planning problem can be con-
sidered as an optimal control problem that has the mini-
mum value of cost function and satisfies the terminal state
constraints, state and control box constraints, three path
constraints, and dynamics characterized in (1).

III. HP-ADAPTIVE PSEUDOSPECTRAL METHOD

To solve the SMV trajectory optimization problem us-
ing numerical methods, the continuous-time SMV trajec-
tory optimization problem needs to be transformed to an
NLP and the discretization method used in this paper is the
hp-adaptive pseudospectral method. This method is an or-
thogonal collocation method, which the collocation points
are the Legendre–Gauss–Radau (LGR) points [34]. The
advantage of using the orthogonal collocation method over
other methods is that the quadrature approximation to a
definite integral is extremely accurate when the collocation
points are chosen in an orthogonal manner.

Assume the time interval of an optimal control problem
is [t0, tf ]. Using the Radau pseudospectral method, men-
tioned in [22], the time interval should be transcribed via
the affine transformation [34]. The LGR points are the root
of linear combination of Legendre polynomials and it can
be written as

PK−1(τ ) + PK (τ ) = 0 (9)

where the Kth-order Legendre polynomial PK (τ ) is given
as

PK (τ ) = 1

2KK!

dK

dτK
[(τ 2 − 1)K ]. (10)

Solving (9), the LGR points τi, i = 1, ..., Nk , which is
defined on [−1, 1) (only including one of the endpoints)
can be obtained. After generating the collocation points,
the next step is to generate the approximation of the state
and control variables. Let us consider Nk LGR colloca-
tion points τ1, ..., τNk on the interval [−1, 1), with τ1 = −1
and τNk < +1. An additional point τNk+1 = 1 is introduced,
which is used to describe the approximation to the final state
variables [34]. Then, in the Radau pseudospectral method
[34], the state and control of optimal control problems are
approximated as

x(τ ) ≈ X(τ ) =
Nk+1∑
i=1

XiLi(τ )

u(τ ) ≈ U (τ ) =
Nk∑
i=1

UiLi(τ ) (11)

where Li(τ ), (i = 1, ..., Nk+1) is the basis of lagrange
polynomials. It is worth noting that the time domain for
LGR points is [−1, 1), while for Legendre–Gauss–Lobatto
(LGL) points [25], this region becomes [−1, 1]. Since in
the Legendre pseudospectral method, ṖK−1(τ ) = 0 is used
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to calculate the LGL points. The differences between the
LGR points and LGL points can be found in [22].

For an optimal control problem, which contains ns state
variables and nc control variables, if the number of LGR
collocation points is chosen as Nk , then the number of
decision variables of the NLP solver is ns × (Nk + 1) +
(nc ×Nk) + 1 (as shown in (11), the index i for the state is
from 1 to Nk+1, whereas the index for the control is from
1 to Nk . tf is also an optimization parameter). In the hp
strategy, if the mesh cannot meet the accuracy tolerance,
then the number of nodes or interval should be changed
either by increasing the degree of polynomial in the mesh
interval or dividing the current mesh into several segments.
By employing the hp strategy [20], the dynamic equation
and path constraints can be transformed to

Nk+1∑
j=1

D
(k)
ij X

(k)
j − tk − tk−1

2
f (X(k)

i ;U (k)
i ; τ (k)

i ; tk−1; tk) = 0

C(X(k)
i , U

(k)
i , τ

(k)
i ; tk−1, tk) ≤ 0 (12)

where k = 1, ..., K andK is the number of mesh intervals.
Nk is the number of LGR points and D is the differential
matrix. f is the right-hand side of the model and C =
[g1, g2, g3]T .

Let ε stand for an accuracy tolerance for the discrete
algebraic function constraint. The error of the algebraic
equation a(k)

s and path constraints b(k)
s at the sth collocation

point and in the kth time interval can be calculated by

|Ẋ(k)(τ (k)
s ) − tk − tk−1

2
f (X(k)

s , U
(k)
s , τ

(k)
s ; tk−1, tk)| = a(k)

s

C(X(k)
s , U

(k)
s , τ

(k)
s ; tk−1, tk) = b(k)

s . (13)

Therefore, the maximum error e(k)
max in the kth time in-

terval can be approximated as e(k)
max = max[a(k)

s , b
(k)
s ]. If the

equation e(k)
max ≤ ε can be satisfied, then the algorithm will

stop the iteration because collocation points in the kth in-
terval can reach the tolerance. Otherwise, it should be di-
vided into subintervals or added more collocation points.
Whether the current mesh gird should be divided into seg-
ments or added collocation points can be determined by

using the curvature value. Suppose k(k)
max and k

(k)
are the

maximum curvature and average curvature of all the nodes,

respectively. Furthermore, let r (k) = k
(k)
max

k
(k) be the ratio of the

maximum to the mean curvature. Setting the tolerance of
curvature as rmax and if r (k) ≥ rmax, then the trajectory in
this time interval tends to have oscillations and it should be
divided into new subintervals. The number of the subinter-
val nk is determined using nk = ceil(log(e(k)

max/ε)), where
the function of ceil(·) is to round a number to the next
larger integer. On the other hand, if the tolerance can sat-
isfy r (k) < rmax, the trajectory tends to be flat in this time
interval and the accuracy can be improved by adding more
collocation points. The number of points that should be
added is determined using Nk = Nk + ceil(log(e(k)

max/ε)).

IV. TRAJECTORY OPTIMIZATION PROBLEM BASED
ON THE VLDE METHOD

Based on the method presented in Section III, the tra-
jectory optimization problem is transformed to an NLP
problem. There are many well-developed NLP algorithms
and solvers. However, most of the existing methods tend to
be sensitive with regards to the initial guess and if the solver
receives an initial guess that is close to the optimal solu-
tion, the efficiency can be improved significantly. There-
fore, it is essential to design an initial guess generator. In
this paper, a VLDE method was designed. The structure of
this combinational method can be summarized as follows.
First, the initial guess for the NLP problem is generated
using the VLDE method and after getting the initial guess,
a gradient-based optimization method is applied to find the
optimal solution.

DE is a simple, efficient, and robust algorithm. It has
been widely used in a number of scientific and engineering
fields as a global optimization technique. There are four
main procedures for the DE algorithm: initialization, se-
lection, crossover, and mutation. In the initialization part,
after the scale of the population and the number of iteration
times are assigned, the first population needs to be gener-
ated. According to the procedure described in (9)–(11), the
optimization parameters, angle of attack, and bank angle
should be chosen randomly at the collocation points sat-
isfying the control constraints given by (6). This can be
written as

popij,G = Ulj + rand

× (Uhj −Ulj ), (i=1, 2...NP; j=1, 2...Nk) (14)

where popij,G is each chromosome for the Gth genera-
tion, Ulj is the minimum value of the control variables,
whereas Uhj is the maximum value of control variables.
rand ∈ [0, 1] is a random number. NP is the size of popu-
lation. Since the aim of the initial trajectory generator is to
provide a reference trajectory to the NLP solver, to reduce
the computational burden of the initial guess generator, only
the control variables are parameterized based on (11). The
time history of the state variables can then be calculated
by integrating the equations of motion with a fourth-order
Runge–Kutta method. Before introducing the VLDE al-
gorithm, the violation degree of the constraints should be
defined.

A. Violation Degree of Constraints

Generally, for NLP problems, there are two kinds of
constraints, equality constraints and inequality constraints.
In terms of inequality constraints, the violation degree for
the relation “≤” (i.e., g(x) ≤ g∗

i ) can be defined as

μgij (x, u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, gij (x, u) ≤ g∗
i ;

gij (x, u) − g∗
i

gmax
ij − g∗

i

, g∗
i ≤ gij (x, u) ≤ gmax

ij ;

1, gij (x, u) ≥ gmax
ij

(15)
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where gij is the value of constraints for each individual at
each node, while the tolerance range should be (g∗

i , g
max
ij ).

The criterion for selecting g∗
i is based on the upper bound

of the corresponding path constraints (e.g., the allowable
maximum heating rate, dynamic pressure, and load factor).
Take heating constraint as an example, g∗

i can be set to
200 BTU. Since each individual in the current population
represents a trajectory, gmax

ij stands for the maximum value
of the constraint for the ith individual during the whole time
history. If the individual can satisfy the constraint described
in (7), then the corresponding violation degree should equal
to 0. If not, then the violation degree should be calculated
based on (15).

Similarly, for relation “≥” (i.e., g(x) ≥ g∗
i ), the viola-

tion function can be defined as

μgij (x, u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, gij (x, u) ≥ g∗
i ;

g∗
i − gij (x, u)

g∗
i − gmax

ij

, gmin
ij ≤ gij (x, u) ≤ g∗

i ;

1, gij (x, u) ≤ gmin
ij

(16)

where (gmin
ij , g

∗
i ) can be treated as the tolerance region.

For equality constraints (i.e., g(x) = g∗
i ), the tolerance

region (gmin
ij , g

max
ij ) can be chosen based on decision maker’s

preference or by using the minimum and maximum con-
straint values at all of the nodes. Its violation function is
given as

μgij (x, u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, gij (x, u) ≥ gmax
ij ;

gij (x, u) − g∗
i

gmax
ij − g∗

i

, g∗
i ≤ gij (x, u) ≤ gmax

ij ;

0, gij (x, u) = g∗
i ;

g∗
i − gij (x, u)

g∗
i − gmin

ij

, gmin
ij ≤ gij (x, u) ≤ g∗

i ;

1, gij (x, u) ≤ gmin
ij .

(17)

In this way, the value of the violation function can di-
rectly reflect the magnitude of the solution violating the
constraints and because of μ ∈ [0, 1], the overall violation
degree for each individual can be calculated by

Vi =
Nk∑
j=1

μgij (x, u)

Nk
, i = 1, 2...NP. (18)

On the other hand, it should be noted that the violation
degree can also be used to reflect the satisfactory degree of
individuals by introducing Si = 1 − Vi . Since both Si and
Vi are designed to reflect the preference of solutions with
respect to constraints, another satisfactory degree μJi (x, u)
should be introduced to reflect the preference of individu-
als with respect to objective. In terms of minimizing prob-
lems, for instance, its objective satisfactory degree can be

computed as

μJi (x, u) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, Ji(x, u) ≤ J ∗;

1 − Ji(x, u) − J ∗

Jmax
i − J ∗ , J ∗ ≤ Ji(x, u) ≤ Jmax

i ;

0, Ji(x, u) ≥ Jmax
i

(19)

where Jmax
i is the maximum value of J in the current pop-

ulation, while J ∗ can be an ideal value or a rough value
decided by decision makers.

B. Fitness Function With Violation Degree

Classical evolutionary-based algorithms usually use a
penalty function to create the augmented fitness function.
However, the optimization process may largely depend on
the penalty parameters, and because of this, the penalty
factors should be chosen in a proper way. Motivated by
this argument, the following fitness function term is devel-
oped, where the infeasibility is taken into account based on
violation degree:

Fi = fi + 1

2
, i = 1, 2...NP (20)

where Fi is the fitness value of the ith individual and fi is
calculated by

fi =
{
μJi , if Si = 1;
μJi − max(Vi), if Si 	= 1.

(21)

Equation (20) is taken as the fitness value in the VLDE
method, whose theoretic values are in the range [0, 1].

C. Evolutionary Strategies

There are three evolutionary procedures in the proposed
method: selection, direct search, and adaptive mutation. In
the selection process, to create the next generation, individ-
uals who have high value of fitness function are selected to
the mating pool until the number of individuals reaches a
certain number. It is described as

popi,G+1 =

⎧⎪⎪⎨
⎪⎪⎩

popi,G, exp(
Fi − Fj

G+ 1
) > rand;

popj,G. exp(
Fi − Fj

G+ 1
) < rand.

(22)

As can be seen from (22), not all the candidates with
high fitness can be selected into the next generation. The
benefit of using such a strategy is to keep the variety of
population and get global solution.

In the normal crossover strategy, the new candidates
generated by applying crossover function may not have im-
provement compared with the previous generation. There-
fore, to improve the convergence speed, procedures em-
bedded in the Nelder–Mead direct search algorithm [35]
are applied to get the next generation. The method uses
the concept of simplex and three candidates are chosen
to project on a plane (working simplex S). General pro-
cesses for the Nelder–Mead direct search are summarized as
follows.
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1) Ordering and centroid: Based on the fitness value calcu-
lated by (20), the worst Fh = Fpoph,G , the second worst
Fs = Fpops,G , and the best Fl = Fpopl,G candidates can be
found in the current working simplex. Then, the centroid
c of the best sides is obtained using

c = 1

2
(pops,G + popl,G). (23)

2) Reflection: The reflected point is obtained by

popr,G+1 = c + ω1(c − poph,G). (24)

If the fitness value of reflected point is better than the
second worst and no better than the best (i.e., Fs < Fr
� Fl), then keep popr,G+1 to the next generation.

3) Expansion: If the reflected point is better than the
best point (i.e., Fr > Fl), then a greedy searching
can be employed to get an expanded point pope,G+1
described by

pope,G+1 = popr,G+1 + ω2(popr,G+1 − c). (25)

If the expanded point has a better performance than the
reflected point, then keep the expanded point to the next
generation. Otherwise, keep the reflected point to the
next generation.

4) Contraction: If the reflected point is no better than the
second worst candidate (i.e., Fr � Fs), the contracted
point is calculated by

popc,G+1 = c + ω3(poph,G+1 − c). (26)

If the contracted point is better than the worst in terms
of fitness value, then keep the contracted point to the
next generation.

5) Shrink transformation: If the contracted point is still
not better than the worst point, then all the points are
replaced with

popi,G = popl,G + ω4(popi,G − popl,G), i = 1, 2
(27)

and go to step 1).

Theω1 = 1, ω2 = 2, ω3 = 0.5, andω4 = 0.5 are the re-
flection, expansion, contraction, and shrink transformation
coefficients, respectively. Compared with the traditional
crossover function, this strategy can ensure the next gener-
ation is not worse than the previous generation and improve
the convergence speed.

Mutation operation is used to avoid local optimal so-
lution and usually pi and pij are chosen as mutation rate
and mutation rate of segment, respectively. In VLDE, to
improve the speed of convergency, pi and pij are set as

pi = Vi, pij = μgij . (28)

In the process described in (28), individuals who have
high value of constraint violation will gain a higher prob-
ability to mutate at those high violation segments. Clearly,
these two values will change adaptively with the increasing
of generation.

D. Learning Strategy

Commonly, in the selection part, since it only chooses
solutions that have a competitive performance in terms of
fitness value at the current generation and eliminates bad
solutions, the diversity of the population is lost. If a solution
at the current generation has a bad performance in terms of
fitness value but after running the evolutionary procedures,
it can be improved massively, then the offspring should also
be kept to the next generation. This improvement degree
can be treated as a solution’s learning ability and can be
defined by

Pi,G+1 = Si,G+1 − Si,G + Sj,G + Sk,G

3
(29)

where Si,G, Sj,G, and Sk,G are the satisfactory degree of
three candidates who are not selected in the selection part
and Si,G+1 is the offspring calculated by applying the evolu-
tionary procedures. A high value of P means the candidate
is on an evolutionary direction which can achieve a massive
improvement. Consequently, the offspring are made up of
the following three parts:

1) individuals who have high value of fitness function in
the Gth generation;

2) the offsprings of the selected parents;
3) individuals who tend to have a massive improvement

compared to the Gth generation.

E. Optimization by the VLDE Algorithm

Considering the whole VLDE approach, the optimiza-
tion procedures can be summarized as follows:

1) randomly generate initial candidates and calculate the
violation degree, fitness value based on (15)–(21);

2) apply the evolutionary procedures to obtain new candi-
dates for next generation;

3) Use learning strategy and perform step 1)–3) repeatedly
until reaching the maximum iteration time.

By using the proposed algorithm, the initial guess for
the SMV trajectory optimization problem can be calculated.
The flow chart of the VLDE method is presented in Fig. 2.

V. SIMULATION RESULTS

A. Simulation Parameter Setting

To invest the feasibility and optimality of the proposed
method, a number of simulation experiments were carried
out. Comparative studies with other global optimization
methods such as DE, PSO,GA [36], and artificial bee colony
(ABC) [36] are presented. All the simulations carried out
in this paper are under Windows 7 and Intel(R) i7-3520M
CPU, 2.90 GHZ, with 4.00 GB RAM. In this section, all
the values of state and control variables at the initial and
final time are listed in Table I, and the control parameters
of global methods are given in Table II.

The vehicle-dependent and mission-dependent parame-
ters are set as S = 2690 ft2, ρ0 = 0.002378 slug/ft3, CL0 =
−0.2070, CL1 = 1.676, CD0 = 0.07854, CD1 = −0.3529,
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Fig. 2. Flow chart of the VLDE approach.

TABLE I
Simulation Parameter Setting

Initial Value Final Value Minimum Maximum

Altitude (ft) 21 162 900 21 066 900 21 066 900 21 162 900
Velocity (ft/s) 25 600 free 2000 45 000
Longitude (◦) 0 free −180 180
Latitude (◦) 0 free −70 70
Fpa (◦) −1 0 −80 80
Heading angle (◦) 90 free −180 180
AOA (◦) 17.43 free −10 30
Bank angle (◦) −75 free −90 1
Mass (slug) 6309.43 6309.43 6309.43 6309.43

TABLE II
Control Parameter for Global Algorithms

VLDE DE PSO GA ABC

NP 50 NP 50 NP 50 NP 50 NP 50
Iter 10 Iter 10 Iter 10 Iter 10 Iter 10
ω1 1 CR 0.5 wmax 0.8 pi 0.2 limit 10
ω2 2 pi 0.2 wmin 0.2 pij 0.5
ω3 0.5 pij 0.5 c1 2 CR 0.5
ω4 0.5 c2 2

CD2 = 2.040, Q̇dmax = 200 BTU/(s · ft2), Pdmax =
13406.4583 Pa, nLmax = 2.5, and Nk = 25, respectively.
The specific boundary conditions are given by the industrial
sponsor and only the descent phase shown in Fig. 1 is taken
into account in this paper. The initial altitude is around 80
km, where the edge of the atmosphere is assumed to start
at.

Fig. 3. Scenario 1.

Fig. 4. Scenario 2.

B. Numerical Simulation

Based on the control parameters given in Table II, a
series of simulations in terms of the convergence analy-
sis for VLDE is conducted by testing three different fi-
nal altitude scenarios. Specifically, the final altitude val-
ues are set as r1(tf ) = 21066900, r2(tf ) = 21074900, and
r3(tf ) = 21080900 for each scenario. Figs. 3–5 illustrate
the results of the proposed VLDE algorithm and other
global optimization methods under the same computational
efforts. The results is projected onto the fitness value versus
iteration time plane.

As can be seen from Figs. 3–5, the fitness value of the
VLDE approach can finally converge to around 1 for each
scenario within less iterations and the final values of the fit-
ness function for VLDE algorithm are always higher than its
counterparts. Therefore, although compared with the DE,
PSO, GA, and ABC, the complexity of the proposed VLDE
approach is higher, it can always perform a better conver-
gence ability and quicker convergence speed, which means
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Fig. 5. Scenario 3.

Fig. 6. Different number of population.

by using limited computational efforts, the quality of the
initial guess generated using the VLDE algorithm is better
than other methods investigated in this paper. Moreover, in
reality, due to the computational burden should be taken
into account and because of this, the iteration time is set as
10 for the VLDE algorithm.

To set a reasonable number of population NP, another
simulation is carried out by fixing the number of iteration as
10. The fitness values of different numbers of NP are shown
in Fig. 6. The results show that a larger number of NP can
provide a higher final fitness value. However, for the initial
guess generator, the aim is to provide a good reference
trajectory to the NLP solver with less computational effort.
Based on the simulation results shown in Fig. 6, in order to
keep a balance between the quality of initial guess and the
computational burden, NP is chosen as 50. Based on the
control parameters given in Table II, the initial trajectories
generated using different algorithms are plotted in Figs. 7
and 8.

Fig. 7. Solution of different initial guess generators.

Fig. 8. Solution of different initial guess generators.

After calculating the solution from VLDE, the next step
is to use the solution shown in Figs. 7 and 8 as an initial
guess and provide it to the gradient-based NLP solver (SQP
method). A comparison among the VLDE-based method,
DE-based method, PSO-based method, GA-based method,
and ABC-based method is presented to investigate the
feasibility of the five combinational strategies. By setting
ε = 1 × 10−6, Figs. 9 and 10 show the time history of all
the states and controls.

Table III illustrates the results of the four methods in
terms of the computational time, Newton iteration time and
values of the cost function. Generally, if the initial guess is
not close enough to the optimal solution, the performance
of gradient-based method is time consuming and it has high
probability to converge to a local optima. From Figs. 9 and
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Fig. 9. States and controls generated by using six methods for
Scenario 1.

Fig. 10. States and controls generated by using six methods for
Scenario 1.

10, the results are significantly different between the PSO-
based method and others. This can be explained by the fact
that in this case, the initial guess generated by the PSO-
based method is not close enough to the optimal solution.
This can be proved partly based on Figs. 3–5. Therefore, the
reference trajectory generated using the PSO algorithm may
close to a local optimum. When the NLP solver receives an
infeasible or bad quality initial guess, the solver may spend
a large number of Newton iterations and can hardly jump
out from a local minimum convergence region. In addition,
according to the results illustrated in Figs. 9 and 10, the tra-
jectory obtained by VLDE-based methods can satisfy the
path constraints in the entire mission. Therefore, the struc-
tural and thermal safety of the SMV is guaranteed, which is

TABLE III
Performance for Different Methods

Scenario 1 CPU Time for NLP Solver (s) NLP Solver Iter J (s)

No initial update 22.31 3278 642.54
DE based 11.85 462 640.43
PSO based 20.44 2565 721.23
VLDE based 7.26 347 639.52
GA based 12.22 604 642.48
ABC based 9.53 448 639.52

Scenario 2 CPU Time for NLP Solver (s) NLP Solver Iter J (s)

No initial update 55.05 7489 809.06
DE based 28.17 686 795.22
PSO based 30.23 837 795.45
VLDE based 21.72 585 793.38
GA based 29.85 703 796.23
ABC based 26.48 654 796.08

Fig. 11. Mesh grid distribution with different accuracy tolerances.

the prerequisite for the validity of an approach to trajectory
optimization. Moreover, in order to detail the influence of
the hp strategy on the proposed algorithm, the distribution
of time nodes with different predefined accuracy tolerances
ε is shown in Fig. 11. The ways in which this strategy
adds more points in a specific time interval or divides an
interval into subintervals follow the discussion followed in
Section III. Using the hp strategy, the time history for the
states and controls can be much smoother. This can be seen
from Figs. 9 and 10, where the distribution of grid points
tends to be dense at those areas having a high value of cur-
vature, while the distribution of discrete points tends to be
sparse at flat areas.

To further analyze the performance of the hp-
pseudospectral method with the proposed initial guess
generator, another mission with most of final states con-
strained and smaller limits on the path constraints is
carried out. In this case, the final boundary conditions
are [r(tf ), φ(tf ), V (tf ), γ (tf )]T = [21066900 ft, 11.80◦,
14000 ft/s, 0◦]T . The maximum allowable heating, dynamic
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Fig. 12. States and controls generated by using six methods for
Scenario 2.

Fig. 13. States and controls generated by using six methods for
Scenario 2.

pressure, and load factor are set as: [Qdmax, Pdmax, nLmax] =
[150 BTU, 11970.0521 Pa, 2.5]. Since the constraints be-
come hard to satisfy, the number of iterations for the initial
guess generator is set as Iter = 20. The time history of the
state and control variables is shown in Figs. 12 and 13.
Detailed results in terms of number of NLP solver itera-
tion (Newton iteration), computational time, and objective
function values can be found in Table III (Scenario 2 part).

Although VLDE-based, DE-based, PSO-based, GA-
based, and ABC-based methods managed to generate SMV
trajectory between the initial position and terminal position,
the data in Table III reveal that VLDE-based method can
generate an optimal solution, and perform a smaller value of
computational time and number of Newton iterations than
others. Especially, compared with method without initial
guess update, the number of NLP solver processing time
(Newton iteration) and computational time can be saved
significantly. It is worth noting that for some optimal con-
trol solvers, since there is no initial guess update process
embedded in the software framework, the solver simply

interpolates the state and control variables using the bound-
ary conditions provided by the user and uses it as the start
point of the Newton iteration. In this way, the initial tra-
jectory can hardly satisfy the dynamic equations and path
constraints, which means most of the constraints will be vi-
olated and the number of Newton iteration tends to increase
significantly. This can be reflected in Table III, where the
number of NLP iteration for no initial guess update case is
generally higher than other cases.

C. Analysis of the Simulation Result

To judge the quality of the solution generated by the
VLDE-based algorithm, the first-order necessary condi-
tions for an optimal control problem should be used. The dy-
namic model described in (1) is abbreviated as ẋ = f (x, u).
Then, the Hamiltonian function is constructed as

H = λT (t)f (x, u) (30)

in which λ(t) = [λr, λθ , λφ, λV , λγ , λψ, λα, λσ ]T is the
costate variable corresponding to the state variables. The
continuous-time first-order necessary conditions in terms
of costate and Hamiltonian can be shown as

λ(τ0)=− ∂J

∂x(τ0)
+υT ∂φ

∂x(τ0)
,λ(τf )=− ∂J

∂x(τf )
+υT ∂φ

∂x(τf )

H (t0) = ∂J

∂t0
− υT

∂φ

∂t0
, H (tf ) = ∂J

∂tf
− υT

∂φ

∂tf
(31)

where φ is boundary condition illustrated in Table I, and
υ is the Lagrange multiplier associated with the boundary
condition. Based on (31), the costate value for each state
variable at the final time should hold (32), which means
if the state variables are fixed at the initial point, then for
those states which have free final conditions, the estimated
costate should be equal to 0:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λθ (tf ) = ∂J

∂θ
|t=tf = 0

λφ(tf ) = ∂J

∂φ
|t=tf = 0

λV (tf ) = ∂J

∂V
|t=tf = 0

λψ (tf ) = ∂J

∂ψ
|t=tf = 0

λα(tf ) = ∂J

∂α
|t=tf = 0

λσ (tf ) = ∂J

∂σ
|t=tf = 0.

(32)

Moreover, to calculate the final value of the Hamiltonian
function, the endpoint Lagrangian is formulated as

H (X(tf ), tf , υ)=− ∂J

∂tf
+ υr (rf − r(tf ))+ υγ (γf −γ (tf ))

= −1. (33)

Equation (33) indicates that the final value of the Hamilto-
nian should be zero for this problem. Then, the Hamiltonian
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Fig. 14. Hamiltonian values for mission scenario 1.

Fig. 15. Hamiltonian values for mission scenario 2.

evolution equation is used to demonstrate the behavior of
the Hamiltonian with respect to time such that

∂H

∂t
= 0. (34)

Combining (34) and (33), it is clear that the following equa-
tion should be satisfied:

H (x∗(tf ), u∗(tf ), tf ) = −1, H = constant. (35)

Figs. 14 and 15 illustrate the value of Hamiltonian func-
tion calculated using the proposed method for the two mis-
sion scenarios described in Table III, whereas Table IV
shows the final value of costate variables obtained using
the VLDE approach.

Figs. 14 and 15 and Table IV demonstrate that compared
with other methods, the VLDE-based method tends to ap-
proximate the Hamiltonian more accurately. Specifically,
the value of Hamiltonian generated from the VLDE-based
approach tends to keep flat around −1 with less variance.
In addition, the final costate values for states that have free

TABLE IV
Final Costate Value Calculate by VLDE-Based Method

States r θ φ V

Initial point Fixed Fixed Fixed Fixed
Final point Fixed Free Free Free
λf – 0 0 6.40 × 10−18

States γ ψ α σ

Initial point Fixed Fixed Fixed Fixed
Final point Fixed Free Free Free
λf – 0 2.40 × 10−13 1.22 × 10−13

TABLE V
Dispersions in the Entry Initial Conditions and Other Parameters

State/Parameter Distribution 3-σ Value/Range

Altitude, ft Zero-mean Gaussian 500
Longitude, ◦ Zero-mean Gaussian 0.0749
Latitude, ◦ Zero-mean Gaussian 0.3202
Velocity, ft/s Zero-mean Gaussian 100
Flight-path angle, ◦ Zero-mean Gaussian 0.1484
Heading angle, ◦ Zero-mean Gaussian 0.0973
Vehicle’s mass, slug Uniform ± 5%

final conditions are equal to 0 or approximately 0. That
means the VLDE-based method can have a better perfor-
mance in terms of following the original theory and it fur-
ther confirms that the method proposed is feasible and ef-
fective for handling SMV trajectory optimization problem.

D. Dispersion Models

The purpose of dispersion simulations is to demon-
strate the efficiency and feasibility of the proposed algo-
rithm in the presence of significant deviations in trajectory
state variables and vehicle uncertainties. The dispersions
in terms of the initial entry conditions were modeled by
zero-mean Gaussian dispersions. Furthermore, the vehicle
mass was perturbed uniformly up to 5% with the nominal
mass of 6309.43 slug, this gives a range of value of 5993.96
to 6624.90 slug. These entry-condition dispersions are the
same with the data reported in the literature [37]. All the
random initialization data used in the simulation are tabu-
lated in Table V.

Based on the data given in Table V, Monte Carlo sim-
ulations were carried out and the results are tabulated in
Table VI. For the mission described in Table I, 500 Monte
Carlo simulations were performed. The time histories of
100 dispersed trajectories for the state and control vari-
ables calculated using the proposed algorithm are plotted
in Figs. 16 and 17. Correspondingly, Table VI summarizes
the statistic performance of the proposed algorithm in terms
of the computational time and number of Newton iteration
for 500 dispersed trajectories. It can be seen from Figs. 16
and 17 that the performance of the proposed method can be
accepted, since it can successfully converge to the optimal
solution and it is not sensitive with respect to the random
initialization. Based on the data provided in Table VI, the
performance of the proposed approach is generally better
than other initial guess generators considered in this paper
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TABLE VI
Statistics on the Algorithm Performance in 500 Dispersed Trajectories

Computational
Time (s)

VLDE
Based

DE
Based

PSO
Based

GA
based

ABC
Based

Average 8.69 12.61 15.96 12.04 10.58
Maximum 12.25 16.33 23.17 14.42 13.09
Minimum 7.03 10.55 11.23 10.28 9.17

Newton
Iteration

VLDE
Based

DE
Based

PSO
Based

GA
Based

ABC
Based

Average 338 503 741 563 447
Maximum 591 747 2662 783 644
Minimum 147 385 513 394 329

Fig. 16. Hundred dispersed trajectories for the state and control
variables.

Fig. 17. Hundred dispersed trajectories for the state and control
variables.

in terms of the computational time and numbers of NLP
solver iterations. This indicates that the method designed
in this study can have better performance over other evolu-
tionary initial guess generators.

In summary, all the figures and data provided ear-
lier confirm the feasibility and optimality of the proposed

VLDE-based method. By using the initial guess calculated
using the VLDE algorithm, the SMV re-entry vehicle can
reach the target position without violating the path con-
straints and boundary conditions. Moreover, it was shown
that the VLDE algorithm has better convergence ability and
convergence speed than its counterparts, DE, PSO, GA,
and ABC algorithms in the current problem, which means
it can have a better performance under low computational
resources circumstance.

VI. CONCLUSION

In this paper, the application of the hp-adaptive discrete
method to three dimensional SMV re-entry trajectory op-
timization problem has been introduced. In order to tackle
with the sensitivity in terms of the initial guess for current
gradient-based NLP solvers, a VLDE-based algorithm is
designed. To avoid the design of penalty factors, the vi-
olation degree and satisfactory degree are introduced to
describe the constraints and objectives. In addition, in or-
der to provide the population more diversity and improve
the convergence speed, a learning strategy is embedded in
the algorithm framework. Simulation results indicated that
by applying the initial guess generated using the VLDE
approach, the value of processing time, and Newton iter-
ation times for the NLP solver can be improved signifi-
cantly. Also, according to the convergency test, the pro-
posed method can have a better performance in terms of
convergence ability and convergence time than other meth-
ods considered in this paper. Therefore, since the simulation
results have proved the feasibility, as well as the superiority,
of the proposed algorithm, it is effective and efficient to use
the VLDE-based method in trajectory optimization prob-
lem. Our future work will focus on improving the stability
of the VLDE-based algorithm so that it can be applied in
dealing with more complex mission scenarios [38]. More-
over, it would be also worthwhile to enhance the real-time
performance of the proposed method so as to employ it for
solving real-time trajectory planning problems.
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